Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 5;68(Pt 10):o2857. doi: 10.1107/S160053681203694X

3-Methyl­amino-3-phenyl­propan-1-ol

Wolfgang Frey a, Mohammad M Ibrahim b, Basem F Ali b, Volker Jäger a,*
PMCID: PMC3470215  PMID: 23125659

Abstract

The title compound, C10H15NO, is an amino alcohol with the hy­droxy group residing on the terminal C atom. Apart from the hy­droxy group and the phenyl ring, all non-H atoms are almost coplanar. In the crystal, classical O—H⋯N and N—H⋯O hydrogen bonds connect the mol­ecules into centrosymmetric dimers [R 2 2(12) descriptor] and tetra­meric units [R 4 4(8) descriptor] as ring motifs, consolidating a three-dimensional network.

Related literature  

For the syntheses of amino alcohols from isoxazolidines, isoxazolines and isoxazolinium salts, see: DeShong & Leginus, (1983); Henneböhle et al. (2004); Ibrahim (2009); Jäger & Buss, (1980); Jäger et al. (1985, 2010); Jäger & Colinas (2002); Lubell et al. (1991). For hydrogen-bond motifs see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-o2857-scheme1.jpg

Experimental  

Crystal data  

  • C10H15NO

  • M r = 165.23

  • Monoclinic, Inline graphic

  • a = 5.9816 (8) Å

  • b = 23.8962 (19) Å

  • c = 7.4653 (8) Å

  • β = 111.119 (7)°

  • V = 995.40 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.80 × 0.50 × 0.20 mm

Data collection  

  • Siemens P4 diffractometer

  • 3535 measured reflections

  • 1704 independent reflections

  • 896 reflections with I > 2σ(I)

  • R int = 0.087

  • 3 standard reflections every 100 reflections intensity decay: 3%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.071

  • wR(F 2) = 0.201

  • S = 1.04

  • 1704 reflections

  • 119 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL-Plus.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203694X/im2389sup1.cif

e-68-o2857-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203694X/im2389Isup2.hkl

e-68-o2857-Isup2.hkl (84KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203694X/im2389Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 1.02 (4) 2.06 (3) 3.023 (4) 157 (2)
O1—H1A⋯N1ii 1.12 (4) 1.70 (4) 2.815 (3) 176 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the German Academic Exchange Service (DAAD) for PhD scholarship to MMI.

supplementary crystallographic information

Comment

Isoxazolidines, isoxazolines, and isoxazolinium salts are useful intermediates for syntheses of 1,3-amino alcohols by reduction with cleavage of the N–O bond (DeShong & Leginus, 1983; Jäger & Buss, 1980; Jäger et al., 1985; Jäger & Colinas, 2002; Henneböhle et al., 2004; Jäger et al., 2010). The structures and conformations of previously synthesized amino alcohols were all assigned on the basis of analytical as well as IR, 13C and 1H NMR data. When the 2-methyl-3-phenylisoxazolidine-3-carbonitrile was heated to reflux with lithium aluminium hydride in ether (abs.), the title compound I was formed in good yield. The starting isoxazolidine had been obtained from the corresponding N-methyl-isoxazolinium salt by cyanide addition (Henneböhle et al., 2004; Ibrahim, 2009; Jäger et al. 2010). The formation of the amino alcohol I was rationalized elsewhere (Ibrahim, 2009). The title compound I is already known from other routes (Lubell et al., 1991), yet, the crystal structure of I has not been published so far. We herein report the synthesis and the crystal structure of I, along with the supramolecular motifs present in the crystal lattice.

The asymmetric unit of I consists of one amino alcohol molecule with bond distances and angles in the normal range (Allen et al., 1987). The molecule, a primary alcohol and a secondary amine, adopts a planar zigzag-chain conformation (C1/C2/C3/N1/C4 almost coplanar), with both the hydroxy and the phenyl group being out-of-plane. The hydroxy and the phenyl group enclose dihedral angles of -60.3 (4)° and -63.0 (3)°, respectively, with the atoms of the carbon-chain (hydroxyl-O1/phenyl-C5-C1-C2-C3), see Fig. 1. In the crystal structure, molecules are hydrogen-bonded through the hydroxy groups as well as the amino groups (Table 1) giving rise to a three-dimensional network. The cooperative hydrogen bonds (alternating between hydroxy and amino groups) connect the molecules into chains down the crystallographic a axis (Fig. 2). These chains consist of alternating centrosymmetric dimers, with each dimer further interacting through the hydroxyl and amino groups with the adjacent one to form tetrameric units (Fig. 2). In terms of graph-set description, the hydrogen-bonded molecules might be described as forming two types of rings (Bernstein et al., 1995), the centrosymmetric dimers being R22(12) while R44(8) represents the descriptor for the tetramer units. These interactions consolidate a three-dimensional network.

