Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 22;68(Pt 10):o2977–o2978. doi: 10.1107/S1600536812039451

Methyl (E)-2-[(3-chloro-4-cyano­phenyl)­imino]-4-(4-chloro­phen­yl)-6-methyl-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

K N Venugopala a,*, Susanta K Nayak b,*, Bharti Odhav a
PMCID: PMC3470343  PMID: 23125756

Abstract

In the title compound, C20H16Cl2N4O2, the dihedral angles between the planes of the chloro­phenyl, chloro­cyano­phenyl­imine and ester groups and the plane of the six-membered tetra­hydro­pyrimidine ring are 86.9 (2), 72.6 (2) and 7.9 (2)°, respectively. The Cl atom substituent on the cyano­phenyl ring is disordered over two rotationally related sites [occupancy factors 0.887 (2):0.113 (2)], while the mol­ecular conformation is stabilized by the presence of an intra­molecular aromatic C—H⋯π inter­action. Both N—H groups participate in separate inter­molecular hydrogen-bonding associations with centrosymmetric cyclic motifs [graph sets R 2 2(8) and R 2 2(12)], resulting in ribbons parallel to [010]. Further weak C—H⋯O hydrogen bonds link these ribbons into a two-dimensional mol­ecular assembly.

Related literature  

For crystal structures of the dihydro­pyrimidines, see: Nayak et al. (2010); Nayak, Venugopala, Govender et al. (2011); Nayak, Venugopala, Chopra & Guru Row (2011). For background on the applications of dihydro­pyrimidines, see: Kappe (2000). For graph-set analysis, see: Bernstein et al. (1995).graphic file with name e-68-o2977-scheme1.jpg

Experimental  

Crystal data  

  • C20H16Cl2N4O2

  • M r = 415.27

  • Monoclinic, Inline graphic

  • a = 11.905 (8) Å

  • b = 13.729 (9) Å

  • c = 12.782 (8) Å

  • β = 108.366 (14)°

  • V = 1983 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 K

  • 0.23 × 0.12 × 0.03 mm

Data collection  

  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.924, T max = 0.990

  • 9454 measured reflections

  • 3497 independent reflections

  • 2324 reflections with I > 2σ(I)

  • R int = 0.029

  • Standard reflections: 0

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.130

  • S = 1.01

  • 3497 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812039451/zs2233sup1.cif

e-68-o2977-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039451/zs2233Isup2.hkl

e-68-o2977-Isup2.hkl (168KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039451/zs2233Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the mid-point of the C3=C4 bond.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4A i 0.88 2.21 2.981 (4) 147
N2—H2⋯N3ii 0.88 2.09 2.966 (4) 172
C15A—H15A⋯O1iii 0.95 2.39 3.322 (4) 169
C12—H12⋯Cg1 0.95 2.85 3.290 (2) 109

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Durban University of Technology for facilities. KNV thanks NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

supplementary crystallographic information

Comment

The multifunctionalized dihydropyrimidones (DHPMs) are prime target molecules for their therapeutic and pharmacological properties (Kappe, 2000). Due to the vast range of applications of this class of compounds we have been investigating conformational and packing features of tetrahydropyrimidine derivatives of this title compound (Nayak et al., 2010; Nayak, Venugopala, Govender et al., 2011; Nayak, Venugopala, Chopra & Guru Row (2011). In a continuation of our work on synthesis of heterocyclic compounds for biological properties, herein we report the single-crystal structure of the title compound, C20H16Cl2N4O2.

In this molecule (Fig. 1), the dihedral angles between the planes of the 4-chlorophenyl, 3-chloro-4-cyanophenylimino and ester groups (O2/C2/O1/C1) and the plane of the six-membered tetrahydropyrimidine ring are 86.9 (2)°, 72.6 (2)° and 7.9 (2)° respectively. The conformation of the molecule is stabilized by an intra-molecular C—H···π interaction (Table 1) wherein the aryl hydrogen H12 is oriented towards the π electrons of the C3═C4 bond. The meta-related chlorine substituent on the cyanophenyl ring is disordered over two rotationally-related sites [occupancy factors 0.887 (2) (A): 0.113 (2) B]. Both N—H groups participate in separate intermolecular hydrogen-bonding associations giving centrosymmetric cyclic motifs [graph sets R22(8) and R22(12) (Bernstein et al., 1995)], resulting in ribbons parallel to [010] (Fig. 2a). Further weak C—H···O hydrogen bonds (Fig. 2b) link these ribbons into a two-dimensional molecular assembly. Present also is a short intermolecular Cl···Cl interaction [Cl1···Cl2Biv; 2.884 (7) Å (symmetry code -x + 1, y, -z - 1/2)].

Experimental

A mixture of methyl-2-chloro-4-(p-chlorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate (1 mmol), 4-amino-2-chlorobenzonitrile (1 mmol) and methanamine (1 mmol) in 2-propanol (5 ml) was refluxed for 10 h. The reaction completion was monitored by TLC. The reaction medium was cooled to room temperature, the product was filtered, washed with cold 2-propanol and dried to obtain the crude product. The product was purified by recrystallization using ethanol in 69% yield as a yellow solid (m.p. 431 (2) K). Crystals suitable for single-crystal X-ray study were obtained from methanol solvent using slow evaporation at room temperature.

Refinement

The 3-chloro-4-cyanophenylimino group was treated as disordered over two possible rotation-related sites (A and B), having refined site occupancy factors of 0.887 (2) and 0.113 (2), respectively. All H atoms were positioned geometrically with N—H = 0.88 Å, C—H = 0.95–1.00 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C/N) except for the methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atom numbering scheme and displacement ellipsoids for non-H atoms drawn at the 50% probability level. The intramolecular C—H···π interaction is shown as dashed lines. The disordered chlorine positions are differentiated as A and B.

Fig. 2.

Fig. 2.

(a) Intermolecular N—H···N hydrogen-bonding associations form an infinite ribbon structure. (b) Further C—H···O hydrogen bonds link the ribbons giving a two-dimensional network structure.

Crystal data

C20H16Cl2N4O2 F(000) = 856
Mr = 415.27 Dx = 1.391 Mg m3
Monoclinic, P2/c Melting point: 431(2) K
Hall symbol: -P 2yc Mo Kα radiation, λ = 0.71073 Å
a = 11.905 (8) Å Cell parameters from 650 reflections
b = 13.729 (9) Å θ = 1.5–25.0°
c = 12.782 (8) Å µ = 0.35 mm1
β = 108.366 (14)° T = 173 K
V = 1983 (2) Å3 Plate, yellow
Z = 4 0.23 × 0.12 × 0.03 mm

Data collection

Bruker Kappa DUO APEXII diffractometer 3497 independent reflections
Radiation source: fine-focus sealed tube 2324 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
0.5° φ scans and ω scans θmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −14→13
Tmin = 0.924, Tmax = 0.990 k = −16→16
9454 measured reflections l = −7→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.7735P] where P = (Fo2 + 2Fc2)/3
3497 reflections (Δ/σ)max = 0.001
259 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl2A 1.27478 (8) 0.07230 (7) 0.07772 (9) 0.0732 (3) 0.8872 (16)
C14A 1.0144 (2) 0.26844 (18) −0.0167 (2) 0.0429 (7) 0.8872 (16)
C15A 1.1235 (3) 0.2245 (2) 0.0335 (2) 0.0511 (7) 0.8872 (16)
H15A 1.1837 0.2590 0.0874 0.061* 0.8872 (16)
C16A 1.1443 (2) 0.1307 (2) 0.0047 (2) 0.0490 (7) 0.8872 (16)
C17A 1.0592 (2) 0.07963 (17) −0.0761 (2) 0.0387 (6) 0.8872 (16)
C18A 0.9496 (2) 0.12388 (18) −0.1256 (2) 0.0424 (6) 0.8872 (16)
H18A 0.8900 0.0898 −0.1806 0.051* 0.8872 (16)
C19A 0.9270 (2) 0.21625 (19) −0.0957 (2) 0.0435 (6) 0.8872 (16)
H19A 0.8514 0.2448 −0.1291 0.052* 0.8872 (16)
C20A 1.0824 (3) −0.0174 (2) −0.1067 (2) 0.0449 (7) 0.8872 (16)
N4A 1.0998 (2) −0.09457 (18) −0.1320 (2) 0.0584 (7) 0.8872 (16)
Cl2B 0.8417 (6) 0.0473 (6) −0.1826 (7) 0.0732 (3) 0.1128 (16)
C14B 1.0144 (2) 0.26844 (18) −0.0167 (2) 0.0429 (7) 0.1128 (16)
C15B 1.1235 (3) 0.2245 (2) 0.0335 (2) 0.0511 (7) 0.1128 (16)
H15B 1.1837 0.2590 0.0874 0.061* 0.1128 (16)
C16B 1.1443 (2) 0.1307 (2) 0.0047 (2) 0.0490 (7) 0.1128 (16)
H16B 1.2182 0.1007 0.0410 0.059* 0.1128 (16)
C17B 1.0592 (2) 0.07963 (17) −0.0761 (2) 0.0387 (6) 0.1128 (16)
C18B 0.9496 (2) 0.12388 (18) −0.1256 (2) 0.0424 (6) 0.1128 (16)
C19B 0.9270 (2) 0.21625 (19) −0.0957 (2) 0.0435 (6) 0.1128 (16)
H19B 0.8514 0.2448 −0.1291 0.052* 0.1128 (16)
C20B 1.0824 (3) −0.0174 (2) −0.1067 (2) 0.0449 (7) 0.1128 (16)
N4B 1.0998 (2) −0.09457 (18) −0.1320 (2) 0.0584 (7) 0.1128 (16)
Cl1 0.35886 (9) 0.15552 (9) −0.18125 (10) 0.1015 (4)
O1 0.67082 (15) 0.36934 (13) 0.30483 (14) 0.0440 (5)
O2 0.6947 (2) 0.53124 (14) 0.30330 (18) 0.0635 (6)
N1 0.88569 (18) 0.31127 (15) 0.12045 (18) 0.0418 (5)
H1 0.9209 0.2541 0.1288 0.050*
N2 0.89937 (19) 0.47517 (14) 0.08817 (18) 0.0445 (6)
H2 0.9239 0.5226 0.0544 0.053*
N3 0.9962 (2) 0.36677 (15) 0.0096 (2) 0.0480 (6)
C1 0.6064 (3) 0.3833 (2) 0.3825 (2) 0.0545 (8)
H1A 0.6603 0.4078 0.4523 0.082*
H1B 0.5725 0.3211 0.3952 0.082*
H1C 0.5426 0.4305 0.3525 0.082*
C2 0.7139 (2) 0.4517 (2) 0.2724 (2) 0.0429 (6)
C3 0.7800 (2) 0.42850 (18) 0.1967 (2) 0.0393 (6)
C4 0.8352 (2) 0.49915 (19) 0.1574 (2) 0.0405 (6)
C5 0.8350 (3) 0.60622 (18) 0.1828 (2) 0.0478 (7)
H5A 0.7538 0.6311 0.1557 0.072*
H5B 0.8843 0.6411 0.1466 0.072*
H5C 0.8667 0.6161 0.2627 0.072*
C6 0.7861 (2) 0.32283 (18) 0.1639 (2) 0.0398 (6)
H6 0.8027 0.2821 0.2320 0.048*
C7 0.6733 (2) 0.28406 (18) 0.0795 (2) 0.0403 (6)
C8 0.6315 (3) 0.1926 (2) 0.0943 (3) 0.0552 (8)
H8 0.6691 0.1570 0.1597 0.066*
C9 0.5350 (3) 0.1527 (2) 0.0139 (3) 0.0697 (10)
H9 0.5076 0.0894 0.0234 0.084*
C10 0.4795 (3) 0.2057 (3) −0.0795 (3) 0.0625 (9)
C11 0.5174 (3) 0.2981 (2) −0.0955 (3) 0.0589 (8)
H11 0.4778 0.3345 −0.1598 0.071*
C12 0.6147 (3) 0.3362 (2) −0.0151 (2) 0.0496 (7)
H12 0.6420 0.3994 −0.0250 0.060*
C13 0.9271 (2) 0.38082 (17) 0.0692 (2) 0.0400 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2A 0.0432 (5) 0.0708 (6) 0.0957 (7) 0.0139 (4) 0.0076 (5) −0.0130 (5)
C14A 0.0484 (16) 0.0313 (14) 0.0634 (18) −0.0036 (13) 0.0384 (15) −0.0031 (13)
C15A 0.0442 (16) 0.0458 (16) 0.0676 (19) −0.0057 (14) 0.0237 (15) −0.0131 (14)
C16A 0.0393 (15) 0.0455 (16) 0.0652 (18) 0.0060 (13) 0.0207 (14) −0.0046 (14)
C17A 0.0473 (16) 0.0295 (13) 0.0491 (15) 0.0024 (12) 0.0290 (13) −0.0010 (12)
C18A 0.0447 (16) 0.0343 (14) 0.0514 (16) −0.0026 (12) 0.0197 (13) −0.0027 (12)
C19A 0.0426 (15) 0.0337 (14) 0.0596 (17) 0.0016 (13) 0.0238 (14) 0.0004 (13)
C20A 0.0529 (17) 0.0394 (16) 0.0462 (16) 0.0063 (13) 0.0214 (13) 0.0014 (13)
N4A 0.0752 (18) 0.0419 (15) 0.0620 (16) 0.0152 (13) 0.0273 (14) −0.0020 (12)
Cl2B 0.0432 (5) 0.0708 (6) 0.0957 (7) 0.0139 (4) 0.0076 (5) −0.0130 (5)
C14B 0.0484 (16) 0.0313 (14) 0.0634 (18) −0.0036 (13) 0.0384 (15) −0.0031 (13)
C15B 0.0442 (16) 0.0458 (16) 0.0676 (19) −0.0057 (14) 0.0237 (15) −0.0131 (14)
C16B 0.0393 (15) 0.0455 (16) 0.0652 (18) 0.0060 (13) 0.0207 (14) −0.0046 (14)
C17B 0.0473 (16) 0.0295 (13) 0.0491 (15) 0.0024 (12) 0.0290 (13) −0.0010 (12)
C18B 0.0447 (16) 0.0343 (14) 0.0514 (16) −0.0026 (12) 0.0197 (13) −0.0027 (12)
C19B 0.0426 (15) 0.0337 (14) 0.0596 (17) 0.0016 (13) 0.0238 (14) 0.0004 (13)
C20B 0.0529 (17) 0.0394 (16) 0.0462 (16) 0.0063 (13) 0.0214 (13) 0.0014 (13)
N4B 0.0752 (18) 0.0419 (15) 0.0620 (16) 0.0152 (13) 0.0273 (14) −0.0020 (12)
Cl1 0.0658 (6) 0.1042 (8) 0.1193 (8) −0.0215 (6) 0.0072 (6) −0.0381 (7)
O1 0.0411 (10) 0.0440 (11) 0.0553 (11) 0.0003 (9) 0.0270 (9) 0.0015 (9)
O2 0.0846 (16) 0.0439 (12) 0.0850 (15) 0.0025 (11) 0.0598 (14) −0.0096 (11)
N1 0.0393 (12) 0.0288 (11) 0.0661 (14) 0.0043 (9) 0.0293 (11) −0.0007 (10)
N2 0.0528 (14) 0.0280 (11) 0.0687 (15) −0.0037 (10) 0.0420 (13) −0.0065 (10)
N3 0.0545 (14) 0.0296 (11) 0.0752 (16) −0.0041 (11) 0.0423 (13) −0.0089 (11)
C1 0.0521 (17) 0.064 (2) 0.0577 (18) −0.0015 (15) 0.0325 (15) 0.0001 (15)
C2 0.0380 (14) 0.0409 (15) 0.0544 (16) 0.0038 (12) 0.0213 (13) −0.0015 (13)
C3 0.0371 (14) 0.0342 (14) 0.0518 (16) 0.0005 (12) 0.0214 (12) −0.0028 (12)
C4 0.0381 (14) 0.0353 (14) 0.0538 (16) 0.0002 (12) 0.0225 (13) −0.0072 (12)
C5 0.0488 (16) 0.0350 (14) 0.0701 (19) −0.0037 (13) 0.0339 (15) −0.0100 (13)
C6 0.0392 (14) 0.0331 (13) 0.0563 (16) 0.0023 (11) 0.0283 (13) 0.0018 (12)
C7 0.0374 (14) 0.0331 (14) 0.0599 (17) 0.0009 (12) 0.0287 (13) −0.0054 (13)
C8 0.0443 (16) 0.0344 (15) 0.089 (2) 0.0015 (13) 0.0237 (16) 0.0053 (15)
C9 0.0474 (18) 0.0366 (17) 0.123 (3) −0.0069 (15) 0.024 (2) −0.0123 (19)
C10 0.0458 (18) 0.061 (2) 0.081 (2) −0.0060 (17) 0.0200 (17) −0.0222 (19)
C11 0.0559 (19) 0.071 (2) 0.0545 (18) −0.0044 (17) 0.0248 (16) −0.0050 (16)
C12 0.0520 (17) 0.0454 (16) 0.0595 (18) −0.0070 (14) 0.0290 (15) −0.0006 (14)
C13 0.0384 (14) 0.0288 (13) 0.0592 (16) −0.0039 (11) 0.0246 (13) −0.0074 (12)

Geometric parameters (Å, º)

Cl2A—C16A 1.736 (3) N3—C13 1.300 (3)
C14A—C15A 1.392 (4) C1—H1A 0.9800
C14A—C19A 1.398 (4) C1—H1B 0.9800
C14A—N3 1.424 (3) C1—H1C 0.9800
C15A—C16A 1.382 (4) C2—C3 1.461 (3)
C15A—H15A 0.9500 C3—C4 1.355 (3)
C16A—C17A 1.388 (4) C3—C6 1.518 (4)
C17A—C18A 1.397 (4) C4—C5 1.506 (4)
C17A—C20A 1.439 (4) C5—H5A 0.9800
C18A—C19A 1.375 (4) C5—H5B 0.9800
C18A—H18A 0.9500 C5—H5C 0.9800
C19A—H19A 0.9500 C6—C7 1.530 (4)
C20A—N4A 1.146 (3) C6—H6 1.0000
Cl1—C10 1.747 (3) C7—C8 1.385 (4)
O1—C2 1.359 (3) C7—C12 1.389 (4)
O1—C1 1.446 (3) C8—C9 1.389 (4)
O2—C2 1.207 (3) C8—H8 0.9500
N1—C13 1.337 (3) C9—C10 1.376 (5)
N1—C6 1.468 (3) C9—H9 0.9500
N1—H1 0.8800 C10—C11 1.383 (5)
N2—C13 1.377 (3) C11—C12 1.386 (4)
N2—C4 1.378 (3) C11—H11 0.9500
N2—H2 0.8800 C12—H12 0.9500
C15A—C14A—C19A 119.0 (2) C2—C3—C6 118.3 (2)
C15A—C14A—N3 119.4 (3) C3—C4—N2 120.0 (2)
C19A—C14A—N3 121.5 (3) C3—C4—C5 125.8 (2)
C16A—C15A—C14A 120.0 (3) N2—C4—C5 114.3 (2)
C16A—C15A—H15A 120.0 C4—C5—H5A 109.5
C14A—C15A—H15A 120.0 C4—C5—H5B 109.5
C15A—C16A—C17A 121.3 (3) H5A—C5—H5B 109.5
C15A—C16A—Cl2A 119.5 (2) C4—C5—H5C 109.5
C17A—C16A—Cl2A 119.1 (2) H5A—C5—H5C 109.5
C16A—C17A—C18A 118.4 (2) H5B—C5—H5C 109.5
C16A—C17A—C20A 120.9 (3) N1—C6—C3 108.84 (19)
C18A—C17A—C20A 120.7 (2) N1—C6—C7 109.2 (2)
C19A—C18A—C17A 120.8 (3) C3—C6—C7 114.8 (2)
C19A—C18A—H18A 119.6 N1—C6—H6 107.9
C17A—C18A—H18A 119.6 C3—C6—H6 107.9
C18A—C19A—C14A 120.5 (3) C7—C6—H6 107.9
C18A—C19A—H19A 119.8 C8—C7—C12 118.8 (3)
C14A—C19A—H19A 119.8 C8—C7—C6 119.5 (3)
N4A—C20A—C17A 179.3 (4) C12—C7—C6 121.6 (2)
C2—O1—C1 115.6 (2) C7—C8—C9 120.3 (3)
C13—N1—C6 125.1 (2) C7—C8—H8 119.8
C13—N1—H1 117.5 C9—C8—H8 119.8
C6—N1—H1 117.5 C10—C9—C8 119.5 (3)
C13—N2—C4 123.3 (2) C10—C9—H9 120.3
C13—N2—H2 118.3 C8—C9—H9 120.3
C4—N2—H2 118.3 C9—C10—C11 121.6 (3)
C13—N3—C14A 116.7 (2) C9—C10—Cl1 119.7 (3)
O1—C1—H1A 109.5 C11—C10—Cl1 118.8 (3)
O1—C1—H1B 109.5 C10—C11—C12 118.1 (3)
H1A—C1—H1B 109.5 C10—C11—H11 120.9
O1—C1—H1C 109.5 C12—C11—H11 120.9
H1A—C1—H1C 109.5 C11—C12—C7 121.6 (3)
H1B—C1—H1C 109.5 C11—C12—H12 119.2
O2—C2—O1 121.6 (2) C7—C12—H12 119.2
O2—C2—C3 127.6 (2) N3—C13—N1 125.5 (2)
O1—C2—C3 110.7 (2) N3—C13—N2 118.3 (2)
C4—C3—C2 121.0 (2) N1—C13—N2 116.1 (2)
C4—C3—C6 120.7 (2)
C19A—C14A—C15A—C16A 0.1 (4) C13—N1—C6—C3 −29.3 (3)
N3—C14A—C15A—C16A −176.8 (2) C13—N1—C6—C7 96.7 (3)
C14A—C15A—C16A—C17A 1.9 (4) C4—C3—C6—N1 18.4 (3)
C14A—C15A—C16A—Cl2A −173.4 (2) C2—C3—C6—N1 −161.1 (2)
C15A—C16A—C17A—C18A −2.3 (4) C4—C3—C6—C7 −104.4 (3)
Cl2A—C16A—C17A—C18A 173.05 (19) C2—C3—C6—C7 76.1 (3)
C15A—C16A—C17A—C20A 179.0 (2) N1—C6—C7—C8 101.1 (3)
Cl2A—C16A—C17A—C20A −5.7 (4) C3—C6—C7—C8 −136.3 (2)
C16A—C17A—C18A—C19A 0.6 (4) N1—C6—C7—C12 −75.4 (3)
C20A—C17A—C18A—C19A 179.4 (2) C3—C6—C7—C12 47.1 (3)
C17A—C18A—C19A—C14A 1.3 (4) C12—C7—C8—C9 2.1 (4)
C15A—C14A—C19A—C18A −1.7 (4) C6—C7—C8—C9 −174.6 (2)
N3—C14A—C19A—C18A 175.2 (2) C7—C8—C9—C10 −1.5 (5)
C15A—C14A—N3—C13 −108.4 (3) C8—C9—C10—C11 0.0 (5)
C19A—C14A—N3—C13 74.8 (3) C8—C9—C10—Cl1 179.5 (2)
C1—O1—C2—O2 −3.0 (4) C9—C10—C11—C12 0.8 (5)
C1—O1—C2—C3 178.4 (2) Cl1—C10—C11—C12 −178.7 (2)
O2—C2—C3—C4 4.3 (5) C10—C11—C12—C7 −0.2 (4)
O1—C2—C3—C4 −177.2 (2) C8—C7—C12—C11 −1.2 (4)
O2—C2—C3—C6 −176.2 (3) C6—C7—C12—C11 175.3 (2)
O1—C2—C3—C6 2.3 (3) C14A—N3—C13—N1 10.1 (4)
C2—C3—C4—N2 178.5 (2) C14A—N3—C13—N2 −174.5 (2)
C6—C3—C4—N2 −1.0 (4) C6—N1—C13—N3 −163.9 (3)
C2—C3—C4—C5 −1.0 (4) C6—N1—C13—N2 20.6 (4)
C6—C3—C4—C5 179.5 (3) C4—N2—C13—N3 −174.4 (3)
C13—N2—C4—C3 −10.6 (4) C4—N2—C13—N1 1.4 (4)
C13—N2—C4—C5 168.9 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the midpoint of the C3═C4 bond. [Please check added text]

D—H···A D—H H···A D···A D—H···A
N1—H1···N4Ai 0.88 2.21 2.981 (4) 147
N2—H2···N3ii 0.88 2.09 2.966 (4) 172
C15A—H15A···O1iii 0.95 2.39 3.322 (4) 169
C12—H12···Cg1 0.95 2.85 3.290 (2) 109

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, −y+1, −z; (iii) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2233).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052. [DOI] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  7. Nayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011). CrystEngComm, 13, 591–605.
  8. Nayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205–1216.
  9. Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Row, T. N. G. (2011). Acta Cryst. E67, o3069–o3070. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812039451/zs2233sup1.cif

e-68-o2977-sup1.cif (29.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812039451/zs2233Isup2.hkl

e-68-o2977-Isup2.hkl (168KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812039451/zs2233Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES