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Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static
potential contribution similar to the liquid-vapor potential, and a steric contribution associated with
a water molecule’s structure and charge distribution. In this work, we use free-energy perturbation
molecular-dynamics calculations in explicit water to show that these mechanisms act in complemen-
tary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply
buried charges, and the steric contribution dominates for charges near the solute-solvent interface.
Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in
general. Our calculations suggest that the steric contribution leads to a remarkable deviation from
the popular “linear response” model in which the reaction potential changes linearly as a function
of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportion-
ality constants depending on the sign of the charge. This discrepancy is significant even when the
charge is completely buried, and holds for solutes larger than single atoms. Together, these mecha-
nisms suggest that implicit-solvent models can be improved using a combination of affine response
(an offset due to the static potential) and piecewise-linear response (due to the steric contribution).
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752735]

I. INTRODUCTION

Continuum theories of molecular solvation offer signifi-
cant advantages over all-atom molecular dynamics (MD) sim-
ulations in explicit solvent in terms of speed and conceptual
clarity, but they rely on simplifying assumptions that can se-
riously compromise accuracy.1 These implicit-solvent models
typically consider the solute-solvent interactions as the sum of
electrostatic and non-electrostatic components, the latter in-
cluding the development of a solute-shaped cavity in bulk sol-
vent, as well as van der Waals interactions.1, 2 The electrostatic
component, which often dominates for charged molecules, is
an electrostatic self-energy, i.e, a free energy of charging up
the solute from zero to its given charge in water.3, 4 The elec-
trostatic component of the ion-water interactions is asymmet-
ric with respect to the sign of the ionic charge,5–12 but most
Poisson-based continuum models are symmetric with respect
to the sign of an introduced charge, starting with the simplest
Born model,3

�Ges = 1

2
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1

εwater
− 1

)
q2

Rion
, (1)

where εwater = 80 is the dielectric constant of water, and q
and Rion are the ionic charge and radius, respectively. If the
implicit-solvent models attempt to capture the charge sign
asymmetry,6, 13–15 they do so in an effective (empirical) way,
e.g., by re-parameterizing atomic radii. This simple and fast

correction usually improves accuracy. However, the charge-
sign symmetry of the underlying Poisson model does not al-
low one to fully respect the molecular origins of the asym-
metric response,5, 6 which is an important drawback of such
continuum solvation models.

Previous studies that focused on identifying the sources
of asymmetry have discussed two mechanisms.5–7, 9, 11, 16 The
first mechanism is that there exists a large electrostatic
potential throughout the solute even if it is completely
uncharged.7, 16 In some communities, of course, it is well
known that there can be significant potential differences
across liquid-vapor interfaces.16–19 However, to date this term
has not been incorporated explicitly as a potential in con-
tinuum Poisson models, except by Cerutti et al.16 The sec-
ond mechanism is more familiar, and certainly more read-
ily understood by intuition alone: the molecular structure of
water allows the (partially positive) hydrogens to approach
the solute more closely than the (partially negative) oxygen.
This leads negative charges to be solvated more favorably
(have more negative hydration free energies) than are posi-
tive charges of the same magnitude. This phenomenon is most
clearly seen in the solvation of monatomic ions, where it is
clear that the standard Born expression fails for certain ap-
proaches for defining the radii.5, 6

Using free-energy perturbation (FEP) molecular-
dynamics calculations in explicit water, we demonstrate that
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these two sources of asymmetry are both significant, but in
complementary types of problems: the static-potential con-
tribution is the major source of asymmetry for deeply buried
charges, and the water-structure contribution is dominant for
charges near the solute-solvent interface. Both mechanisms
must be included in order to match charging free energy
curves for ions and for charges in larger solutes. Two re-
markable results emerge from our analysis of water-structure
asymmetry. First, asymmetric response can be significant
even for charges that are completely buried, so long as they
are within a few Angstroms of the solvent interface. This
implies that a full accounting of asymmetric solvation cannot
be attained by a universal atomic radius, or attributed to
specific chemical interactions such as hydrogen bonding. The
second finding was more surprising, at least to us: although
asymmetric response is obviously a nonlinear phenomenon,
the reaction potential induced by solvent polarization varies
in a piecewise-linear fashion. That is, for positive charges,
linear response holds with one proportionality constant, and
for negative charges linear response holds with a different
constant.

Overall, the present work is motivated by the notion that
continuum hydration models can be interpreted as approxima-
tions to the generalized potential of mean force (PMF) that the
solvent exerts on the solute.1 In principle, this can be obtained
exactly by integrating out the solvent degrees of freedom,1

but it turns out to be more practical to focus on simple and
easily computable approximations such as Poisson models.
We follow the common decomposition of the PMF into two
steps, a non-polar step in which one “grows” a completely
uncharged form of the solute (i.e., a hydrophobic isostere)
into the solvent, and second an electrostatic charging compo-
nent in which the charge distribution is developed from zero
to its final state. This leads us to analyze continuum electro-
static models from the perspective that they should reproduce
charging free energies; consequently, FEP calculations offer
a mean to understand fundamental limitations of the standard
Poisson-type models at a level of detail inaccessible to ex-
periment. As an additional advantage, the PMF interpretation
allows us to set εsolute = 1, sidestepping the potentially con-
tentious issue of selecting an effective dielectric constant to
capture implicit structural relaxation.20

II. METHODS

In order to obtain reference data, we performed explicit
solvent free-energy perturbation molecular dynamics simu-
lations of charging of sodium and chloride ions, as well as
larger quasi-spherical charged solutes constructed from van
der Waals spheres arranged on a Cartesian lattice with a grid
spacing of 0.5 Å, where each sphere had the same van der
Waals parameters as a sodium ion. We employed the NAMD

software21 with the CHARMM22 forcefield and TIP3P water.23

Simulations employed periodic boundary conditions, with
enough water molecules in the unit cell to ensure that at least
10 Å of solvent separated the solute from the cell boundary.
Long-range electrostatic interactions were computed using
NAMD’s particle mesh Ewald (PME) implementation with in-
terpolation order 4 and grid spacing of 1.0 Å. All simulations

were conducted in the NPT ensemble at 300 K (Langevin
damping coefficient of 5 ps−1) and 1.01325 bar (Nose-Hoover
Langevin piston with oscillation period 200 fs, damping time
100 fs, and piston temperature 300 K).

To account for changes in the net charge of the sys-
tem during the FEP calculations, we followed the suggestion
of Hénin et al.24 and used the correction term described by
Hummer et al.,25 though it should be noted that alternatives
exist.26 Convergence was assessed by comparing the forward
and backward FEP results; for the monatomic ions, all results
were within 0.5 kcal/mol, and for the lattice-sphere model, all
results were within 0.2 kcal/mol. Additionally the sodium and
chloride calculations were repeated three times, giving a total
of six charging free energies for each of the four combinations
(sodium and chloride each being charged to +1e and −1e); all
standard deviations were less than 0.25 kcal/mol.

Static potentials were computed by fitting each set of
free-energy results over the interval −0.2e ≤ q ≤ +0.2e to
a shifted quadratic of the form �G = 1

2Lq2 + ϕstaticq. Such
a fit over a small charge interval ensures an accurate estima-
tion of the slope at the value of charge q = 0 (i.e., the static
potential).

III. RESULTS

Figure 1 shows plots of the charging free energies of a
single charge at different points in a sphere of radius 4 Å.
Charging simulations were conducted for charges placed at
lattice points along the positive x axis. In all cases, the mean
static potential (i.e., the slope of the charging free energy at a
zero value of charge, depicted in the inset) is practically the
same, 43.5 kJ/mol/e with standard deviation of 1.3 kJ/mol/e,
indicating an almost perfectly uniform static potential field in
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FIG. 1. Charging free energies for charges placed in a quasi-spherical solute
of radius 4 Å. Symbols represent FEP results for charges placed at different
lattice points (x, 0, 0), where x spans the distance from 0 to 3.5 Åfrom the
center of the sphere; results for x = 0.5 and x = 1 are omitted in the main
figure for clarity, but included in the inset. Curves represent affine-response
models derived from quadratic fitting over the interval −0.2e ≤ q ≤ +0.2e.
Inset shows that the slopes of the charging free energies are practically iden-
tical for all charge positions at q = 0, indicating a nearly uniform static po-
tential (mean value of 43.5 kJ/mol/e (thick line) with a standard deviation
1.3 kJ/mol/e) throughout the solute.
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FIG. 2. Charging free energies for sodium and chloride. Affine-response
model captures a portion of the FEP results but not over the entire range of q;
piecewise response is needed to fit over the whole range. Inset: The single-
coefficient response model (small symbols) reproduces the FEP results less
accurately; the model parameters were determined separately over the inter-
vals q > 0 and q < 0 but constrained to have the same static potential.

the sphere. The data in Figure 1 also reveal a marked asym-
metry of the charging free energy with respect to the sign
of the charge: for a solvent-exposed unit charge the asym-
metry is approximately 167.4 kJ/mol, but even for a cen-
trally placed charge, the difference in free energies amounts to
83.7 kJ/mol. Results for an affine-response model (i.e., Born-
type linear response plus the static potential) are plotted as
individual curves in Figure 1. The static potential depends
only weakly on solute size and shape,7, 16 while the Born self-
energy is inversely proportional to the solute radius; therefore,
the static potential can have a substantial contribution to the
charging free energy, particularly for larger, highly charged,
solutes. Note that the affine-response model captures almost
all of the sign asymmetry for buried charges, but not for those
within a few Angstroms of the surface. Clearly, an additional
mechanism contributes to the asymmetry of the charging free
energy.5, 6

This second source asymmetry is readily seen when cal-
culating charging free energies for the small ions sodium and
chloride, for which the charging free energy is dominated
by solvent polarization by the solute charge—the static po-
tential contributes only a small amount to the overall asym-
metry. Following previous studies,8 we varied the charges of
sodium-like and chloride-like ions over the range of −1e ≤ q
≤ +1e (Figure 2). The static potentials were 46.9 kJ/mol/e
for sodium and 38.1 kJ/mol/e for chloride, in agreement with
previous observation of a weakly non-monotonic static po-
tential for spherical solutes as a function of solute radius.7

The large charge-sign asymmetries for these monovalent ions
(roughly 334 kJ/mol for sodium-sized ions and 167 kJ/mol
for chloride-sized ions) cannot be captured by the effect of
the static potential only, but are fit very well by a piecewise
affine mode (Figure 2), i.e.,

�G =
{ 1

2L(−)q2 + ϕstaticq, q ≤ 0

1
2L(+)q2 + ϕstaticq, q ≥ 0

. (2)
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FIG. 3. Piecewise affine response model for charging free energies for buried
as well as surface charges in the 4-Å-radius lattice solute. A static potential of
43.5 kJ/mol/e was used for all fits and then the curvatures were fit separately
for positive and negative values of q. (Inset) The curvatures reveal symmetric
response for deeply buried charges (the center of the sphere is 0), but an
increasingly asymmetric response for charges approaching the surface.

For sodium-sized ions, L(+) = −433.0 kJ/mol/e2 and L(−)

= −677.8, and for chloride-sized ions L(+) = −274.9 and
L(−) = −351.9. As expected, the difference between curva-
tures for positive vs. negative charges decreases in magnitude
as the solute radius increases, or alternatively as the charge is
moved away from the surface of a larger solute into its interior
(Figure 1).

Next, we performed the same type of fits to a piecewise
affine model for the lattice-model spherical solute with a ra-
dius of 4 Å, and found excellent agreement with explicit sol-
vent FEP data (Figure 3). For a centrally placed charge the
asymmetry is small (|L(+) − L(−)| ≤ 0.85 kJ/mol/e2), but it
grows steadily as the charge approaches the interface, reach-
ing 80 kJ/mol/e2 at the surface (inset of Figure 3). This is com-
parable in magnitude to the difference observed for chloride-
sized ions. Solvent response to deeply buried charges is thus
nearly symmetric with respect to the sign of the charge; how-
ever, asymmetries are significant for charges within a few
Angstroms of the surface, i.e., even when not directly solvent
exposed.

A question of some interest, particularly for generalized-
Born type theories, is whether one may fit “positive” and
“negative” radii to capture these discrepancies. We have found
that L(+) is fit better by Born-type expressions than is L(−), and
that the difference between them does not depend in a simple
way on the nominal radius. For the sodium-sized ion, of ra-
dius approximately 1.6 Å, the Born-radius deviation is 0.56
Å, whereas the deviation is 0.5 Å for the chloride-sized one
(radius approximately 2.1 Å). If one fits a single deviation for
all the charging free energies in the larger lattice sphere so-
lute, the deviation is about 0.4 Å; importantly, however, it is
impossible to simultaneously fit one deviation that works for
both the central charge and for the solvent-exposed charges.
Characterizing these deviations in more detail is a subject of
current work.
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IV. DISCUSSION

In this work, we have used free-energy MD calculations
in explicit solvent to study two proposed explanations for
the long-known phenomenon of water solvent’s asymmet-
ric response to positive and negative solute charges.5 One
mechanism is the potential difference across the liquid-vapor
interface,17–19 which we term a static potential because it ex-
ists in the completely uncharged solute. The other mechanism,
widely discussed in the ion solvation literature,5, 6, 9 is the fact
that water hydrogens can approach the solute more closely
than the water oxygen.

Our calculations have employed the TIP3P model of wa-
ter. Earlier studies suggest that different water models will
give similar results for the static potential and the magni-
tude of asymmetry due to water structure. These studies9, 11

indicate that the large energetic contributions of interest will
not be affected qualitatively. For instance, Mobley et al. stud-
ied polar solutes and found qualitatively similar asymmetries,
with TIP3P in the middle of the range.11 Rajamani et al. used
four water models (including TIP3P) and found that the aver-
age magnitude of asymmetry, approximately 225 kJ/mol, was
much larger than the differences between water models, the
largest being about 50 kJ/mol.9

Three key findings emerge from our results. First, we find
that these two mechanisms are important in complementary
types of solvation problems, and therefore both are required
in any general treatment of asymmetric solvation electrostat-
ics. Whereas the static-potential contribution is the major con-
tributor to asymmetry for charges that are deeply buried, the
steric contribution is dominant for charges near a surface. It is
simple enough to adjust the atomic radii to fit a set of charg-
ing free energies, but such an approach conflates these two
distinct mechanisms and therefore may bias calculations. Sec-
ond, our results show that the water-structure contribution to
asymmetry are relevant for buried charges as well as for sol-
vent exposed ones. Previous studies have not analyzed the
magnitude of this asymmetry for buried charges. Third, we
find that where the steric contribution to asymmetry is signif-
icant, the reaction potential does not vary linearly but piece-
wise linearly; that is, given the charge’s sign, the curvature
is constant over the range 0 ≤ |q| ≤ 1e. This indicates that
water response is piecewise-linear rather than purely linear.
Combined with the static potential, we are led to suggest a
piecewise-affine model for solvation.

The existence of a significant non-zero electrostatic sur-
face potential even in an uncharged solute has been known for
some time.7, 16 This static potential arises from preferred ori-
entation of water molecules at the solute-solvent interface in
the absence of solute charge, with the positively charged water
hydrogen coming on an average closer to the surface than the
negatively charged water oxygens (Figure 4(a)). The charg-
ing free energy then includes additional work done against
the field induced by the average solvent structure around the
uncharged solute. In keeping with our view of the continuum
electrostatic model as a mean to approximate to the charging
free energy component of the PMF,1 we assume that the static
potential depends only on the solute-solvent van der Waals in-
teractions, e.g., Lennard-Jones parameters, and not on specific

(a) (b)
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FIG. 4. Schematic representation of the two contributions to the asymmetric
solvent response with respect to the solute charge. (a) Average water orien-
tation at the surface of an uncharged solute gives rise to a non-zero static
potential. It can be interpreted as a continuum density of oriented solvent
dipoles at the surface. (b) Steric asymmetry in water hydrogen (smaller) and
oxygen (larger) drives asymmetric response with water molecules being able
to approach a negative charge more closely than a positive charge. This ap-
plies even to situations in which the charge is not directly solvent exposed.

chemical details. This additional term represents a “constant”
added to the potential against which the charging process does
work, and leads to an extension of linear-response models to
affine response. Denoting the potential in the uncharged so-
lute by ϕstatic, the affine model reads is ϕ = Lq + ϕstatic in-
stead of the standard linear response relation ϕ = Lq.27 Ad-
ditional terms may be needed to capture the static potential
inside a solute embedded in an aqueous electrolyte instead of
pure water as assumed here. For physiological solutions the
differences are likely to be small, because the dielectric con-
stants at the relevant ionic strengths are not significantly dif-
ferent from that of pure water compared to that of the solute
dielectric constant.

Regardless of whether the solvent is a pure water or a di-
lute electrolyte, the underlying static potential field is due to
charges strictly outside the solute and, therefore, must satisfy
the Laplace equation exactly. Standard implicit-solvent mod-
els usually assume that the potential in the solute is zero if
the solute were completely uncharged, and therefore do not
include this electrostatic contribution to the PMF or solvation
free energy.28 In the simplest possible affine-response model,
the static potential is non-zero, but assumed constant through-
out the solute. Earlier studies have shown that the static poten-
tial is remarkably constant even in real proteins with complex
(non-spherical) geometries.16 Using a different water model
and protocol for estimating ϕstatic, the authors of that study16

found a mean static potential of 40.6 kJ/mol with a standard
deviation of 4.2 kJ/mol, which is very similar to the value
found here.

The remarkable uniformity of the static potential in so-
lutes with complex shapes may be rationalized using an
elementary result from continuum models of electrostatic
theory—a uniform dipole distribution over a surface gener-
ates a constant potential inside the solute.29 Although real
water does not form a completely uniform distribution of
dipoles around a non-spherical solute, the average static po-
tential can be well modeled using such a uniform distribution
(Figure 4(a)). As an interesting consequence, if the static po-
tential is a constant, the solvation energy of a net-neutral
group (e.g., an ion pair or salt bridge) is unchanged upon
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moving from linear to affine response. Also, in the limit
of a spherical solute with radius going to infinity, the sur-
face potential of the water-hydrophobic interface should be
recovered.17–19 Finally, we note that extending a continuum
model from linear to affine response with a constant static po-
tential entails essentially trivial modifications to software: the
overall solvation free energy for the solute changes by its net
charge multiplied by the static potential.

The inclusion of the static-potential contribution im-
proves models of asymmetry very well for deeply buried
charges, but incompletely for charges near the solvent, such
as ions or atoms near the surface of the solute (even com-
pletely buried ones). What is the origin of this asymmetric
response? The water dipole is atomistically asymmetric due
to the different sizes of oxygen and hydrogen (Figure 4(b)).
The continuum approximation of water as a collection of
point dipoles1 thus fails for charges close to the interface,
within one or two diameters of a water molecule, where this
size asymmetry comes into play (Figure 3). Remarkably, the
charging free energy for such a charge still follows linear re-
sponse, however, differently for positive vs. negative charges,
i.e., one can employ a piecewise affine response model. This
asymmetry seems to favor negative charges over positive ones
to be situated more towards the surface of a protein,30 but a
complete analysis must also account for the influence of sol-
vent screening on charge-charge interactions. After submis-
sion of the present paper, a complementary study has been
published37 which confirms our analysis of the origins of the
charge asymmetry in ion hydration and demonstrates an al-
ternative method to include asymmetry in continuum electro-
statics theories.

Results from earlier studies have hinted that these two
sources of asymmetry might need to be combined for a gen-
eral treatment;7, 16 one of our contributions in this paper is the
explicit inclusion of both mechanisms, and the characteriza-
tion of their relative magnitudes in different systems. It has
long been established that a non-trivial electrostatic potential,
of the order of 20-45 kJ/mol/e, at the center of completely un-
charged spherical molecules.7 More recently, though, it was
shown that such a large and remarkably uniform potential ex-
ists also in proteins and that including it improves agreement
between explicit-solvent MD and implicit-solvent Poisson
models.16 Nevertheless, it was found in the same study that
adding the static-potential component did not fully resolve
discrepancies between implicit and explicit solvent models.
Our results suggest that much of the remaining error may be
due to the sign-dependent affine response for charges close
to the protein surface. Older continuum-model studies of ion
hydration asymmetry present an additional clue that multiple
mechanisms could be needed. Many authors had suggested
that different definitions of ion radii should be used for an-
ions vs. cations, on the basis of water structure and the size of
the cavity formed by ions with charges of opposite signs.5, 6

Rashin and Honig found, however, that even with these dif-
ferent definitions, accurate prediction of cation solvation en-
thalpies required an empirical increase of cationic radii of
about 7%.6 This modification leads to energetic changes quite
comparable in magnitude to the reduction in cation charging
free energies due to the static potential.

V. CONCLUSION

The piecewise-affine model proposed in this study, con-
sistently and with molecular-level justification, puts together
the effects of the static potential (around the uncharged so-
lute) and the asymmetry in cation-water and anion-water in-
teractions. The steric origin of sign-dependent affine response
suggests that polarization effects beyond the first solvation
shell are important, which might be addressed with nonlo-
cal dielectric theory.31, 32 Basilevsky and Parsons have shown
that different solvent-correlation lengths should be used for
cations and anions,33 though the difference they found should
decrease somewhat when one accounts for the static-potential
contribution. Finally, the present model may be applicable
also for charging free energies of divalent ions, where a dis-
continuity in the derivative occurs when water molecules in
the first solvation shell become maximally polarized.34 Other
types of nonlinear effects,35, 36 particularly those involving
specific hydrogen bonds, remain outside the scope of the
present model.
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