This amino alcohol conformation in the crystal found here is in contrast to the conformations elucidated in solution on the basis of IR dilution experiments and extensive collections of 13C and 1H NMR data, notably coupling constants and substituent increments - there intramolecular hydrogen bonds O—H···N prevail to form monomers with chair-like arrangements (Jäger & Buss, 1980).

Experimental

A solution of 2-methyl-3-phenylisoxazolidine-3-carbonitrile (150 mg, 0.80 mmol) in anhydrous diethylether (5 ml) at 0°C was added to a suspension of LiAlH4 (61.0 mg, 1.6 mmol, 2 eq) in anhydrous diethylether (15 ml) and stirred for 30 min. The mixture was allowed to warm up to room temperature and stirred for 1 h. The reaction mixture was then heated to reflux for 12 h. The solution was cooled to r.t., then at 0°C with vigorous stirring. H2O (0.5 ml), 5% NaOH (0.5 ml), and H2O (1.5 ml) were added sequentially. The reaction mixture was extracted with ether (4 x 15 ml) and CH2Cl2 (2 x 10 ml). The organic layers were dried over Na2SO4. The solvent was evaporated in vacuo (5 mbar, 40°C) to afford the amino alcohol I in analytically and spectroscopically pure form as a colorless solid [100 mg, 84%, m.p. 56–57°C; lit. 56–57°C (Lubell et al., 1991)]. Crystallization of the solid from ether afforded colorless crystals suitable for crystal structure determination. Analysis for C10H15NO, Calc.: C 72.69, H 9.15, N 8.48; Found: C 72.39, H 9.11, N 8.07.

Refinement

Hydrogen atoms were located from the difference fourier map, but refined with fixed individual displacement parameters, using a riding model with d(C—H) ranging from 0.93 to 0.98 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl). In addition, the methyl group is allowed to rotate but not to tip. Hydrogen atoms attached to the hydroxy function and to the amino moiety are refined freely because of their relevance in hydrogen bonding.

Figures

Fig. 1.

Fig. 1.

The molecular structure of I, with thermal ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view down c axis showing chains of hydrogen bonding molecules along a axis. The chains consist of alternating centrosymmetric dimers, with each dimer further interacting through the hydroxyl and amino groups with the adjacent one to form tetrameric units.

Crystal data

C10H15NO F(000) = 360
Mr = 165.23 Dx = 1.103 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2yn Cell parameters from 30 reflections
a = 5.9816 (8) Å θ = 21.0–22.5°
b = 23.8962 (19) Å µ = 0.56 mm1
c = 7.4653 (8) Å T = 293 K
β = 111.119 (7)° Block, colourless
V = 995.40 (19) Å3 0.80 × 0.50 × 0.20 mm
Z = 4

Data collection

Siemens P4 diffractometer Rint = 0.087
Radiation source: fine-focus sealed tube θmax = 67.5°, θmin = 3.7°
Graphite monochromator h = −7→7
ω scans k = −28→28
3535 measured reflections l = −8→8
1704 independent reflections 3 standard reflections every 100 reflections
896 reflections with I > 2σ(I) intensity decay: 3%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.0232P)2 + 0.9564P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
1704 reflections Δρmax = 0.22 e Å3
119 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.026 (2)

Special details

Experimental. 1H NMR (500.2 MHz, MeOD): d = 1.82 (dddd, 3J1a,2a = 7.9 Hz, 3J1b,2a = 5.6 Hz, 2J2a,2b = 14.0 Hz, 3J2a,3 = 5.2 Hz, 1 H, 2-Ha), 2.06 (dddd, 3J1a,2b = 6.2 Hz, 3J1b,2b = 7.5 Hz, 2J2a,2b = 14.2 Hz, 3J2b,3 = 5.8 Hz, 1 H, 2-Hb), 2.18 (s, 3 H, NCH3), 3.42 (ddd, 2J1a,1b = 10.8 Hz, 3J1a,2a = 8.1 Hz, 3J1a,2b = 6.1 Hz, 1 H, 1-Ha), 3.49 (ddd, 2J1a,1b = 8.0 Hz, 3J1b,2a = 5.0 Hz, 3J1b,2b = 6.8 Hz, 1 H, 1-Hb), 3.65 (dd, 3J2a,3 = 8.3 Hz, 3J2b,3 = 6.0 Hz, 1 H, 3-H), 7.23-7.35 (m, 5 H, C6H5); 13C NMR (125.8 MHz, MeOD): d = 34.0 (q, NCH3), 40.7 (t, C-2), 60.4 (t, C-1), 63.7 (d, C-3), 128.2, 128.4, 129.6 (3 d, o-, m-, p-C of C6H5), 143.8 (s, i-C of C6H5).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6223 (4) 0.02730 (9) 0.2754 (3) 0.0633 (7)
H1A 0.622 (7) −0.0130 (18) 0.351 (6) 0.111 (14)*
N1 1.3595 (5) 0.07300 (10) 0.5221 (4) 0.0610 (8)
H1B 1.458 (6) 0.0688 (12) 0.436 (5) 0.063 (9)*
C1 0.7636 (6) 0.02462 (14) 0.1583 (5) 0.0639 (9)
H1C 0.7208 0.0555 0.0681 0.077*
H1D 0.7277 −0.0099 0.0849 0.077*
C2 1.0300 (5) 0.02701 (12) 0.2739 (4) 0.0564 (8)
H2A 1.1168 0.0238 0.1868 0.068*
H2B 1.0732 −0.0049 0.3599 0.068*
C3 1.1102 (5) 0.08083 (12) 0.3929 (4) 0.0565 (8)
H3 1.0121 0.0848 0.4727 0.068*
C4 1.4610 (8) 0.11951 (15) 0.6516 (6) 0.0922 (14)
H4A 1.4654 0.1522 0.5782 0.138*
H4B 1.6207 0.1102 0.7351 0.138*
H4C 1.3637 0.1268 0.7270 0.138*
C5 1.0643 (6) 0.13176 (12) 0.2623 (5) 0.0603 (9)
C6 0.8826 (7) 0.16881 (14) 0.2513 (6) 0.0790 (11)
H6 0.7948 0.1640 0.3307 0.095*
C7 0.8291 (8) 0.21376 (16) 0.1211 (7) 0.0936 (14)
H7 0.7072 0.2387 0.1152 0.112*
C8 0.9553 (9) 0.22067 (16) 0.0047 (7) 0.0925 (14)
H8 0.9167 0.2496 −0.0844 0.111*
C9 1.1390 (8) 0.18531 (15) 0.0176 (6) 0.0851 (12)
H9 1.2292 0.1911 −0.0595 0.102*
C10 1.1927 (7) 0.14055 (14) 0.1451 (5) 0.0737 (10)
H10 1.3169 0.1163 0.1511 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0526 (13) 0.0690 (14) 0.0665 (15) 0.0047 (10) 0.0194 (11) 0.0030 (11)
N1 0.0552 (15) 0.0620 (16) 0.0583 (17) −0.0054 (12) 0.0114 (14) −0.0037 (12)
C1 0.0563 (18) 0.075 (2) 0.0562 (19) −0.0061 (15) 0.0158 (16) −0.0016 (15)
C2 0.0557 (17) 0.0585 (17) 0.0554 (18) −0.0043 (13) 0.0206 (15) −0.0044 (13)
C3 0.0547 (17) 0.0579 (17) 0.0563 (19) 0.0004 (13) 0.0193 (16) −0.0015 (13)
C4 0.101 (3) 0.071 (2) 0.079 (3) −0.015 (2) 0.001 (2) −0.0142 (19)
C5 0.0563 (18) 0.0562 (17) 0.063 (2) 0.0016 (14) 0.0145 (16) 0.0007 (14)
C6 0.078 (2) 0.066 (2) 0.092 (3) 0.0102 (17) 0.030 (2) −0.0017 (19)
C7 0.090 (3) 0.065 (2) 0.109 (4) 0.021 (2) 0.016 (3) 0.005 (2)
C8 0.114 (3) 0.067 (2) 0.082 (3) 0.009 (2) 0.019 (3) 0.011 (2)
C9 0.106 (3) 0.071 (2) 0.084 (3) −0.001 (2) 0.040 (3) 0.0100 (19)
C10 0.082 (2) 0.068 (2) 0.073 (2) 0.0038 (17) 0.031 (2) 0.0077 (17)

Geometric parameters (Å, º)

