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Identification of Neural Feedback for Upright Stance in
Humans: Stabilization Rather Than Sway Minimization
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A fundamental issue in motor control is how to determine the task goals for a given behavior. Here, we address this question by separately
identifying the musculoskeletal and feedback components of the human postural control loop. Eighteen subjects were perturbed by two
mechanical perturbations (gentle pulling from behind at waist and shoulder levels) and one sensory perturbation (movement of a virtual
visual scene). Body kinematics was described by the leg and trunk segment angles in the sagittal plane. Muscle activations were described
by ankle and hip EMG signals, with each EMG signal computed as a weighted sum of rectified EMG signals from multiple muscles at the
given joint. The mechanical perturbations were used to identify feedback, defined as the mapping from the two segment angles to the two
EMG signals. The sensory perturbation was used to estimate parameters in a mechanistic model of the plant, defined as the mapping from
the two EMG signals to the two segment angles. Using the plant model and optimal control theory, we compared identified feedback to
optimal feedback for a range of cost functions. Identified feedback was similar to feedback that stabilizes upright stance with near-
minimum muscle activation, but was not consistent with feedback that substantially increases muscle activation to reduce movements of
the body’s center of mass or center of pressure. The results suggest that the common assumption of reducing sway may not apply to
musculoskeletal systems that are inherently unstable.

Introduction
A long-standing issue in human motor control is to determine

the task goals for a given behavior and how those task goals are
achieved by the nervous system. For example, reduction of center
of mass (COM) or center of pressure (COP) movement is often
assumed as the task goal for standing posture given the roles these
variables play in postural stability. Identifying task goals is closely
related to the degrees of freedom problem (Bernstein, 1967),
since in a system with multiple mechanical degrees of freedom
there may be multiple ways to achieve the same task goal (i.e.,
motor equivalence).

One approach to inferring task goals is to understand their
relationship to feedback using optimal control theory. Here, we
define feedback as the “neural control” component of the pos-
tural control loop (see Fig. 1). The theory is based on the assump-
tion that feedback minimizes a cost function that penalizes
control signals (muscle activations in this study) and state vari-
ables such as the COM or COP (Kuo, 1995, 2005; van der Kooij et
al., 1999). The cost function serves to quantify the task goals for
the motor behavior (Todorov, 2004). For example, if the task goal
for standing were to reduce movements in the COM, then the

cost function would penalize deviations of the COM away from
its preferred value. The size of the COM penalty relative to the
penalties on muscle activations would quantify the extent to
which neural control is designed to reduce COM deviations at the
expense of increasing muscle activation.

The power of the optimal-control approach is that it describes
the relationship among the plant, feedback (see Fig. 1), and the
cost function that describes the task goals. Given a model of the
plant, for every cost function there is an optimal feedback that
minimizes the cost function. Thus, by identifying the plant and
feedback for a motor task such as standing, it is possible, in prin-
ciple, to infer the cost function. The challenge is to identify the
plant and feedback components of the closed-loop postural control
system without opening the loop, which is not possible because the
plant is unstable; if all sensory information is removed, the person
falls. In this study, we used the joint input–output method (JIOM)
of closed-loop system identification (Katayama, 2005). In the JIOM,
one identifies the plant and feedback by measuring the responses of
plant inputs (EMG signals) and plant outputs (body segment angles)
to sensory and mechanical perturbations.

Fitzpatrick et al. (1996) were the first to apply the JIOM to
postural control, using a single-joint (ankle) approximation of
the body. Recently, we extended the method to identify the plant
for a multijoint body (Kiemel et al., 2008). In the present study,
we identified both the plant and feedback for a multijoint body,
allowing us to infer the cost function. Our results show that neu-
ral feedback appears designed to nearly minimize the muscle ac-
tivation necessary to stabilize upright stance. It does not produce
the additional muscle activation that would be necessary to re-
duce COM or COP displacements.
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Materials and Methods
Experimental methods
Subjects. Eighteen subjects (nine males; nine females), aged 18–27, were
recruited at the University of Maryland. The procedures used in the experi-
ment were approved by the Institutional Review Board at the University of
Maryland. All subjects received instructions for the test procedures. In-
formed written consent was obtained from all participants in the study. All
the subjects were physically active, with no known musculoskeletal injuries
or neurological disorders that might affect their ability to maintain balance.

Experiment setup. Two weak continuous mechanical perturbations were
applied to the subject from behind. A waist-level perturbation was applied
using a spring with one end attached to a waist belt worn by the subject and
the other end attached to a linear motor (LX80L; Parker Hannifin Corpora-
tion) placed directly behind the subject. Similarly, a shoulder-level perturba-
tion was applied using a spring attached at one end to a shoulder strap worn
by the subject and the other end attached to a different linear motor. The
actual displacements of the motors were used as the mechanical perturbation
signals. The waist and shoulder springs were weak with spring constants of
0.04 and 0.0157 N/mm, respectively. We used weak springs to reduce their
stabilizing effect on the subject and thus reduce their effect on the plant.

A weak sensory perturbation was applied to the subject using a moving
virtual visual scene. The subject stood surrounded by three screens
(width, 3.05 m; height, 2.44 m; Fakespace), one in front of the subject and
one on either side. Participants stood 107 cm from the front screen and
centered between the two side screens. Visual displays were rear-
projected to the screens at a frame rate of 60 Hz by JVC projectors (model
DLA-M15U; Victor Company of Japan). CaveLib software (Fakespace)
was used to generate a virtual moving visual scene consisting of three
walls attached at right angles that coincided with the screens when the
visual scene was not moving. Each wall consisted of 500 non-overlapping
white small triangles (3.4 � 3.4 � 3.0 cm) with random positions and
orientations on a black background. To reduce aliasing effects in the
fovea region, no triangles were displayed on the front wall within a 30-
cm-radius circular region directly in front of the participant’s eyes. The
display on each screen was varied with time to simulate rotation of the
visual scene about the axis through the subject’s ankles, assuming a fixed
perspective point at the average position of the participant’s eyes.

Subjects assumed a foot position with heels at a distance of �11% of
their heights and feet pointing outward with an angle of 14° between each
foot and the midline (McIlroy and Maki, 1997). The instruction to the
subjects was to look straight ahead at the front screen and not to con-
sciously resist any force from the waist belt and shoulder strap. There was
only one experimental condition with all three perturbations applied
simultaneously. There were 12 250 s trials for each subject (one subject
had only 10 trials due to technical difficulties).

Kinematics. The kinematics was captured by an Optotrak infrared posi-
tion tracking system (Northern Digital). The shoulder (the scapula), hip (the
greater trochanter), knee (the lateral femoral condyle), and ankle (the lateral
malleolus) were measured by attaching four LED markers on the right side of
the subject. The markers were sampled at 120 Hz. Only data from the ankle,
hip, and shoulder markers were used in the present study.

EMG. Muscle activity was measured using a multichannel telemetric sur-
face EMG system (Zerowire; Aurion). Silver/silver chloride electrodes were
placed on the right side of the body measuring activity from 12 muscles.
Based on the two-joint approximation of the body described below, in the
present study we only analyzed data from four muscles acting at the ankle
(lateral gastrocnemius, medial gastrocnemius, soleus, and tibialis anterior)
and three muscles acting at the hip (biceps femoris, rectus femoris, and
semitendinosus). (Some of these muscles also act at the knee.) EMG signals
were bandpass filtered between 10 and 1000 Hz and sampled at 2160 Hz.

Mechanical and visual perturbation signals. We used filtered white-noise
signals for perturbation signals, so that all three simultaneous perturbations
would be statistically independent. White noise with a power spectral density
of P0 was passed through a first-order filter with cutoff frequency of fc1 and
an eighth-order Butterworth filter with a cutoff frequency of fc2. The seed
used to generate the white noise was different for every subject, trial, and
perturbation signal. For the waist motor displacement, P0 � 4 cm2/Hz, fc1 �
0.1 Hz, and fc2 � 5 Hz. For the shoulder motor displacement, P0 � 2.5

cm2/Hz, fc1 � 0.1 Hz, and fc2 � 5 Hz. For visual-scene angle, P0 � 4.05
deg2/Hz, fc1 � 0.02 Hz, and fc2 � 5 Hz. The initial and final 5 s of each 250 s
signal were multiplied by increasing and decreasing ramps, respectively, to
insure that the value of the signal at the beginning and end of the trial would
be 0. Only the middle 240 s of each trial was analyzed.

Signal processing
Kinematic and EMG response signals. The leg angle �1(t) and trunk angle
�2(t) in the sagittal plane with respect to vertical were determined by the
anterior–posterior and vertical displacement of the shoulder, hip, and
ankle markers. Positive angles indicated forward lean. For the EMG ac-
tivity of each muscle, the mean was subtracted from the raw EMG and
then full-wave rectified, resulting in ankle EMG signals u11(t), u12(t),
u13(t), and u14(t) and hip EMG signals u21(t), u22(t), and u23(t).

Spectral analysis. For any two signals x(t) and y(t), the power spectral
densities (PSDs) pxx( f) and pyy( f) and cross-spectral density pxy( f), where f
is frequency, were computed using Welch’s method (Bendat and Piersol,
2000) with 40 s Hanning windows and 50% overlap and then averaged
across trials. The closed-loop frequency response function (FRF) from x(t)
to y(t) is Hxy( f) � pxy( f)/pxx( f). Gain is the absolute value of Hxy( f) and
phase is the argument of Hxy( f), converted to degrees. A positive phase
indicates that y(t) was phase advanced relative to x(t).

Weighted EMG signals. The four rectified ankle EMG signals u11(t), u12(t),
u13(t), and u14(t) were used to compute the “weighted ankle EMG signal”
u1(t) � w11u11(t) � w12u12(t) � w13u13(t) � w14u14(t). Weights were ad-
justed using the MATLAB optimization toolbox to maximize the average
coherence between the three perturbation signals and u1(t) for frequencies
from 0 to 5 Hz subject to the constraints that w1j � 0 for posterior muscles,
w1j � 0 for anterior muscles, and �w11� � �w12� � �w13� � �w14� � 1. Similarly,
the three hip EMG signals were used to define the “weighted hip EMG
signal” u2(t) � w21u21(t) � w22u22(t) � w23u23(t). Each weighted EMG
signal was normalized by dividing by the square root of its power from 0 to 5
Hz, calculated by integrating its PSD.

Frequency binning. Our use of a 40 s spectral window resulted in 200
frequency values from 0.025 to 5 Hz. To improve the accuracy of our FRF
estimates, these 200 values were divided into 10 frequency bins, and PSD
and cross-spectral density values were averaged within bins before com-
puting FRFs. The lower frequency values of the bins were 0.025, 0.100,
0.200, 0.300, 0.425, 0.650, 0.975, 1.475, 2.225, and 3.325 Hz. These values
were chosen to be approximately equally spaced on a log scale with ad-
ditional adjustments at low frequencies to reduce large errors in FRF
estimates. When plotting gains and phases as a function of frequency, we
used the average frequency in each bin.

Identification of the feedback FRF
We used the joint input–output method of closed-loop system identifica-
tion (Katayama, 2005; van der Kooij et al., 2005) to identify the feedback FRF
based on the theoretical framework of Figure 1 describing postural control in
the sagittal plane. We assumed a linear approximation for each process in the
postural control feedback loop. Let u(t) be the 2 � 1 vector of muscle acti-
vation signals (one each for the ankle and hip), y(t) be the 2 � 1 vector of
body segment angles (legs and trunk), v(t) be visual-scene angle, and d(t) be
the 2 � 1 vector of motor positions, and let U( f), Y( f), V( f), and D( f) be
their Fourier transforms, where f is frequency. The theoretical framework of
Figure 1 can be described in the frequency domain by the following:

Y� f � � P� f �U� f � � M� f � D� f � � Ny� f �, (1)

U� f � � F� f �Y� f � � S� f �V� f � � Nu� f �, (2)

where P( f ) is the open-loop FRF of the plant, M( f ) is a FRF character-
izing the effect of the mechanical perturbations on body segment angles,
Ny( f ) is the Fourier transform of intrinsic noise in the plant, F( f ) is the
open-loop FRF of the feedback, S( f ) is a FRF characterizing the effect the
visual perturbation on the EMG signals, Nu( f ) is the Fourier transform
of intrinsic noise in the feedback. From Equation 1, it follows that closed-
loop FRFs Hvy( f ) and Hvu( f ) describing kinematic and EMG responses
to the visual-scene angle are related by the following:

Hvy� f � � P� f � Hvu� f �, (3)
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where we have used that the visual-scene angle is
uncorrelated with the mechanical perturbations
and intrinsic noise. Similarly, from Equation 2, it
follows that the closed-loop FRFs Hdu( f) and
Hdy( f) describing EMG and kinematic responses
to the mechanical perturbations are related by the
following:

Hdu� f � � F� f � Hd y� f �. (4)

Based on Equation 4, the feedback FRF was
identified as the following:

F� f � � Hdu� f � Hd y� f ��1. (5)

Here, it was critical that the number of me-
chanical perturbations equaled the number of
segment angles so that the matrix Hdy( f ) was
invertible, assuming that the FRFs describing
the responses to the two mechanical perturba-
tions [the columns of Hdy( f )] were linearly
independent.

When averaging across subjects, we chose to
first average the closed-loop FRFs across sub-
jects and then compute feedback as follows:

F� f � � Hdu� f �Hd y� f ��1. (6)

Compared with identifying the plant and feedback for each subject and
then averaging across subjects, this method reduced errors caused by
subjects with low coherence between mechanical perturbations and re-
sponse variables. For closed-loop FRFs and the feedback FRF, bootstrap
SEs for log-gain and phase were computed using 1000 bootstrap resa-
mples of the subjects (Zoubir and Boashash, 1998).

Fitted mechanistic plant model
We used empirical closed-loop responses to the visual perturbation to fit
parameters in a mechanistic two-joint (ankle and hip) model of the plant.
The model provides a mapping from the ankle and hip EMG signals u1(t)
and u2(t) to the leg and trunk segment angles y1(t) and y2(t). The model
is the same as that in the study by Kiemel et al. (2008), except that the
previous model assumed a fixed ratio between u1(t) and u2(t), whereas in
the present study we did not.

To summarize, the body was approximated by a two-joint inverted
pendulum in the sagittal plane with dynamics linearized about vertical as
follows:

� J1 � m2l1
2� ÿ1�t� � m2l1h2ÿ2�t� � g�m1h1 � m2l1� y1�t�

� T1�t� � T2�t�, (7)

m2l1h2ÿ1�t� � J2ÿ1�t� � gm2h2y2�t� � T2�t�.

The input variables were the ankle torque T1(t) and the hip torque T2(t),
where anterior muscles produce positive torque. The output variables
were the leg segment angle y1(t) and the head, arms, and trunk (HAT)
segment angle y2(t), where a positive angle indicates a forward lean with
respect to vertical. The parameter g � 9.81 m 2/s is the acceleration due to
gravity. Parameters for body segment k (k � 1 for legs; k � 2 for HAT) are
mk, mass; lk, length; hk, height of the center of mass above the lower end
of the segment; and Jk, the moment of inertia about the lower end of the
segment. Values for these parameters were computed based on the aver-
age mass m � 70.8 kg and segment lengths of the subjects and anthropo-
metric parameters from Winter (1990) as described by Kiemel et al.
(2008): m1 � 20.7 kg, m2 � 48.0 kg, l1 � 0.826 m, h1 � 0.512 m, h2 �
0.301 m, J1 � 6.57 kg m 2, and J2 � 7.07 kg m 2.

The musculotendon actuator for joint j ( j � 1 for ankle, j � 2 for hip)
was modeled as follows:

T̈0j(t) � 2�0j�jṪ0j(t) � �0j
2 T0j(t) � � 	j�0j

2 uj(t), (8)

Tj�t� � T0j(t) � kj
j(t) � �j
̇j(t), (9)

where 
1(t) � y1(t) was the ankle angle, 
2(t) � y2(t) � y1(t) was the hip
angle, and u1(t) and u2(t) were the weighted ankle and hip EMG signals,
respectively. Equation 8, which describes the EMG-to-torque mapping
from uj(t) to the active joint torque T0j(t), was modeled as a second-order
low-pass filter with angular eigenfrequency �0j, damping fraction �j, and
DC gain 	j. The negative sign in the right-hand side reflects our sign
convention that u(t) � 0 corresponds to activation of posterior muscles.
Total joint torque, the sum of active torque and passive torque, is pro-
duced by intrinsic stiffness kj and intrinsic damping �j (Eq. 9).

The 10 parameters �01, �02, �1, �2, 	1, 	2, k1, k2, �1, and �2 of the plant
model were estimated based on the mean empirical closed-loop FRFs
Hvu� f � and Hvy� f � describing EMG and kinematic responses to the vi-
sual perturbation. Based on Equation 3, we computed the model param-
eters that minimized the errors Hvy� f � � P� f �Hvu� f �, where P( f ) is
the FRF of the plant model. Specifically, the MATLAB optimization tool-
box was used to adjust parameters to minimize the objective function as
follows:

�
j�1

2 �
k�1

10

�ej
T�Hvy� fk� � P� fk�Hvu� fk���2��ej

THvy� fk��2, (10)

where fk is the average frequency for the kth frequency bin, ej is the jth
standard basis vector, and “T” indicates transpose. All model parameters
were constrained to be non-negative. We tried multiple sets of initial
parameters to increase the chance of finding the global minimum.

Comparison of identified and optimal feedback
We used the fitted plant model to compute optimal feedback for various cost
functions. First, we converted the plant model to state-space form
ẋ(t) � Ex(t) � Gu(t), where x(t) � [y1(t),ẏ1(t), y2(t),ẏ2(t),T01(t),Ṫ01(t),
T02(t),Ṫ02(t)]

T is the vector of state variables, u(t) � [u1(t), u2(t)] T is the
vector of muscle activation (EMG) signals, E is an 8 � 8 matrix, and G is
a 8 � 2 column vector. To include a feedback time delay �, we let
u(t) � ũ(t � �) and defined the modified plant from ũ(t) to x(t) as
ẋ(t) � Ex(t) � Gũ(t � �). To approximate the modified plant with
a finite number of state variables, we converted the model to discrete time
with a time step of 
 � �/15, leading to the discrete-time state-space
model xk�1 � E�xk � G�ũk, where xk � x(k
) with 30 additional state
variables appended to the end and ũk � ũ(k
).

Next, we defined the cost function 	 �
1

2
E[ xk

TAxk � ũk
TBũk], where A is a 38 � 38 positive semidefinite matrix

and B is a 2 � 2 diagonal matrix with B11 � 0 and B22 � 0, and “E” stands
for expected value. To compute the optimal feedback, we made two

Figure 1. Schematic diagram of the postural control feedback loop. The plant is operationally defined as the process that maps
ankle and hip EMG signals to leg and trunk angles. Neural feedback is defined as the process that maps leg and trunk angles to ankle
and hip EMG signals. The signals used to identify the plant and feedback are labeled in italics.
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simplifying assumptions: (1) noise in the system is white and additive;
and (2) sensory information based on the segment angles y1(t) and
y2(t) provides accurate estimates of the state vector x(t). Using opti-
mal control theory for a linear-quadratic regulator (Bryson and Ho,
1975), we computed the optimal control ũk � � Cxk that mini-
mizes 	, where C is a 2 � 38 matrix. To compute the optimal feedback
FRF F̃*(f) from yk � [xk,1(t), xk,3(t)] T to ũk, we considered a distur-
bance dk added to the right-hand side of the discrete-time version of
equation (8) and then used equation (5) to compute F̃*(f). Finally, the
optimal feedback FRF F̃*(f) from y(t) to u(t) was computed as
F*(f) � e�2�if�F̃*(f).

The above procedure computes the optimal feedback F*( f ) as a func-
tion of the cost-function matrices A and B and the feedback time delay �.
We considered a family of matrices A of the form A � Akin � �COP

2 ACOP.
Akin describes the penalties on displacements of kinematic variables, the leg
and trunk angles and their velocities; �COP

2 ACOP is the penalty on displace-
ments of the COP. Akin is zero except for its 4 � 4 upper-left submatrix,
which we parameterized using the Cholesky decomposition LL T, where
L is a lower-triangular 4 � 4 matrix with 10 nonzero entries. A special
case of Akin is a penalty on the COM. For the plant model, the center

of mass displacement is b1y1 � b2y2 where b1

� (m1h1 � m2l1)/m and b2 � m2h2/m. There-
fore, a penalty of size �COM on the COM
corresponds to an L with zero entries except for
L11 � �COM b1 and L31 � �COM b2. To define
ACOP, we ignored the height of the ankle and used
the small-angle approximation that COP posi-
tion equals –T1/mg, where T1 is ankle torque
(Barin, 1992). In the plant model,
T1 � T01 � k1y1 � �1ẏ1. Therefore, ACOP �
aa T, where a is a vector with zero entries except
for a1 � �k1/mg, a2 � ��1/mg, and a5 � 1/mg.

We adjusted the 10 parameters of L describ-
ing penalties on kinematic deviations, the pen-
alty �COP on COP deviations, and the feedback
time delay � to minimize the error between the
optimal feedback F *( f ) and the identified
feedback F( f ). For the fitting procedure, we
fixed the penalty B on muscle activations to
avoid degenerate cases in which B11 or B22 ap-
proach 0. Such degenerate cases violate the
central idea of the optimal control approach
that there are trade-offs between reducing vari-
ation in behavioral variables, such as the COM
and COP, and reducing muscle activation. We
chose the values B11 � 1 and B22 � 0.66, which
yielded reasonable agreement between F *( f )
and F( f ) for the fitted L, �COP, and �. We de-
fined the error between F *( f ) and F( f ) as
follows:

�
j�1

2 �
k�1

2 �
l�1

10

��F*jk� fl� � Fjk� fl��
T Sjkl

�1��F*jk� fl�

� Fjk� fl��, (11)

where �(z) � (Re z, Im z)T for a complex num-
ber z, and Sjkl is the bootstrap variance– cova-
riance matrix of ��F*jk� fl� � Fjk� fl�� based on
1000 resamples. We used the optimization
toolbox of MATLAB to find the values of our
12 parameters that minimized the error. We
tried multiple sets of initial parameters, all of
which resulted in the same set of fitted param-
eter values. For the fitted cost function, entries
of L were zero except for its first column, which
we denoted by the 4 � 1 vector v. Such an L
corresponds to a penalty on deviations of the
kinematic variable ymin � v1y1 � v2ẏ1

� v3y2 � v4ẏ2, where y1 and y2 are the leg and trunk angles. In
Results, we describe the fitted cost function and time delay by the fitted
values of v, �COP, and � and their bootstrap SEs based on 100 resamples.

To quantify the amounts of sway and muscle activations for a given
optimal feedback law, we inserted noise into the closed-loop discrete-
time system xk�1 � �E� � G�C̃)xk � wk, where wk is vector white
noise with variance– covariance matrix 
Q. The variance– covariance
matrix Cov[xk] is the symmetric positive-definite solution to the
following:

Cov[xk] � (E� � G�C̃) Cov[xk](E� � G�C̃)T � 
Q, (12)

which we computed through iteration. We added noise to the joint
torques in the right-hand sides of Equation 7, corresponding to a Q
with zero entries except for Q33, Q44, and Q34 � Q43. We adjusted
these noise parameters to match the empirical variance– covariance
matrix of the leg and trunk angles. We added noise to joint torques,
because it was the simplest way we found to match the empirical data.
To quantity the amount of deviations in a sway variable, we used
its root-mean-square (RMS) value computed from Cov[xk]. We

Figure 2. An example of a 10 s section of a trial showing the signals used to identify the plant and feedback: one sensory
perturbation (A), two mechanical perturbations (B, C), two weighted EMG signals (D, E), and two segment angles (F, G).
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quantified the amount of muscle activa-
tion as �E
ũk

TBũk] computed from
Cov[ũk] � CCov[xk]CT.

Results
Figure 2 shows example time series for
10 s from a single trial. Note that the ankle
and hip weighted EMG signals have both
positive and negative values (Fig. 2D,E).
Based on our sign convention, the EMG
signals are positive when posterior mus-
cles are primarily active and negative
when anterior muscles are primarily ac-
tive. Also, note that the slower changes in
the EMG signals appear to be positively
correlated with leg and trunk angles (Fig.
2F,G).

Identification of feedback
Closed-loop FRFs from mechanical per-
turbations to EMG signals and segment
angles were used to identify the open-loop
FRF describing feedback (see Materials
and Methods, Comparison of identified
and optimal feedback). Figure 3, A and B,
shows the gains and phases of the mean
closed-loop FRF Hdu� f � from the waist
and shoulder mechanical perturbations to
the ankle and hip EMG signals. Hdu� f � has
2 inputs and 2 outputs so Hdu� f � is a 2 � 2
matrix at each frequency f. Similarly, Fig-
ure 3, C and D, shows the gains and phases
of the mean closed-loop 2 � 2 FRF Hd y� f �
from the waist and shoulder mechanical
perturbations to the leg and trunk seg-
ment angles.

It is difficult to mechanistically inter-
pret the closed-loop FRFs Hdu� f � and
Hd y� f �, because they reflect the closed-
loop interaction between the plant and
feedback components of the postural con-
trol feedback loop as well as the properties
of the mechanical perturbations (Fig. 1).
However, the relationship between the
two closed-loop FRFs depends only on the
feedback component. Specifically, the inferred open-loop FRF of

feedback is F� f � � Hdu� f �Hd y� f ��1, whose gain and phase are
shown in Figure 3, E and F. Feedback is the mapping from the leg
and trunk segment angles to the ankle and hip EMG signals. At
low frequencies, the gain of feedback is approximately constant
(Fig. 3E) and phase is near 0 (Fig. 3F), indicating that the activa-
tions of ankle and hip muscles are approximately proportional to
deviations of segment angles from their mean positions. As fre-
quency increases, gains increase and phases also initially increase.
This pattern is consistent with feedback that also depends on
segment-angle velocities, that is, proportional-derivative (PD) con-
trol (Johansson et al., 1988; Peterka, 2000, 2002). With increasing
frequency, phases reach a maximum between 94 and 103° at the
seventh frequency bin (1.2 Hz) and then decrease. (The only depar-
tures from this overall pattern occur for the hip EMG components of
feedback in the last frequency bin.) The eventual decrease in phase is
consistent with the presence of a time delay in the feedback pathway

(see Results, Comparisons of identified feedback to optimal feed-
back). The fact that the maximum phase advance reaches 90° even
with a feedback time delay indicates that the identified feedback is
not consistent with PD control; feedback also depends on segment-
angle accelerations and perhaps higher derivatives.

Fitted mechanistic model of the plant
Closed-loop FRFs from the visual perturbation to EMG signals
and segment angles were used to fit parameters in a mechanistic
model of the plant (see Materials and Methods, Fitted mechanis-
tic plant model). Figure 4, A and B, shows the gain and phase of
the mean closed-loop FRF Hvu� f � from the visual-scene angle to
the ankle and hip EMG signals. Hvu� f � has 1 input and 2 outputs,
so Hvu� f � is a 2 � 1 column vector at each frequency f. Similarly,
Figure 4, C and D, shows the gain and phase of the mean closed-
loop 2 � 1 FRF Hvy� f � from the visual-scene angle to the leg and
trunk segment angles.

Figure 3. FRFs of closed-loop responses to mechanical perturbations (A–D) and identified feedback (E, F ). Error bars denote
bootstrap SEs.
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Just as the relationship between closed-loop responses to me-
chanical perturbations depends on feedback, the relationship
between the closed-responses to sensory perturbations de-
pends on the plant. Specifically, Hvy� f � � P� f �Hvu� f �, where
the plant P( f) is the 2 � 2 FRF describing the mapping from the
ankle and hip EMG signals to the leg and trunk segment angles.
Since we had a single sensory perturbation, we could not directly
identify the plant. Instead, we computed P( f) by fitting parame-
ters in a mechanistic plant model to minimize the errors
Hvy� f � � P� f �Hvu� f �. The dashed lines in Figure 4, C and D,
are the gains and phases of P� f �Hvu� f �, which are close to the
gains and phases of Hvy� f �, indicating that the model fit is rea-
sonably accurate. Parameter values of the fitted plant are given in
the legend of Figure 4. A stability analysis (Kiemel et al., 2008)
shows that the plant is unstable, as indicated by one unstable

eigenvalue. Figure 4, E and F, shows the
gains and phases of the fitted plant model
P( f). Gains eventually decrease with in-
creasing frequency, indicating that the
plant model acts as a low-pass filter in re-
sponse to muscle activation. Phase for the
plant model approaches �180 at low fre-
quencies for the hip EMG to trunk com-
ponent of the plant. Phase for the other
three components approach 0 at low fre-
quencies. Note that these phase responses
only describe the plant. Since the plant is
unstable, it is not possible to directly ob-
serve these phase relationships in
experiments.

Comparisons of identified feedback to
optimal feedback
We now address the question of whether the
identified feedback based on experimental
data (Fig. 3E,F) is similar to optimal feed-
back that minimizes some cost function (see
Materials and Methods, Comparison of
identified and optimal feedback). We con-
sidered a family of cost functions that penal-
izes kinematic deviations, COP deviations,
and muscle activations. The kinematic pen-
alties allowed for penalties on any combina-
tion of the leg and trunk angles and their
velocities, which includes the COM as a
special case. We assumed that feedback
is optimized to minimize the cost func-
tion given a feedback time delay �. We
fixed the penalties on muscle activations
and adjusted the kinematic penalties,
the COP penalty, and � to achieve the best
fit of the optimal feedback with the identi-
fied feedback. The best fit was obtained with
a feedback time delay � of 127.8 � 1.4 ms
(fitted value � bootstrap SE), no penalty on
COP deviations (�COP � 0.000 � 0.000
cm�1), and a kinematic-penalty matrix of
the form Akin � vv T. The kinematic
penalty corresponds to a penalty on de-
viations of the kinematic variable ymin

� v1y1 � v2 ẏ1 � v3y2 � v4 ẏ2,
where y1 and y2 are the leg and trunk
angles and v1 � 20.7 � 10.5 deg �1, v2 �

10.5 � 10.1 (deg/s) �1, v3 � �38.7 � 4.0 deg �1, and v4 �
�15.0 � 14.4 (deg/s) �1. Note that minimizing ymin is funda-
mentally different from minimizing the COM. Unlike the
COM, which is minimized when the leg and trunk angles have
opposite signs, ymin is minimized when the leg and trunk an-
gles have the same sign. Thus, our fitted cost function is not
consistent with feedback designed to reduce deviations in ei-
ther the COM or COP. We will address the functional signif-
icance of the penalty of the fitted cost function on ymin below.

The gains and phases of the optimal feedback that minimizes
the fitted cost function (Fig. 5A,B) are similar to identified feed-
back (Fig. 3E,F). Optimal feedback gains (Fig. 5A) have plateaus
at low frequencies with values of the same order of magnitude as
the corresponding plateaus of identified feedback gains (Fig. 3E).
The increase of gain with increasing frequency is qualitatively

Figure 4. FRFs of closed-loop responses to visual perturbation (A–D) and fitted plant model (E, F ). Error bars denote bootstrap
SEs. Fitted plant model parameters are �01 �9.9 rad/s, �02 �12.1 rad/s, �1 �1.50, �2 �1.65, 	1 �6.58 Nm, 	2 �4.55 Nm,
k1 � 286 Nm/rad, k2 � 149 Nm/rad, �1 � 65.6 Nms/rad, and �2 � 24.8 Nms/rad.
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similar to that of identified feedback, al-
though the gains of optimal feedback in-
crease at a higher rate. At high
frequencies, gain was highest for the legs-
to-ankle EMG component of feedback,
followed by the legs-to-hip EMG compo-
nent, the trunk-to-ankle EMG compo-
nent, and finally the trunk-to-hip EMG
component. This is the same order of gain
values for identified feedback at higher
frequencies. At lower frequencies, the
order of gain values for identified feed-
back was less consistent, but gain was
always highest for the legs-to-ankle
EMG component, consistent with the
optimal feedback. The phase of optimal
feedback (Fig. 5B) shows nearly in-
phase activation of ankle and hip mus-
cles in response to rotation of either the
leg or trunk segment, similar to identi-
fied feedback (Fig. 3F ). Also, the depen-
dence of phase on frequency is similar to
that of identified feedback. Phase ini-
tially increases with increasing frequency,
reaches a maximum slightly above 1 Hz, and
then decreases due to the time delay.

To help understand the fitted optimal
feedback, we compared it with optimal
feedback for two special cases. Figure 5, C
and D, shows that optimal feedback that
minimizes muscle activation subject to
the constraint that feedback must stabilize
the plant. It was obtained by multiplying
Akin for the fitted cost function by 10�8.
Essentially, the same optimal feedback
would be obtained with a small penalty on
any sway variable; the effect of the small
penalty is to insure that feedback stabilizes
upright stance. If the penalties on all sway
variables are zero, then the optimal feed-
back is zero and the system is not stable.
Note that the minimum-activation feed-
back, like fitted feedback (Fig. 5A,B), is
similar to identified feedback (Fig. 3E,F).
Differences between the two examples of
optimal feedback are primarily in the relative gains of the differ-
ent feedback components, with fitted feedback more closely
matching identified feedback. In contrast, optimal feedback de-
signed primarily to reduce COM deviations (Fig. 5E,F) exhibits
more dramatic differences to identified feedback. Its gains are an
order of magnitude larger than those of identified feedback. Its
hip phases are approximately antiphase to its ankle phases, unlike
those of identified feedback.

Given that the FRFs of fitted optimal feedback and minimum-
activation feedback are qualitatively similar in many respects, the
question arises whether they are functionally similar. To address
this question, we put noise into the closed-loop optimal feedback
model in such a way to match the empirical variances and cova-
riance of the leg and trunk angles (see Materials and Methods,
Comparison of identified and optimal feedback). We then com-
pared the amount of muscle activation required by the fitted optimal
feedback and the minimum-activation feedback. Averaged across
subjects, the variances of the leg and trunk angles were 0.360 and

0.525 deg2, respectively, and their covariance was 0.168 deg2. The
closed-loop model with fitted optimal feedback reproduced this
variance structure with noise parameters Q33 � 0.0205
N2m2deg2s�1, Q44 � 0.4315 N2m2deg2s�1, and Q34 � �0.0757
N2m2deg2s�1.

We fixed the noise levels in the model and computed the RMS
of ymin and the amount of muscle activation as we varied the
penalty on ymin. The result is illustrated by the continuous curve
in Figure 6. The largest RMS of ymin and the smallest level of
muscle activation occurs as the penalty approaches 0 (open cir-
cle), corresponding to the minimum-activation feedback. As the
penalty on ymin increases, the RMS of ymin decreases as muscle
activation increases. However, muscle activation initially in-
creases slowly, so that the fitted feedback produces only 1.6 �
0.6% more muscle activation than that necessary to stabilize
upright stance while reducing the RMS of ymin by a factor of 1.9 �
0.5 (filled circle). In contrast to ymin, a substantial reduction in
either COM of COP variation requires a substantial increase in

Figure 5. FRFs of optimal feedback under for three different cost functions. A, B, Fitted cost function. Cost function penalizes the
sway variable ymin, a linear combination of leg and trunk angles and their velocities. C, D, Same cost function except that the pen-
alty on ymin is reduced by a factor of 10 4. The resulting feedback is the feedback that stabilizes upright stance with (virtually) the
minimum muscle activation. E, F, Cost function with a large penalty on COM deviations. The COM penalty is �COM � 40
rad �1cm �1.
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muscle activation (Fig. 6, dashed and dotted lines). These mod-
eling results indicate that there is a range of feedback laws that
stabilize upright stance with near-minimum muscle activation.
The optimal feedback most similar to our empirically identified
feedback lies in this range, whereas feedback that substantially
reduces deviations in the COM or COP does not.

Discussion
We used closed-loop system identification techniques to sepa-
rately identify the properties of the plant and feedback within the
postural control loop. By comparing identified feedback to opti-
mal feedback for a range of cost functions, we found that identi-
fied feedback was similar to feedback that stabilizes upright
stance while achieving near-minimum muscle activation. Identi-
fied feedback was not consistent with feedback that substantially
increases muscle activation to reduce deviations in the COM or
COP.

Note that our results indicate that feedback achieves only ap-
proximate minimization of muscle activation, not perfect mini-
mization. We found that there is a range of feedback laws that
achieve such approximate minimization, representing a type of
motor equivalence (Bernstein, 1967). Out of the wide range of
control laws that stabilize upright stance, there is a smaller but
still substantial range of control laws that do so with near-
minimum muscle activation. Under the experimental conditions
of this study, the nervous system adopts a control law in this
smaller range, an indication that there are no additional task goals
that require substantially increasing muscle activation.

Control of the COM and COP
It may seem surprising that the cost function most consistent
with our data does not penalize displacements of the COM and
COP, since control of these variables is necessary to stabilize up-
right stance. In particular, the COP and vertical projection of the
COM onto the support surface must remain within the subject’s

base of support (Kuo and Zajac, 1993; Ito et al., 2004). To under-
stand this issue it is helpful to distinguish between linear stabili-
zation that ignores the nonlinear constraint resulting from a
finite base of support (FBOS) and the usual notion of stabiliza-
tion that requires that the COM and COP remain within the base
of support. If feedback that linearly stabilizes upright stance leads
to COM and COP deviations much less than the size of the base of
support, then such feedback (for all practical purposes) also
achieves FBOS stability. Our results suggest that this is the case for
feedback in the postural control system under our experimental
conditions. Specifically, feedback that linearly stabilizes upright
stance with near-minimum muscle activation results in FBOS
stability. Thus, there is no obvious functional advantage to fur-
ther minimizing COM or COP displacements that would justify
increasing muscle activation.

The preceding discussion illustrates that the cost function in
an optimal control framework may not reflect all the task goals of
the motor behavior, especially if the plant is unstable. This sug-
gests a similar limitation in using uncontrolled manifold (UCM)
analysis (Scholz and Schöner, 1999; Hsu et al., 2007) and the
related minimum intervention principle (Todorov and Jordan,
2002; Valero-Cuevas et al., 2009) to understand such motor be-
haviors. UCM analysis is based on the idea that feedback control
will primarily act to correct deviations in variables relevant to the
task goals, resulting in a variance structure that reflects those task
goals. However, if linearly stabilizing upright stance results in the
COM and COP remaining within the base of support without the
need for additional muscle activation, there is no reason to expect
that the variance structure of the behavior will reflect the impor-
tance of controlling the COM and COP.

Linear continuous feedback
The optimal feedback under the theoretical framework of this
study is linear, a type of continuous feedback control. Recently,
Asai et al. (2009) argued that intermittent control has an advan-
tage over continuous control in that it provides more robust
stabilization of upright stance in the presence of a feedback time
delay. This conclusion was based on comparing intermittent con-
trol to PD continuous control, that is, feedback that only depends
on the instantaneous values of the segment angles and their ve-
locities. However, as we have pointed out (see Results, Identifi-
cation of feedback), our identified feedback is inconsistent with
PD control. Instead, identified feedback also depends on the ac-
celerations and perhaps higher derivatives of the segment angles.
The same is true of optimal feedback for the various scenarios
considered in Figure 5. Thus, both Asai et al. (2009) and the
current study indicate that continuous PD control has disadvan-
tages if there is a time delay in the feedback pathway. Whether
these disadvantages are overcome by using intermittent control
or a more general continuous control is an open question. One
piece of evidence in favor of continuous control is a study by van
der Kooij and de Vlugt (2007). In a direct test of continuous
versus intermittent feedback using platform perturbations, they
found that most of the postural responses could be explained by
continuous feedback.

Linear feedback is the optimal feedback for the control theory
framework used in this study (Bryson and Ho, 1975). We approx-
imated the postural control system as a linear-quadratic regulator
(LQR), that is, the plant is linear and the cost function is qua-
dratic. The assumption that the plant is linear is a plausible ap-
proximation under the conditions of the current study: healthy
individuals standing on a noncompliant fixed surface subjected
to weak perturbations. Under these conditions, the displace-

Figure 6. Additional muscle activation in the optimal control model necessary to reduce
deviations in a specified output variable. Results are shown for feedback designed to reduce
deviations in either ymin, the COM, or the COP. In all three cases, as the penalty on the output
variable approaches zero, feedback approaches the minimum-activation feedback (open cir-
cle). As the penalty on the output variable increases, the RMS of the output variable decreases
while the muscle activation cost increases. The filled circle corresponds to the cost function
whose resulting optimal feedback was most similar to identified feedback. Feedback reduces
the RMS of ymin, a linear combination of segment angles and velocities, while requiring only a
1.6% increase in muscle activation.
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ments of the COM and COP are relatively small compared with
the base of support provided by the feet.

Our use of LQR theory also assumes that the perturbations we
used to identity feedback and the plant do not cause the nervous
system to change the feedback law. The closed-loop responses to
visual perturbations, which reflect properties of both feedback
and the plant, in this study are similar to those in a previous study
without mechanical perturbations (Kiemel et al., 2008), suggest-
ing that mechanical perturbation do not substantially change
feedback. The question of whether our visual perturbation
changed feedback is more complex due to sensory reweighting
(Peterka and Benolken, 1995; Oie et al., 2002; Peterka, 2002).
Visual-scene motion is known to cause the nervous system to
“down-weight” vision and compensate by “up-weighting” other
sensory inputs, such as those from proprioception and the ves-
tibular system. Such compensation suggests that feedback, which
reflects integration by the nervous system of sensory inputs from
all modalities, may not be strongly affected by our small visual
perturbation. We are currently using the techniques of the pres-
ent study to test this hypothesis.

Although linear approximations may be appropriate for
the experimental conditions of the current study, this is not
necessarily true under more challenging conditions that
change the pattern of ankle versus hip EMG activity (Horak
and Nashner, 1986; Horak et al., 1990; Park et al., 2004). These
changes may be due to the nonlinearity of plant due to the
finite base of support discussed above. One approach to ap-
proximating optimal control with a finite base of support is to
change the cost function to more strongly penalize large devia-
tions of the COM or COP (Li and Levine, 2009). Optimal feedback
with such a cost function is no longer a linear function of segment
angles and their derivatives.

Single-joint versus multijoint models of posture
Using a multijoint model to identify the plant and feedback al-
lows one to more easily distinguish among different hypotheses
of neural control. For example, the phase difference between the
ankle and hip EMG outputs of feedback was the clearest distinc-
tion between feedback designed to minimize muscle activation
(Fig. 5C,D) and feedback designed to reduce COM displacements
(Fig. 5E,F). Such a distinction would, of course, not exist for a
single-joint model.

Also, a multijoint model can substantially improve the ac-
curacy of identified feedback. For example, Fitzpatrick at al.
(1996) used a single mechanical perturbation to identify feed-
back from a single body segment (shank) to a single EMG
signal (soleus). The phase of their identified feedback mono-
tonically increased with frequency and did not show the de-
crease at higher frequencies that would be expected given a
feedback time delay (van der Kooij et al., 2005; Fig. 5 B, D,F ).
One possibility is that part of the ankle muscle activation that
Fitzpatrick et al. attributed to movement of the lower body
was actually due to movement of the upper body. At higher
frequencies, the movements of the lower and upper body can
be substantially out of phase (Creath et al., 2005; Fig. 3D). By
allowing ankle muscle activation to depend on movements of
both the lower and upper body, we avoided this potential
misattribution and identified feedback whose phase did show
the expected phase decrease at higher frequencies (Fig. 3F ).

Conclusions
The feedback identified in this study suggests that, for unper-
turbed or weakly perturbed stance, the nervous system is pri-

marily concerned with minimizing muscle activation. The
nervous system does not produce substantially more activa-
tion than that necessary to stabilize upright stance. In partic-
ular, feedback does not seem designed to minimize COM or
COP displacements. It will be important to determine whether
this strategy remains when stability is challenged by condi-
tions that increase postural sway or reduce the base of support.
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