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Abstract
In this work we explored class separability in feature spaces built on extended representations of
pixel planes (EPP) produced using scale pyramid, subband pyramid, and image transforms. The
image transforms included Chebyshev, Fourier, wavelets, gradient and Laplacian; we also utilized
transform combinations, including Fourier, Chebyshev and wavelets of the gradient transform, as
well as Fourier of the Laplacian transform. We demonstrate that all three types of EPP promote
class separation. We also explored the effect of EPP on suboptimal feature libraries, using only
textural features in one case and only Haralick features in another. The effect of EPP was
especially clear for these suboptimal libraries, where the transform-based representations were
found to increase separability to a greater extent than scale or subband pyramids. EPP can be
particularly useful in new applications where optimal features have not yet been developed.
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1. Introduction
Several influential works have established the extended representation of image pixels as an
approach to better classification. Tanimoto and Pavlidis [1] introduced scale pyramids as a
tool for image processing, and this technique was explored further by Bourbakis and Klinger
[2], and Burt and Adelson [3]. Other methods provided hierarchical representations of pixel
planes: Subband transforms [4] by Simoncelli and Adelson, Scale-space method [5] by
Lindeberg, and Steerable pyramids [6] by Freeman and Adelson. Subband transforms and
the Laplacian pyramids [3] provide yet another type of pyramid-based EPP. We used
Fourier, wavelets, gradient, Laplacian, and Chebyshev transforms to test other
representations of pixels. In contrast to pyramids, transforms generate pixel planes with
pixel locations redistributed in a non-linear manner, resulting in a variety of spatial patterns.

General multi-purpose feature libraries (MPF) are a subject of interest. Traditionally, for
detecting an object within a given image, libraries of local features [7, 8] have been
extensively used. A limitation of local features is that they operate on local pixel
neighborhoods and tend to become over tuned to details of the target object, making
generalizations more difficult [9]. Further, it has remained common practice to tailor feature
libraries to reflect a priori knowledge of the given task, using manual selection, parameter
tuning, or custom development. The broadening of application domains, particularly
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biological [10-14] and biomedical [15-19] problems, has increased demand for automatic
analysis and generalized image feature libraries, because the development of custom
features in this vast problem space is cost-prohibitive [20]. Therefore, MPF libraries have
begun to see broader use in projects concerned with expanded or cross-domain applications
[21, 22]. This new trend in generalization of feature libraries includes neighborhood-based
general-purpose libraries [23-26] as well as mixtures of general-purpose and task-specific
libraries [27]. In this work we compare the relative contributions of EPP to classification, so
we use a single set of general feature extraction algorithms (referred to as MPF
subsequently) which includes a broad range of commonly used, general purpose algorithms
for extracting numerical descriptors from image data. The specifics of this MPF library are
described elsewhere [22].

We compare the separability in feature spaces computed from several types of EPP. In our
approach, transforms are not used to produce features directly (e.g. as in the form of
coefficients). Instead, they are used exclusively to generate a new pixel plane representing
the contents of the original image in a different form. Due to the general nature of the
feature algorithms in the MPF, these derived pixel planes (the EPP) can be processed by the
MPF in the same way as the original pixel plane. Although a given algorithm in the MPF
(e.g. Haralick textures) reports the same characteristic of the input image, its input images
are different for each EPP, and thus the meaning of this feature is different with regards to
what it says about the original image content. Thus, our method requires two-stages: a)
generating EPP, and b) computing extended features using a single MPF library [13, 22].

Previously, we used this two-staged approach with a limited set of transforms and compared
the performance of the resulting multi-purpose classifier to task-specific techniques. In this
work, we evaluate the effect of upstream EPP using a total of nine derived pixel planes. In
particular, we were interested to learn how transform-based EPP influences separability
compared to scale and subband pyramids. We observed that EPP-based feature spaces
significantly outperform those constructed without EPP. Particularly, we found that
transform-based representations produce the most discriminative feature spaces.
Additionally, we found that when a suboptimal feature library is incapable of providing
separability on its own, the use of EPP can be essential for class separation.

2. Implementations Of EPP In Computational Chains

To generate EPP we map the raw pixel plane onto another plane 𝖕 (or a set of planes ,
so that

(2.1)

Implementation of EPP is based on the assumption that there exists a map ℱ for some given
pixel plane  Should there exist an inverse map ℱ−1, then we have isomorphism between
the domain and its codomain 𝖕. Thus, the primacy of or 𝖕 is uncertain, and spectral

planes  may be treated as alternative definitions of the pixel plane (in Fig. 1a). These
alternative definitions may improve separability of a feature space constructed from these

codomains .

The second stage of our approach is computing extended features. The raw pixels are used
to extract Numerical Patterns (NP, Fig. 1b). Ideally, any given imaging problem could be
associated with its own unique set of filters, resulting in the most discriminative feature
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space. We use a large library (ℒ) of multi-purpose features described in [22]. The projection
of the pixel plane into feature space has the form

(2.2)

where  is the feature vector, and numerical implementation of (2.2) defines a
computational chain.

The majority of chains we used were computed on pixel planes produced with EPP,
including multi-resolution analysis (or pyramids) and multi-transform analysis. The

pyramids split the original pixel plane into a sequence of nested sub-planes . For the
Scale Pyramid (SP) [3] (Fig. 2a) we employed three levels of wavelet decomposition
(symmetric family, Matlab wavelet toolbox2). The pyramids' indices α in (2.1) correspond
to decomposition levels. The dimensions of the nested sub-pyramids, from level to level,
were halved. Using (2.1)-(2.2) the SP feature vector can be written as

(2.3)

The Subband Pyramid (SBP) is another type of multi-resolution representation used in this
study. We describe SBP in classical terms of the discrete Fourier transform that maps the
pixel plane onto a corresponding frequency domain . Following [4] we define

the SBP as a sequence of planes  produced by bandpass frequency filters (indexing
refers to different frequency bands). We constructed three 2D Finite Impulse Response
filters on the corresponding rings in frequency domain. In our implementation (Fig. 2b) only
three (Nr = 3) frequency bands were used; the SBP chain is shown in Fig. 3. The dimensions
of all pixel planes are the same as that of the original image.

Pyramid transforms preserve image self-similarity in the sense that the original image is
recognizable in the transformed images, which differ only in scale and/or resolution.
Pyramids represent the original image as a set of pixel planes at different scales or
resolutions, and thus do not spatially distort the original pixel plane (Fig. 2). Also, pyramids
implement discrete downscale of the original pixel plane, it is a non-invertible
transformation. In contrast, the result of an inversible transform  (for instance the
Fourier transform) the frequency domain can be legitimately used as an alternative
representation of the original image. It preserves the image content while presenting a very
different set of perceptual patterns to downstream feature extraction algorithms.

Feature extraction algorithms with known responses to image patterns (e.g. textures) can
lose their meaning when applied to image transforms (e.g. textures in a Fourier-transformed
image). This can hamper the perceptual interpretation of informative features selected by a
classifier or dimensionality-reduction algorithm. In turn, this can reduce the utility of
machine-based classification for certain applications, where understanding the source of the
classification signal is important. On the other hand, many widely used image features (e.g.
Zernike moments) are difficult to interpret perceptually even when applied to the original
image pixels only. Strong correlations to easily interpreted perceptual patterns restrict the
generality of feature extraction algorithms to those classification problems where such
perceptual patterns exist. The use of these same algorithms on extended pixel planes extends
their utility to new classification problems, though at the cost of their interpretability.

2 http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/
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Examples of such inversible transforms are given in Fig. 4 showing the Fourier (Fig. 4a,

absolute value  | ()| is shown in logarithmic scale), Chebyshev (Fig. 4d, Ch ), and
wavelet (Fig. 4e, level one, details) spatial transforms. Additionally we used non-invertible
transforms: gradient (absolute value, |∇ 𝓢|, Fig. 4b) and Laplacian1

 (Fig. 4c; not to be confused with the Laplace transform2). As one
can see in Fig. 2, while SP and SBP produce pixel planes that are quite similar perceptually
to the original pixels, transform-based EPP (Fig. 4) produce patterns completely different
from those in the original image. We used this perceptual property as a guide for selecting
the types of transforms and transform combinations for further study in this work. Thus, the
five transform types were selected based on the diversity of the visual patterns produced
relative to the original image, while limiting their number to a manageable set for testing
transform combinations.

The set of patterns analyzed were further extended by using transforms sequentially (e.g.
Fourier followed by Chebyshev). To limit computational time we tested four combinations
that provided the greatest diversity of visual patterns: Fourier, Chebyshev and wavelets of
the gradient (Fig. 4f, Fig. 4h, and Fig. 4i, respectively), and Fourier of the Laplacian (Fig.
4g), as shown in Table 1 (right column). We excluded some transform combinations – such
as (Ch [𝓢]), |∇(Ch [𝓢])|, |∇ (Δ[𝓢])| or Δ (Ch [𝓢]) because they appeared to propagate
noise, contributing little to discovering new patterns. The most important aspect of a
transform is its ability to generate diverse perceptual patterns from any source image.
Although our observations in this work and in previous work [22] indicate that the
informativeness of features derived from transform combinations is highly dependent on the
particular classification problem, there may be a theoretical basis for certain transform
combinations being inherently more informative, or ones that are particularly prone to
produce noise. We plan to undertake a more detailed exploration of these issues in the near
future.

Fig. 5a gives a general scheme for computing spatial features (e.g. ℒ-chain based on (2.2),
Fig. 5a), as well as implementing EPP with Image Transform Filters (ITF, Fig. 5b-5c). The
output of ITF1 (Fig. 5b) consists of features computed on the original image and the five
transforms described above. The output of ITF2 (Fig. 5c) consists of features from the
original image and the four transform combinations. ITF3 combines the outputs of ITF1 and
ITF2.

Somewhat similar approach by Lazebnik et al [28] is Spatial Pyramid Matching, where the
image is split into a series of tiles (e.g. image sub-blocks) and the histograms of local
(neighborhood-based) patches serve as features computed on the constituent tiles. Although
it is possible to implement the MPF libraries for Spatial Pyramids in a similar fashion, we
did not include it in our analysis because of the difficulty in making direct comparisons
between an approach that sub-divides the image into tiles, and the other three
implementations we tested where the pixel planes are indivisible.

3. Pattern Classifiers And Data Used In Experiments
We used three different classification methods: Weighted Neighbor Distance (WND)
classifier, Support Vector Machines (SVM), and Radial Basis Functions networks (RBF).
Having different classifiers report separability in feature spaces allows assessing properties
of this space objectively while ensuring that we are measuring the effects of EPP rather than
peculiarities of a particular classifier. The WND [22] algorithm relies on sample-to-class

1Laplacian: http://mathworld.wolfram.Lapacian.html
2Laplace transform: http://mathworld.wolfram.LapaceTransform.html
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distances in a weighted space ∥𝓌 ⃗ · (𝓉 ⃗ − X⃗cj)∥2, where t⃗, X⃗cj are the test sample and its j-th
vector to the training sample of class c, respectively. The weights w⃗ are intended to reward/
penalize features according to their discriminative power. They are multi-class Fisher scores
[29], i.e., ratios of between-class and within-class variance for each feature.

Fisher scores were used for all three classifiers to rank features. When determining feature
relevance, we selected top-scoring F features from the rank-ordered list for use in training.
We used a greedy search where we increased the number of features used until the
classification score stopped improving. The SVM classifier first performs a nonlinear
mapping of data in high dimensional space and then constructs a separating hyperplane
while maximizing the margin between the classes [30]. The SVM classifier uses an RBF
kernel to compute projections into high-dimensional space. Finally, RBF networks [31] have
no hidden layers and a direct procedure to compute the node weights using the Gaussian
form of radial functions. While the feature rank was used in SVM and RBF for
dimensionality reduction, WND used the Fisher scores as weights as well as for eliminating
low-scoring features.

The total length (L) of the basic ℒ-chain is 376 entries. As one can see from the chain
descriptions in Fig. 3, the sizes of the SBP and SP chains are 4L each. For transform-based
chains described in Fig. 5, ITF1 is 6L, ITF2 is 5L, and the largest ITF3 is 10L. The feature
selection method described resulted in different numbers of features used for each classifier
and each dataset used in testing. The range in the number of features used for the chains
ITF3(ℒ3), ITF3(ℒ2), and ITF3(ℒ) were 120-338 (WND), 120-223 (RBF), and 78-137
(SVM).

Fisher scores are but one of the methods commonly used to rank features. In [15] we further
explored different methods for selecting features and reducing dimensionality for a
transform-based EPP scheme. Several feature ranking algorithms (Fisher weights, cosine
similarity and Pearson correlation scores) were compared along with the subspace selection
approach based on Maximal Relevance Minimum Redundancy [32]. We observed similar
results for these different dimensionality reduction algorithms.

Nine data sets (see Table 2) were examined and grouped into three categories – biometric,
biological and textural images. Several representative images from each dataset are shown in
Fig. 6. The biometric category contains three face-recognition datasets: ATT ([33], Fig. 6a),
Yale ([34], Fig. 6b) and Yale-B ([35], Fig. 6c). Image sizes were 112×92 pixels (ATT),
243×320 (Yale), and 350×350 (Yale-B, cropped). The biological group contains five
datasets: Pollen ([36], Fig. 6d), CHO (fluorescent microscopy images of sub-cellular
compartments for Chinese hamster ovary cells, [37]), HeLa ([10], Fig. 6e) and two
biological datasets examining age-related muscle degeneration in the C. elegans pharynx
terminal bulb (TB; [14, 38], Fig. 6f) and body wall muscle (BWM; [13], Fig. 6g & 6h). The
TB was imaged with differential-interference contrast microscopy, while CHO, HeLa, and
BWM used fluorescent microscopy with specific probes. The BWM images were pre-
processed with a band-pass filter [13]. Images from these biological datasets vary in size:
25×25 (Pollen), 382×512 (CHO), and 382×382 (HeLa), 300×300 (TB) and 200×200 tiles for
BWM. Finally, the commonly used Brodatz set [39] was used as the texture group. Brodatz
images are 643×643 pixels. Each image was split into 16 tiles for training and testing since
each texture type is represented with only a single image in this dataset.

All datasets contain multiple classes. Pollen, CHO, HeLa, BWM, and TB sets have seven,
five, ten, four, and seven classes, respectively. Yale, Yale-B, and ATT face sets have 15, 10,
and 40 classes, while the Brodatz texture set has 111 classes.
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The reported classification results are based on cross-validation using ten random splits of
the image data into training and test sets, with 80% of data being used for training and 20%
for testing. The reported accuracy is an average for the ten independently trained classifiers
in each test. Classification accuracy is defined as the ratio of test samples being called
correctly versus total number of tested samples. In a classification problem where C is the
number of classes, the effective range for is [1/ C, 1], making it difficult to directly
compare classifier performance between problems with different C. Thus, we propose an
alternative measure of classifier performance that is independent of the number of classes,
which we refer to as classification power (𝕻) to distinguish it from conventional

classification accuracy: .

4. Results
To gain better understanding of the effect of EPP on separability of feature spaces, we
performed a quantitative comparison of the relative separability properties of feature spaces
calculated from subband pyramids, scale pyramids, and transforms. The results of each
experiment are presented in tabular form, to allow inspection of the accuracy values for ℒ-
space, pyramid feature spaces, and the different transform spaces (ITF1-ITF3).

Separability of the six spaces (ℒ, SBP, SP, ITF1, ITF2, and ITF3) was measured with three
classifiers (WND, SVM, and RBF). Initially we used a complete feature library (ℒ) applied
to the original pixel plane as the basis for comparison. The results of the first experiment are
shown in Tables 3-5. We observed the ℒ-chain performed worst for all three classifiers, as
expected, providing a baseline for minimum performance. In contrast, the ITF3-chain
achieved the best results: the average (on all nine image datasets) classification power was
83.8% (WND), 84.4% (SVM), and 81.7% (RBF). Upgrading the basic ℒ-chain with
transform-based EPP results in improved classification (for the ITF3-chain, an increase in
power of 4.1% as average of the three classifiers, and up to 5.0% for RBF).

It is often the case that an available feature library is a poor choice for a given classification
problem. We wanted to find out whether it is feasible to achieve an acceptable separability
using a suboptimal library by compensating it with EPP. To answer this question, we made a
subset of ℒ consisting only of texture features (ℒ2, consisting of Gabor, Tamura, and
Haralick textures), and one consisting only of Haralick textures (ℒ3). The ℒ2-chain has L 2
= 62 values, while the L 3-chain has L 3 = 28 values. The discrimination capacity of the ℒ2
space declined severely (13.5% on average for all three classifiers, Tables 6-8) as compared
with the original ℒ space, but less so for transform-based spectral spaces (on average, only
2% for ITF3(ℒ2) against the best ITF3(ℒ) space). The most striking difference in
separability was found between the best ITF3(ℒ2) and the worst ℒ2 space. This
improvement in classification power (15.6% average for the three classifiers) is directly
attributed to the increased separability provided by EPP.

The third library (ℒ3, including only Haralick features) (ℒ3-chain: ℒ3 = 28 values) and
subsequently calculated EPP. The basic ℒ3-chain, SBP(ℒ3) and SP(ℒ3) were completely
ineffective, achieving close to zero classification power. The average power for those
ineffective feature spaces did not exceed 22% (Tables 9-11). In contrast, all transform-based
ITF(ℒ3) spaces were reasonably separable. The power reported on ITF3(ℒ3) was
surprisingly close to the result of ITF3(ℒ) – the difference was 10%-11% (SVM and WND)
and 19% (RBF). Therefore, the weakest ℒ3 library demonstrated the biggest gain in
separability, due to transform spaces (specifically, ITF3(ℒ) space).
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5. Discussion
We expected EPP to generate separable feature spaces and the pyramids to be a comparable
choice to transforms. EPP did perform well in all scenarios tested, but transform spaces were
clearly and consistently better than pyramid spaces for classification. We also suspected the
transforms to be inappropriate for some applications – such as the Pollen set (consisting of
small images) or CHO (limited range of gray scale). Transforms were quite effective for all
imaging problems we included in this study.

The results of experiments (Tables 3-11) clearly demonstrated the positive effect of EPP in
improving separability. We also found that not all EPP were equally effective in detecting
the discriminative content in the benchmark set. Based on the experiments conducted, we
found that EPP's efficacy could be ordered from weakest to strongest as follows: SBP/SP,
ITF1/ITF2, and ITF3. One heuristic explanation for this could be based on “degrees of
freedom” of the pyramids as compared against the transforms. As agents of multi-scale
approximation, pyramids obey the relations of self-similarity, either in scale (SP), or in
frequency (SBP). Thus, their capacity to expand the pixel plane is limited to a particular axis
of their selfsimilarity (e.g., scale or frequency). Comparisons of classification scores in the
second and third experiments (Tables 6-11), illustrated the limited benefit of the pyramid-
based representations. In contrast to the pyramids, the tested transforms were not limited by
self-similarity. Transforms produce a broader range of perceptual patterns with no particular
constraints in kind/dimension (Fig. 4), therefore promoting much improved use of the
library. As we observed in the second and third experiments, the transformbased EPP
generated the most separable spaces and produced reasonable results for all classification
problems attempted, even when a suboptimal feature library was used (Tables 6-11).

The demonstrated advantage of transform-based EPP over pyramids bears further
discussion. As noted in Sec.2, pyramids represent the original image as a set of pixel planes
where, at each level in the pyramid, the pixel plane is similar in appearance to every other
level as well as to the original image. In contrast, each transform-derived pixel plane has a
very distinct appearance totally unrelated to the pixel plane from other transforms or to the
original image pixel plane. A desired property of all general-purpose feature extraction
libraries (as opposed to task-specific ones) is that they should be able to report similar
patterns occurring at different scales and frequencies. However, this property leads to
redundancy in the resulting features when only the scale of the image plane is varied, for
example. Thus, the degree to which a feature library is scale and frequency invariant works
directly against the variation in the image plane introduced by pyramids. An extreme case is
when Haralick features are used alone (Tables 9-11). Though not strictly scale-invariant,
varying only the scale or frequency of the pixel plane does not produce sufficiently different
outputs for Haralick features to be effective for classification. In contrast, when the pixel
planes are varied in regards to the types of textures they contain rather than just their scale
(i.e. using transformbased EPP), Haralick features alone can classify the same image
problems with marked improvement.

The use of image transforms as a source of features for pattern recognition is fairly common
[37, 40] where generally, the coefficients of the transforms are used directly as image
features. In contrast, here we use the transform coefficients as extended pixel planes (EPP)
and process them using feature extraction algorithms that are more conventionally used on
the original image pixels. By analogy, the use of transform coefficients as image features is
similar in sprit to how original image pixels were used directly as image features in the past
[41, 42]. Just as the use of feature extraction algorithms on raw image pixels has become
more prevalent than using image pixels directly, here we show the relative benefits of using
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feature extraction algorithms on image planes composed of transform coefficients rather
than using the transform coefficients directly.

This comparison of different implementations of EPP was motivated by our interest in
maximizing the diversity of patterns than can be analyzed given a fixed set of general
feature extraction algorithms. In this work we did not seek to determine an optimal set of
transforms or transform combinations. Indeed our experimental work here and elsewhere
[22] indicates that the relative informativeness of the different transform-derived features is
highly dependent on the specific imaging problem. Though this does not preclude
identifying particularly informative EPPs (or particularly uninformative ones), it does
indicate that there is probably not a universally optimal set. A fully automated feature
reduction algorithm makes optimality of the transform set less important because it
minimizes the impact of uninformative transforms.

In general, a search for separable feature space can be seen as fitting libraries (e.g. feature
algorithms) to specifics of the given imaging problem. If class discrimination is weak, the
library is probably a poor fit for the given problem. That implies that the library used is
suboptimal for detecting discriminative content in pixel patterns for the task given. At the
same time, for the very same task there may be other patterns that are more suitable for this
library, – and these patterns could be found in pyramid and transform feature spaces,
computed with the EPP approach. Situations where a library is a less than a perfect fit to the
problem are very common. Hence, complementing difficult pixel patterns with rich
alternative patterns promotes an increase in separability, as we observed in our second and
the third experiments (Tables 6-11). A strategy of abstracting from the raw pixels to spectral
spaces is a conceptual alternative to the search for a task-beneficial library. Spectral spaces
help to address a common conceptual dilemma (fitting libraries to an imaging problem) and
are the basis of a beneficial strategy – producing separable feature spaces.

The use of general-purpose libraries can be a good substitute for strategies of fitting features
libraries to specific imaging problems by handpicking, custom development or tuning
algorithms. Although these general-purpose libraries may be seen as weaker than task-
specific libraries, the ideal fit of task-specific features rarely has a deep theoretical
justification and is often overstated because it is empirically defined. From this standpoint,
using multi-purpose libraries is often well justified both in terms of development cost and
effectiveness for classification, as our experiments demonstrated.

We tested discriminating properties of the basic feature ℒ-library against the libraries based
on EPP: frequency and scale pyramids, transforms and compound transforms. We
demonstrated that EPP promotes class separation; improvement was detected in all three
kinds of extended pixel-plane representations tested, two pyramids and transforms. The
effect of EPP on weak feature libraries was especially clear for ℒ2 and ℒ3 chains;
interestingly, only transform-based spectral spaces (ITF1, ITF2, ITF3) worked well
compared with the basic ℒ3-chain and the pyramid filters. For example, one library
consisting of only texture features (ℒ2-chain), had classification power improved by up to
25% from ℒ2 to ITF3(ℒ2).

We found the transform-based representations to have an advantage over the pyramid-based
ones, which holds true in all experiments conducted. EPP could be particularly useful in a
scenario when dealing with new applications where the best features have not been
identified or are not developed yet.
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Fig. 1.
Scheme of EPP and MPF library in the computational framework. a) EPP produces spectral
planes with distinct visual patterns. b) MPF library is applied uniformly to the original pixel
plane and to spectral planes generated by EPP. MPF library produces numerical values
representing image content to be used by the statistical classifier.
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Fig. 2.
Examples of EPP using Scale (a) and Subband (b) Pyramids. A Scale Pyramid produces a
set of images where each level is scaled by half. A Subband Pyramid is implemented by
applying a windowed bandpass filter to the original image resulting in a set of images where
each subsequent level consists of higher frequency information.
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Fig. 3.
The computational chain for features computed with MPF library on Scale/Subband
pyramids. The MPF library is applied to the original image, resulting in a feature vector of
length L. The same MPF is applied to each level of the pyramid to generate level-specific
features, resulting in an overall featurevector length of 4L.
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Fig. 4.
Examples of transforms for one instance from the Yale dataset. Image transforms shown: a)
(|𝕱[𝓢]|), b) |∇𝓢|, c) Δ𝓢, d) Ch[𝓢], e) 𝓢], f) log(|𝕱[|∇𝓢|]|), g) log(|𝕱[Δ𝓢]|), h) Ch [|∇𝓢|],
and i) |∇𝓢|]. The visual patterns in pixel planes produced by these transforms are distinct
from each other as well as from the original image.
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Fig. 5.
Three chains computed on the original pixel plane (a: ℒ-chain), on planes produced by
single transforms (b: ITF1(ℒ) chain), and by compound transforms (c: ITF2(ℒ) chain). The
set of features computed from each transform-derived pixel plane is transform-specific so
that additional transforms and transform combinations result in additional features in the
final feature vector.
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Fig. 6.
Representative images from the benchmark data set used in this work: a) ATT set, b) Yale
set, c) Yale-B set, d) Pollen set, e) HeLa set (microtubules), f) C. elegans, terminal bulb, g)
C. elegans, body wall muscle (raw data), h) C. elegans, body wall muscle (processed:
bandpass filter followed by thresholding), and i) Brodatz set.
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Table 1

Image transforms and compound transforms used in ITF-chains.

One-level transforms Compound transforms

|𝕱 (𝓢)| |𝕱 (|∇ 𝓢|)|

|∇ 𝓢| |𝕱 (Δ 𝓢)|

Δ 𝓢 Ch (|∇ 𝓢|)

Ch (𝓢) (|∇ 𝓢|)

(𝓢)
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Table 2

Data sets used

Data set Number of classes Image size Training set Test set

Pollen 7 25×25 490 140

CHO 5 382×512 80 262

HeLa 10 382×382 590 272

C.elegans, BWM 4 200×200 740 495

C.elegans, TB 7 300×300 959 966

ATT 40 112×92 200 200

Yale 15 243×320 90 75

Yale-B 10 350×350 4680 1170

Brodatz 112 643×643 896 896

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 19

Ta
bl

e 
3

C
om

pa
ri

so
n 

of
 s

ep
ar

ab
ili

ty
 p

ro
pe

rt
ie

s 
(a

s 
cl

as
si

fi
ca

tio
n 

po
w

er
) 

fo
r 
ℒ

 a
nd

 s
pe

ct
ra

l s
pa

ce
s 

us
in

g 
th

e 
W

N
D

 c
la

ss
if

ie
r.

 C
la

ss
if

ic
at

io
n 

po
w

er
 (

se
e 

te
xt

) 
is

 a
pe

rc
en

ta
ge

 w
he

re
 1

00
%

 is
 p

er
fe

ct
 c

la
ss

if
ic

at
io

n,
 a

nd
 0

%
 is

 a
t t

he
 n

oi
se

-f
lo

or
 f

or
 a

 p
ar

tic
ul

ar
 c

la
ss

if
ic

at
io

n 
pr

ob
le

m
 (

i.e
. 1

00
 / 

nu
m

be
r 

of
 c

la
ss

es
).

 T
hi

s
ta

bl
e 

ill
us

tr
at

es
 th

at
 a

 m
od

es
t i

m
pr

ov
em

en
t i

n 
cl

as
si

fi
ca

tio
n 

ca
n 

be
 a

ch
ie

ve
d 

w
ith

 E
PP

 e
ve

n 
w

he
n 

us
in

g 
an

 e
xt

en
si

ve
 f

ea
tu

re
 li

br
ar

y.

Se
t

ℒ
SB

P
(ℒ

)
SP

(ℒ
)

IT
F

1(
ℒ

)
IT

F
2(
ℒ

)
IT

F
3(
ℒ

)

Po
lle

n
94

.3
93

.9
94

.7
94

.1
92

.8
95

.8

C
H

O
95

.5
95

.7
96

.1
97

.6
96

.2
96

.8

H
eL

a
78

.8
81

.2
83

.8
83

.4
84

.2
85

.5

C
.e

le
ga

ns
, B

W
M

46
.5

47
.4

48
.0

49
.3

49
.2

52
.4

C
.e

le
ga

ns
, T

B
43

.9
46

.1
48

.5
50

.4
47

.0
51

.7

A
T

T
99

.3
99

.7
99

.7
98

.7
99

.1
99

.5

Y
al

e
81

.3
85

.5
83

.9
80

.0
81

.2
80

.2

Y
al

e 
B

96
.4

97
.2

99
.8

97
.3

96
.2

97
.5

B
ro

da
tz

90
.8

91
.7

90
.5

92
.8

91
.5

94
.5

A
ve

ra
ge

80
.8

82
.0

82
.8

82
.6

81
.9

83
.8

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 20

Ta
bl

e 
4

Sa
m

e 
co

m
pa

ri
so

ns
 a

s 
in

 T
ab

le
 3

 u
si

ng
 th

e 
SV

M
 c

la
ss

if
ie

r,
 il

lu
st

ra
tin

g 
th

at
 th

e 
be

ne
fi

ts
 o

f 
E

PP
 a

re
 n

ot
 c

la
ss

if
ie

r 
de

pe
nd

en
t.

Se
t

ℒ
SB

P
(ℒ

)
SP

(ℒ
)

IT
F

1(
ℒ

)
IT

F
2(
ℒ

)
IT

F
3(
ℒ

)

Po
lle

n
93

.9
96

.5
96

.8
96

.5
94

.5
96

.0

C
H

O
95

.0
96

.0
97

.3
96

.3
97

.8
97

.6

H
eL

a
83

.2
86

.8
89

.8
88

.8
88

.3
90

.0

C
.e

le
ga

ns
, B

W
M

37
.3

39
.3

38
.0

41
.2

40
.8

42
.6

C
.e

le
ga

ns
, T

B
44

.1
45

.8
48

.5
51

.1
47

.9
53

.1

A
T

T
98

.3
98

.8
99

.2
99

.4
98

.9
99

.7

Y
al

e
81

.4
83

.5
84

.7
83

.7
86

.0
86

.0

Y
al

e 
B

96
.6

97
.7

10
0

97
.3

97
.3

97
.4

B
ro

da
tz

91
.2

93
.7

92
.7

95
.0

93
.4

97
.3

A
ve

ra
ge

80
.1

82
.0

83
.0

83
.3

82
.8

84
.4

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 21

Ta
bl

e 
5

Sa
m

e 
co

m
pa

ri
so

ns
 a

s 
in

 T
ab

le
 3

 u
si

ng
 th

e 
R

B
F 

cl
as

si
fi

er
, i

llu
st

ra
tin

g 
th

at
 th

e 
be

ne
fi

ts
 o

f 
E

PP
 a

re
 n

ot
 c

la
ss

if
ie

r 
de

pe
nd

en
t.

Se
t

ℒ
SB

P
(ℒ

)
SP

(ℒ
)

IT
F

1(
ℒ

)
IT

F
2(
ℒ

)
IT

F
3(
ℒ

)

Po
lle

n
89

.5
89

.6
91

.2
93

.8
90

.6
93

.1

C
H

O
88

.8
77

.8
87

.2
95

.1
95

.7
95

.2

H
eL

a
75

.1
76

.6
82

.3
80

.6
80

.5
83

.3

C
.e

le
ga

ns
, B

W
M

43
.2

44
.8

44
.8

46
.4

44
.0

49
.4

C
.e

le
ga

ns
, T

B
39

.6
39

.3
40

.9
42

.2
40

.0
43

.7

A
T

T
99

.6
98

.7
99

.6
97

.5
99

.3
99

.1

Y
al

e
75

.4
82

.2
79

.9
81

.7
78

.1
80

.8

Y
al

e 
B

96
.5

97
.0

99
.7

98
.4

96
.2

98
.4

B
ro

da
tz

82
.1

89
.7

89
.6

92
.6

91
.5

92
.0

A
ve

ra
ge

76
.6

77
.3

79
.5

80
.9

79
.5

81
.7

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 22

Ta
bl

e 
6

C
om

pa
ri

so
n 

of
 th

e 
se

pa
ra

bi
lit

y 
pr

op
er

tie
s 

of
 a

 s
ub

se
t o

f 
M

PF
 f

ea
tu

re
s 

co
nt

ai
ni

ng
 o

nl
y 

te
xt

ur
es

 (
ℒ

 2
).

 F
ea

tu
re

s 
re

su
lti

ng
 f

ro
m

 th
e 

or
ig

in
al

 im
ag

e 
al

on
e

(ℒ
 2

) 
ar

e 
co

m
pa

re
d 

to
 f

iv
e 

se
ts

 o
f 

ex
te

nd
ed

 p
ix

el
 p

la
ne

s 
(S

B
P:

 S
ub

-b
an

d 
Py

ra
m

id
, S

P:
 S

ca
le

 P
yr

am
id

, I
T

F1
: s

in
gl

e 
tr

an
sf

or
m

s,
 I

T
F2

: c
om

po
un

d
tr

an
sf

or
m

s,
 I

T
F3

: ℒ
 2

, I
T

F1
 a

nd
 I

T
F2

 c
om

bi
ne

d)
. T

he
 W

N
D

 c
la

ss
if

ie
r 

w
as

 u
se

d 
in

 a
ll 

te
st

s.
 T

hi
s 

ta
bl

e 
ill

us
tr

at
es

 th
at

 a
 li

m
ite

d 
fe

at
ur

e 
lib

ra
ry

 c
an

 b
e

im
pr

ov
ed

 b
y 

us
in

g 
E

PP
, e

sp
ec

ia
lly

 tr
an

sf
or

m
-b

as
ed

 E
PP

.

Se
t

ℒ
 2

SB
P

(ℒ
2)

SP
(ℒ

2)
IT

F
1(
ℒ

2)
IT

F
2(
ℒ

2)
IT

F
3(
ℒ

2)

Po
lle

n
86

.4
91

.9
91

.6
93

.3
90

.0
92

.4

C
H

O
83

.1
91

.6
87

.2
97

.0
91

.8
97

.0

H
eL

a
65

.5
77

.7
81

.0
83

.8
75

.5
82

.7

C
.e

le
ga

ns
, B

W
M

33
.2

43
.7

42
.8

45
.4

45
.2

48
.8

C
.e

le
ga

ns
, T

B
37

.3
35

.2
39

.9
50

.5
40

.0
49

.3

A
T

T
93

.6
94

.9
95

.8
98

.2
96

.0
98

.5

Y
al

e
68

.2
72

.6
79

.5
78

.3
77

.5
80

.8

Y
al

e 
B

90
.5

94
.2

99
.5

96
.1

94
.0

97
.0

B
ro

da
tz

79
.6

82
.1

86
.9

92
.4

90
.5

93
.7

A
ve

ra
ge

70
.8

76
.0

78
.2

81
.7

77
.8

82
.2

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 23

Ta
bl

e 
7

Sa
m

e 
co

m
pa

ri
so

ns
 a

s 
T

ab
le

 6
 u

si
ng

 th
e 

SV
M

 c
la

ss
if

ie
r,

 il
lu

st
ra

tin
g 

th
at

 th
e 

ef
fe

ct
 o

f 
E

PP
 o

n 
cl

as
si

fi
ca

tio
n 

is
 n

ot
 c

la
ss

if
ie

r-
de

pe
nd

en
t.

Se
t

ℒ
 2

SB
P

(ℒ
2)

SP
(ℒ

2)
IT

F
1(
ℒ

2)
IT

F
2(
ℒ

2)
IT

F
3(
ℒ

2)

Po
lle

n
85

.5
92

.8
94

.5
95

.3
88

.1
94

.1

C
H

O
88

.2
93

.1
44

.8
97

.0
96

.0
97

.5

H
eL

a
77

.5
82

.8
83

.7
89

.5
80

.1
90

.4

C
.e

le
ga

ns
, B

W
M

31
.3

37
.0

32
.6

37
.3

36
.6

40
.6

C
.e

le
ga

ns
, T

B
37

.9
41

.5
44

.1
47

.3
41

.6
48

.6

A
T

T
91

.8
96

.0
98

.7
98

.2
94

.7
98

.8

Y
al

e
75

.1
74

.3
78

.3
80

.5
77

.5
81

.2

Y
al

e 
B

92
.7

95
.3

99
.5

97
.6

91
.4

97
.2

B
ro

da
tz

89
.9

87
.6

91
.0

94
.5

93
.0

95
.5

A
ve

ra
ge

74
.4

77
.8

74
.1

82
.0

77
.7

82
.7

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 24

Ta
bl

e 
8

Sa
m

e 
co

m
pa

ri
so

ns
 a

s 
T

ab
le

 6
 u

si
ng

 th
e 

R
B

F 
cl

as
si

fi
er

, i
llu

st
ra

tin
g 

th
at

 th
e 

ef
fe

ct
 o

f 
E

PP
 o

n 
cl

as
si

fi
ca

tio
n 

is
 n

ot
 c

la
ss

if
ie

r-
de

pe
nd

en
t.

Se
t

ℒ
 2

SB
P

(ℒ
2)

SP
(ℒ

2)
IT

F
1(
ℒ

2)
IT

F
2(
ℒ

2)
IT

F
3(
ℒ

2)

Po
lle

n
77

.6
81

.4
77

.6
86

.7
81

.4
88

.3

C
H

O
77

.0
89

.5
84

.7
94

.7
87

.5
95

.5

H
eL

a
59

.4
70

.4
72

.7
81

.6
72

.8
81

.2

C
.e

le
ga

ns
, B

W
M

31
.0

44
.4

32
.8

42
.0

40
.1

41
.2

C
.e

le
ga

ns
, T

B
31

.1
29

.3
27

.2
41

.7
32

.2
41

.0

A
T

T
74

.4
91

.3
92

.4
94

.8
84

.7
95

.2

Y
al

e
18

.8
66

.1
67

.9
74

.6
74

.1
83

.7

Y
al

e 
B

58
.5

74
.7

94
.0

96
.7

89
.7

96
.4

B
ro

da
tz

36
.4

59
.2

73
.7

79
.8

78
.6

86
.6

A
ve

ra
ge

51
.6

67
.4

69
.2

77
.0

71
.2

78
.8

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 25

Ta
bl

e 
9

C
om

pa
ri

so
n 

of
 th

e 
se

pa
ra

bi
lit

y 
pr

op
er

tie
s 

of
 a

 s
ub

se
t o

f 
M

PF
 f

ea
tu

re
s 

co
nt

ai
ni

ng
 o

nl
y 

H
ar

al
ic

k 
te

xt
ur

es
 (
ℒ

 3
).

 F
ea

tu
re

s 
re

su
lti

ng
 f

ro
m

 th
e 

or
ig

in
al

 im
ag

e
al

on
e 

(ℒ
 3

) 
ar

e 
co

m
pa

re
d 

to
 f

iv
e 

se
ts

 o
f 

ex
te

nd
ed

 p
ix

el
 p

la
ne

s 
(S

B
P:

 S
ub

-b
an

d 
Py

ra
m

id
, S

P:
 S

ca
le

 P
yr

am
id

, I
T

F1
: s

in
gl

e 
tr

an
sf

or
m

s,
 I

T
F2

: c
om

po
un

d
tr

an
sf

or
m

s,
 I

T
F3

: ℒ
 3

, I
T

F1
 a

nd
 I

T
F2

 c
om

bi
ne

d)
. T

he
 W

N
D

 c
la

ss
if

ie
r 

w
as

 u
se

d 
in

 a
ll 

te
st

s.
 T

hi
s 

ta
bl

e 
ill

us
tr

at
es

 h
ow

 a
 v

er
y 

po
or

 f
ea

tu
re

 li
br

ar
y 

ca
n 

be
su

bs
ta

nt
ia

lly
 im

pr
ov

ed
 b

y 
us

in
g 

E
PP

, e
sp

ec
ia

lly
 tr

an
sf

or
m

-b
as

ed
 E

PP
.

Se
t

ℒ
 3

SB
P

(ℒ
3)

SP
(ℒ

3)
IT

F
1(
ℒ

3)
IT

F
2(
ℒ

3)
IT

F
3(
ℒ

3)

Po
lle

n
0

0
0

75
.8

39
.8

78
.1

C
H

O
0

29
.2

33
.5

97
.1

86
.7

96
.0

H
eL

a
0

12
.8

32
.5

76
.3

62
.6

76
.6

C
.e

le
ga

ns
, B

W
M

0
0

0
36

.0
30

.6
39

.8

C
.e

le
ga

ns
, T

B
0

0
0

28
.8

19
.5

32
.8

A
T

T
0

0
15

.8
84

.9
35

.1
83

.3

Y
al

e
0

18
.3

11
.0

77
.8

71
.3

76
.3

Y
al

e 
B

50
.1

85
.3

79
.0

88
.6

74
.3

90
.0

B
ro

da
tz

0
4.

1
2.

1
71

.7
59

.1
76

.2

A
ve

ra
ge

5.
6

16
.6

19
.3

70
.8

53
.2

72
.1

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 26

Ta
bl

e 
10

Sa
m

e 
co

m
pa

ri
so

ns
 a

s 
T

ab
le

 9
 u

si
ng

 th
e 

SV
M

 c
la

ss
if

ie
r,

 il
lu

st
ra

tin
g 

th
at

 th
e 

ef
fe

ct
 o

f 
E

PP
 o

n 
cl

as
si

fi
ca

tio
n 

is
 n

ot
 c

la
ss

if
ie

r-
de

pe
nd

en
t.

Se
t

ℒ
 3

SB
P

(ℒ
3)

SP
(ℒ

3)
IT

F
1(
ℒ

3)
IT

F
2(
ℒ

3)
IT

F
3(
ℒ

3)

Po
lle

n
0

15
.3

0
80

.5
42

.0
80

.7

C
H

O
0

36
.8

44
.7

98
.2

89
.1

97
.6

H
eL

a
0

13
.3

35
.3

85
.6

73
.4

85
.8

C
.e

le
ga

ns
, B

W
M

0
0

0
33

.2
27

.7
35

.7

C
.e

le
ga

ns
, T

B
0

0
0

32
.8

21
.9

34
.2

A
T

T
0

15
.1

3.
5

85
.6

32
.4

84
.0

Y
al

e
0

24
.8

23
.1

77
.7

65
.6

74
.3

Y
al

e 
B

50
.6

83
.3

75
.0

90
.8

63
.3

89
.7

B
ro

da
tz

0
5.

1
2.

1
84

.7
67

.2
86

.3

A
ve

ra
ge

5.
6

21
.5

20
.4

74
.3

53
.6

74
.3

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Orlov et al. Page 27

Ta
bl

e 
11

Sa
m

e 
co

m
pa

ri
so

ns
 a

s 
T

ab
le

 9
 u

si
ng

 th
e 

R
B

F 
cl

as
si

fi
er

, i
llu

st
ra

tin
g 

th
at

 th
e 

ef
fe

ct
 o

f 
E

PP
 o

n 
cl

as
si

fi
ca

tio
n 

is
 n

ot
 c

la
ss

if
ie

r-
de

pe
nd

en
t.

Se
t

ℒ
 3

SB
P

(ℒ
3)

SP
(ℒ

3)
IT

F
1(
ℒ

3)
IT

F
2(
ℒ

3)
IT

F
3(
ℒ

3)

Po
lle

n
0

0
0

64
.4

39
.3

65
.9

C
H

O
0

0
27

.2
90

.3
77

.1
92

.0

H
eL

a
0

0
29

.2
74

.2
54

.2
74

.4

C
.e

le
ga

ns
, B

W
M

0
0

0
36

.4
32

.5
38

.5

C
.e

le
ga

ns
, T

B
0

0
0

28
.7

19
.5

33
.3

A
T

T
0

0
0

65
.1

23
.6

61
.6

Y
al

e
0

10
.0

0
69

.2
56

.7
70

.1

Y
al

e 
B

0
56

.6
42

.0
76

.6
56

.5
84

.4

B
ro

da
tz

0
2.

1
1.

1
39

.8
18

.2
42

.0

A
ve

ra
ge

0
7.

6
11

.1
60

.5
42

.0
62

.5

Mach Vis Appl. Author manuscript; available in PMC 2013 September 01.