O1—C1 1.420 (4) C4—H4B 0.9600
O1—H1A 1.12 (4) C4—H4C 0.9600
N1—C4 1.454 (4) C5—C10 1.373 (5)
N1—C3 1.468 (4) C5—C6 1.381 (4)
N1—H1B 1.02 (4) C6—C7 1.406 (5)
C1—C2 1.516 (4) C6—H6 0.9300
C1—H1C 0.9700 C7—C8 1.351 (6)
C1—H1D 0.9700 C7—H7 0.9300
C2—C3 1.538 (4) C8—C9 1.362 (6)
C2—H2A 0.9700 C8—H8 0.9300
C2—H2B 0.9700 C9—C10 1.390 (5)
C3—C5 1.521 (4) C9—H9 0.9300
C3—H3 0.9800 C10—H10 0.9300
C4—H4A 0.9600
C1—O1—H1A 112 (2) N1—C4—H4B 109.5
C4—N1—C3 114.9 (3) H4A—C4—H4B 109.5
C4—N1—H1B 107.1 (17) N1—C4—H4C 109.5
C3—N1—H1B 106.3 (18) H4A—C4—H4C 109.5
O1—C1—C2 112.6 (3) H4B—C4—H4C 109.5
O1—C1—H1C 109.1 C10—C5—C6 118.2 (3)
C2—C1—H1C 109.1 C10—C5—C3 121.2 (3)
O1—C1—H1D 109.1 C6—C5—C3 120.5 (3)
C2—C1—H1D 109.1 C5—C6—C7 120.6 (4)
H1C—C1—H1D 107.8 C5—C6—H6 119.7
C1—C2—C3 113.9 (3) C7—C6—H6 119.7
C1—C2—H2A 108.8 C8—C7—C6 119.8 (4)
C3—C2—H2A 108.8 C8—C7—H7 120.1
C1—C2—H2B 108.8 C6—C7—H7 120.1
C3—C2—H2B 108.8 C7—C8—C9 120.2 (4)
H2A—C2—H2B 107.7 C7—C8—H8 119.9
N1—C3—C5 115.4 (2) C9—C8—H8 119.9
N1—C3—C2 107.7 (2) C8—C9—C10 120.5 (4)
C5—C3—C2 110.6 (2) C8—C9—H9 119.8
N1—C3—H3 107.6 C10—C9—H9 119.8
C5—C3—H3 107.6 C5—C10—C9 120.7 (4)
C2—C3—H3 107.6 C5—C10—H10 119.7
N1—C4—H4A 109.5 C9—C10—H10 119.7
O1—C1—C2—C3 −60.3 (4) C10—C5—C6—C7 0.9 (5)
C4—N1—C3—C5 58.3 (4) C3—C5—C6—C7 −175.6 (3)
C4—N1—C3—C2 −177.6 (3) C5—C6—C7—C8 0.4 (6)
C1—C2—C3—N1 169.9 (3) C6—C7—C8—C9 −2.1 (7)
C1—C2—C3—C5 −63.0 (3) C7—C8—C9—C10 2.5 (7)
N1—C3—C5—C10 54.1 (4) C6—C5—C10—C9 −0.6 (5)
C2—C3—C5—C10 −68.5 (4) C3—C5—C10—C9 175.9 (3)
N1—C3—C5—C6 −129.5 (3) C8—C9—C10—C5 −1.1 (6)
C2—C3—C5—C6 107.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O1i 1.02 (4) 2.06 (3) 3.023 (4) 157 (2)
O1—H1A···N1ii 1.12 (4) 1.70 (4) 2.815 (3) 176 (3)

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2389).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  3. Bruker (1996). XSCANS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. DeShong, P. & Leginus, J. M. (1983). J. Am. Chem. Soc. 105, 1686-1688.
  5. Henneböhle, M., Le Roy, P.-Y., Hein, M., Ehrler, R. & Jäger, V. (2004). Z. Naturforsch. Teil B, 59, 451– 467.
  6. Ibrahim, M. M. (2009). Dissertation, Universität Stuttgart, Germany.
  7. Jäger, V. & Buss, V. (1980). Liebigs Ann. Chem. pp. 101–121.
  8. Jäger, V. & Colinas, P. (2002). Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, The Chemistry of Heterocyclic Compounds, edited by A. Padwa & W. H. Pearson, pp. 361–472. New York: Wiley.
  9. Jäger, V., Frey, W., Bathich, Y., Shiva, S., Ibrahim, M., Henneböhle, M., LeRoy, P. Y. & Imerhasan, M. (2010). Z. Naturforsch. Teil B, 65b, 821–832.
  10. Jäger, V., Müller, I. & Paulus, E. F. (1985). Tetrahedron Lett. 26, 2997-3000.
  11. Lubell, W. D., Kitamura, M. & Noyori, R. (1991). Tetrahedron Asymmetry, 2, 543-554.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203694X/im2389sup1.cif

e-68-o2857-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203694X/im2389Isup2.hkl

e-68-o2857-Isup2.hkl (84KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681203694X/im2389Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES