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Summary

Human female life expectancy is higher than that of males.

Intriguingly, it has been reported that women display faster rates

of age-related cognitive decline and a higher prevalence of Alzhei-

mer’s disease (AD). To assess the molecular bases of these contra-

dictory trends, we analyzed differences in expression changes

with age between adult males and females, in four brain regions.

In the superior frontal gyrus (SFG), a part of the prefrontal cortex,

we observed manifest differences between the two sexes in the

timing of age-related changes, that is, sexual heterochrony.

Intriguingly, age-related expression changes predominantly

occurred earlier, or at a faster pace, in females compared to men.

These changes included decreased energy production and neural

function and up-regulation of the immune response, all major fea-

tures of brain aging. Furthermore, we found that accelerated

expression changes in the female SFG correlated with expression

changes observed in AD, as well as stress effects in the frontal

cortex. Accelerated aging-related changes in the female SFG tran-

scriptome may provide a link between a higher stress exposure or

sensitivity in women and the higher prevalence of AD.

Key words: Alzheimer’s disease; central nervous system; gene

expression; prefrontal cortex; sex difference.

Introduction

Human males and females display subtle dimorphism in their rates of

brain development and brain anatomy [reviewed in (Lenroot & Giedd,

2010; Joel, 2011)]. The question of whether the two sexes differ in their

rates of brain aging, however, is unclear. On the one hand, female life

expectancy is �5 years greater than that of males (Møller et al., 2009).

Women are also less affected by particular aging-related neurodegenera-

tive disorders, including Parkinson’s (Miller & Cronin-Golomb, 2010) and

Huntington’s disease (Bode et al., 2008). These observations suggest

slower female brain aging, that is, slower age-related functional decline

and lower propensity to disease in females. In contrast, multiple studies

have reported a higher age-specific risk of dementia and Alzheimer’s

disease (AD) in women (Andersen et al., 1999; von Strauss et al., 1999;

Barnes et al., 2005; Corrada et al., 2008; Schmidt et al., 2008) [note,

however, that not all studies have detected this difference; e.g. (Kawas

et al., 2000; Katz et al., 2011)]. For example, studying 911 individuals

above 90 years of age, (Corrada et al., (2008) found that the incidence of

dementia doubled every 5 years among women, but not among men.

This implies faster deterioration of particular processes in the aging

female brain and is reminiscent of the ‘health-survival paradox’: old

women appear in worse health than old men, but men exhibit higher

mortality (Oksuzyan et al., 2008). One biological explanation for these

contradictory patterns is that different brain tissues or physiological pro-

cesses have different aging rates between sexes: some deteriorate faster

in males, others, in females. Such dimorphism in brain aging rates and its

heterogeneity among tissues, however, has not yet been documented.

One approach that can be used to investigate rates of age-related func-

tional decline is transcriptome analysis. Brain gene expression levels

change significantly over lifetime, from birth till old age, and these

changes follow distinct and evolutionarily conserved trajectories that

reflect functional changes in the tissue (Lee et al., 2000; Lu et al., 2004;

Somel et al., 2010). But the pace of these age-related expression changes

varies among organisms, depending on genotype and environment, a

phenomenon termed ‘transcriptional heterochrony’ (Zakany et al.,

1997). By analyzing rates of expression changes with age, one can thus

infer relative rates of development or aging-related functional decline in

different organisms.

Here, we use brain gene expression age-series to investigate possible

differences in aging rate between sexes. We start by reanalyzing a human

brain age-series dataset comprising four brain regions (Berchtold et al.,

2008). In the original study, the authors identified prominent expression

differences between sexes during brain aging, such as stronger down-

regulation of protein synthesis and energy pathways in male aging, but

possible sexual heterochrony in brain aging was not tested directly.

Applying an algorithm developed in our group, significance dynamic time

warping (DTW-S) (Yuan et al., 2011) on this dataset, we find an unex-

pected expression pattern in the prefrontal cortex: earlier or faster aging-

related expression changes in females relative to males, implying faster

functional deterioration in women. Analyzing the potential causes and

consequences of this pattern, we find that it is connected to stress- and

AD-related expression changes in the prefrontal cortex.

Results

We utilized a published microarray time series containing gene expression

profiles from cognitively healthy adult males and females (Berchtold

et al., 2008) (DATASET1 in Table S1). The sample size was �20 individu-

als per sex, and subject ages ranged from 20 to 99 years (Fig. S1). Expres-

sion was measured in four brain regions: the superior frontal gyrus (SFG),

part of the prefrontal cortex; the postcentral gyrus (PCG), part of the

somatosensory cortex; the hippocampus (HC), involved in long-term

memory formation; and the entorhinal cortex (EC), which connects the

HC with neocortical areas (Berchtold et al., 2008). Individual sex identity
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was confirmed based on sex chromosomal expression patterns

(Methods).

Sexually dimorphic gene expression patterns

Among >13 000 expressed genes, we first identified genes showing

significant expression changes with age within each of the four brain

regions, using polynomial regression (Somel et al., 2010) (Methods).

Across the four regions, we found that 27–55% of genes showed age-

related expression change (F-test P < 0.05; Fig. 1A, Table S2). Next, we

tested each gene for expression divergence between sexes using analysis

of covariance. Among the identified age-related genes, �2500

(37–38%) showed significant sex differences in the SFG and PCG, while

<1000 (13–18%) showed significant differences in HC and EC (F-test

P < 0.05; Fig. 1B, Table S2). Notably, the two neocortical regions, SFG

and PCG, reveal a higher degree of age-related change, and a higher

divergence between males and females, compared to the two allocorti-

cal regions, HC and EC – a pattern also detected in the original study

(Berchtold et al., 2008).

We then visualized age-related and differentially expressed genes by

hierarchical clustering analysis (Figs 1C and S2). This revealed two notable

patterns: first, in SFG and PCG, the majority of expression changes with

age follow the same direction between males and females. In support of

this, 87% (SFG), 83% (PCG), 63% (HC), and 40% (EC) of differentially

expressed genes showed significant positive correlation between the two

sexes’ expression-age trajectories (Pearson correlation test P < 0.05).

Second, the two largest gene clusters in both SFG and PCG (clusters 1

and 2 in Fig. 1C and in Fig. S2A) exhibited patterns indicative of sexual

heterochrony, and in a particular direction. Namely, genes up-regulated

during aging had higher average expression levels in females, thus they

matched those of older males. Likewise, genes down-regulated during

aging had lower expression in females. Both patterns are consistent with

earlier or faster changes in females.

Meanwhile, in EC and HC, we found no comparable bias in the direc-

tion of heterochrony. In these brain regions, genes higher and lower

expressed in one sex over the other were relatively evenly distributed

among clusters (Fig. S2B–C). Moreover, in EC, genes in the largest clus-

ters showed opposite trends of age-related change between males and

females, such that sex differences cannot be attributed to heterochrony

(Fig. S2C). Therefore, the trend toward faster age-related changes in

females can only be detected in SFG and PCG clusters.

Sexual heterochrony in prefrontal cortex expression

To formally test expression heterochrony, we took advantage of the

DTW-S algorithm (Yuan et al., 2011), which has been specifically

designed for analyzing expression heterochrony in large-scale gene

expression time series. The algorithm estimates the significance of mea-

sured heterochrony using a simulation-based test. As described in

Fig. 1D, we applied DTW-S to genes showing (i) age-related change,

(ii) differential expression between sexes, (iii) positive correlation between

male and female trajectories (n = 2490 in SFG, n = 2102 in PCG,

n = 584 in HC, and n = 186 in EC) (Table S2, Methods). Among these

genes, we found 667 (27%) genes that showed significant heterochrony

between sexes in SFG, while only 336 (16%) showed significant hetero-

chrony in PCG, 81 (14%) in HC, and 35 (19%) in EC.

We further sorted genes showing significant heterochrony into two

categories: genes whose expression changes significantly faster during

female aging, or faster during male aging, relative to the other sex

(Fig. 2A; Table S2; Methods). Remarkably, in the SFG, 654 (98%) of the

667 significantly heterochronic genes displayed timing differences in the

direction of earlier or faster changes (acceleration) in females, compared

to only 13 genes showing acceleration in males. Likewise, 96% of hetero-

chronic genes showed acceleration in females in PCG. This proportion

was only 62% in HC and 14% in EC. Together, these results indicate a

prominent bias in SFG aging toward accelerated changes in females, in

accord with the patterns observed in the clustering analysis. The PCG

shows a similar bias but among fewer genes, while the allocortical regions

display no such trend.

The bias toward accelerated expression changes in females was unex-

pected. First, given the longer female life expectancy, one might expect
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Fig. 1 Sexually dimorphic gene expression changes in human brain aging. (A) The

number of significantly age-related genes in each of the four brain regions. (B) The

number of significantly age-related and significantly differentially expressed (DE)

genes between two sexes, in each brain region. (C) Genes showing both significant

age-related change and significant differential expression between sexes in SFG

clustered into six groups using nonsupervised hierarchical clustering. x-axis: age in

years; y-axis: male (green) and female (red) SFG expression levels normalized to

mean = 0, standard deviation = 1. Points represent the mean per individual among

genes within a cluster; vertical lines indicate variation (5–95% range). The number

above each panel indicates the number of genes within each cluster. Similar clusters

constructed for PCG, HC, and EC are shown in Fig. S2. (D) Schema describing the

steps used to identify sexual heterochrony. Each box corresponds to a set of genes

defined by a particular test (age-related change: multiple regression; differential

expression: ANCOVA; parallel changes: Pearson correlation; heterochrony: DTW-S).

For the numbers of genes passing each step, see Table S2.
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time shifts in the opposite direction, that is, acceleration in males. Sec-

ond, the sheer number of genes showing significant sexual heterochrony

in the SFG was surprising, given the modest sexual dimorphism in gene

expression identified in earlier studies of the developing and adult brain

(Vawter et al., 2004). To rule out any inherent problems with the data or

methodology, we first confirmed that population origin and postmortem

interval of the subjects did not differ with respect to sex [Wilcoxon test

(WT) P > 0.1]. Second, we employed two alternative algorithms to test

heterochrony, both of which revealed the same bias toward accelerated

aging in the female SFG (Methods). Finally, we compared the sex differ-

ences identified in the Berchtold et al. SFG dataset to those found in three

recently published human prefrontal cortex age-series (Table S1, Meth-

ods). DATASET2 contained 101 males and 47 females with ages between

20 and 78 years (Colantuoni et al., 2011), DATASET3 contained 19 males

and 5 women with ages between 29 and 80 years (Torkamani et al.,

2010), and DATASET4 contained nine males and ten females with ages

between 38 and 94 years (Maycox et al., 2009). In all three additional

datasets, we calculated the mean expression difference between sexes

for the 654 genes showing female acceleration in SFG and tested for

consistency in the direction of sex differences between datasets (Fig. 2B).

This analysis revealed significant correspondence between the Berchtold

et al. SFG data and each of the additional three datasets [odd’s

ratio = 1.9, 13.5, and 2.8, respectively, hypergeometric test (HT)

P < 0.01 in each test], indicating that accelerated female timing in SFG is

a reproducible phenomenon.

Sexual heterochrony indicates faster aging in females

To gain understanding into the origin and functional consequences of

sexual heterochrony, we studied the expression profiles and functional

properties of the 654 genes showing accelerated female timing in SFG.

We first clustered genes based on their heterochrony patterns identified

by DTW-S (Yuan et al., 2011). Namely, we grouped genes based on

how the male and female expression time series are shifted with

respect to each other (Methods; Fig. S3). We further clustered the

genes based on their expression patterns. This resulted in the four clus-

ters shown in Fig. 2C (Table S3). Notably, Clusters 1 and 2 had male

and female gene expression trajectories that were largely parallel, indic-

ative of earlier initiating changes in females relative to males. Mean-

while, Clusters 3 and 4 showed expression patterns indicative of faster

changes in females. For simplicity, we refer to both patterns as ‘acceler-

ation.’ Notably, we observed similar sex difference trends among these

four clusters using the three additional prefrontal cortex datasets

described above (Fig. S4).

We tested these four gene clusters for enrichment in functional cate-

gories using the Gene Ontology and KEGG databases (Supporting Infor-

mation). Specifically, we compared each of the four clusters to all 2490

genes tested for heterochrony in SFG. Three clusters showed significant

enrichment in at least one functional process (Bonferroni-corrected HT

P < 0.05; Table S4): (i) Clusters 1 and 3, which represent genes show-

ing down-regulation with age and lower expression in females, were

enriched in neuron-related functions, such as neurotransmitter secretion

and neural development. These down-regulated clusters were also sig-

nificantly enriched in neuron-related genes compared to glia-related

genes (Fig. S5). (ii) Cluster 1 was additionally enriched in genes associ-

ated with mitochondria and energy production. (iii) Cluster 2, which is

up-regulated during aging and shows higher expression in females, was

strongly enriched in genes involved in the immune response, particularly

autoimmune reactions. Cluster 4 showed no functional enrichment.

Meanwhile, applying the same clustering and functional enrichment

procedure to genes showing accelerated changes in female PCG

revealed only limited enrichment in neural processes in one cluster

(Fig. S6, Table S5).

The SFG clusters’ functional enrichment patterns are strongly sugges-

tive, as down-regulation of energy metabolism and neural function-

related genes and up-regulation of immune response are major hallmarks

of mammalian brain aging (Lee et al., 2000; Lu et al., 2004). This raises

the possibility that the observed expression heterochrony is linked to

aging-related functional decline in the brain. Accordingly, we confirmed

that age-related expression changes among the 654 genes closely paral-

leled age-related changes in a multi-species prefrontal cortex aging data-

set (Somel et al., 2010): genes up-regulated with age and higher

expressed in females in the SFG dataset were also up-regulated in both

old humans and in old macaques (Fig. S7A–B). Thus, we predict that the

654 genes’ expression patterns represent a trend of earlier or faster age-

related functional decline in the female SFG.
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Fig. 2 Accelerated aging in the female prefrontal cortex. (A) Heterochrony

between the two sexes. The y-axis shows the number of genes showing significant

heterochrony between the two sexes. The bars above the zero line indicate the

number of genes showing accelerated changes in females, those below the zero

line indicate genes showing accelerated changes in males. (B) Correlation of sex

difference with three additional frontal cortex datasets. x-axis: mean sex difference

among the 654 female-accelerated genes identified in the Berchtold et al. SFG

dataset (DATASET1); y-axis: sex difference for the same genes in DATASET2

(Colantuoni et al., 2011), DATASET3 (Torkamani et al., 2010). or DATASET4

(Maycox et al., 2009). Sex differences were calculated after normalizing each

gene’s expression to mean = 0, standard deviation = 1. The linear regression lines

are shown. (C) Expression patterns for 654 female-accelerated genes clustered in

four groups; represented as in Fig. 1C. y-axis: male (green) and female (red)

normalized expression levels; x-axis: age in years. Enriched Gene Ontology

functions are shown beside each panel (Table S4).
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Sexual heterochrony mirrors Alzheimer’s Disease

If the observed expression patterns are indeed related to functional

decline, they might also be associated with aging-related diseases

reported to occur at higher frequencies among females, specifically,

dementia (Corrada et al., 2008) and AD (Schmidt et al., 2008). To

investigate this, we used a dataset of SFG gene expression in individuals

with AD (n = 23) and age-matched control individuals (n = 11) (Liang

et al., 2008) (Table S1) and compared age-related change and sexual het-

erochrony patterns with AD-related expression differences. Interestingly,

gene expression changes during normal brain aging were positively corre-

lated with the expression effect of AD (Fig. 3A). We therefore defined a

‘corrected AD effect size’ per gene, a measure of how a gene’s expression

is altered under AD, independent of the positive correlation between AD-

and aging-related expression changes (Methods). Using this measure, we

found that among the 654 accelerated female aging genes, genes

up-regulated in females were also significantly up-regulated in AD, and

vice versa (Fig. 3B; WT P = 0.00013). This result held when using only

females among AD-afflicted individuals and controls (P < 0.001). This fur-

ther supports the hypothesis that the accelerated expression changes

observed in the female SFG indicate earlier or faster functional decline

and a higher propensity to degenerative disease in women (Fig. 3C).

Accelerated changes may be driven by environmental

factors

Why would the female frontal cortex undergo accelerated changes in

specific aging-related processes? Functional decline during aging may be

promoted by environmental insults, such as psychological stress or

trauma (Epel et al., 2004). If women are subject to stronger exposure or

display higher vulnerability to stress, this might also be reflected in their

SFG transcriptome as a faster aging signal.

If true, we might expect higher expression variation among women,

assuming that environmental factors are stochastic and vary in their influ-

ence within a population. Indeed, we found that 472 of the 654 acceler-

ated female aging genes (72%) showed significantly higher variance

within females than within males (F-test, P < 0.05), while only one

showed the opposite pattern (Table S3). We also noticed that while some

females showed accelerated aging trends, others closely followed the

male trajectory (Fig. 2C). Using hierarchical clustering and bootstrapping

across the 654 genes, we determined that 12 females clustered together

with males, while the other ten females (ages varying between 36 and

99 years), formed a distinct group, with expression levels indicating faster

age-related changes (Fig. S8). Thus, accelerated SFG aging seems to

affect only part of the female population, consistent with the notion that

accelerated aging is driven by environmental insults.

One likely culprit is psychological stress, which can have substantial

effects on brain structure and function (Brown et al., 2005). In fact, it

was shown in male spider monkeys that social stress because of isolation

could alter gene expression levels in the frontal cortex (Karssen et al.,

2007), notably in the ventromedial prefrontal cortex (VMPFC). When we

compared these stress-induced expression changes in the monkey

VMPFC and female vs. male differences in human SFG gene expression –

despite the dissimilarities between the two studies’ designs – we did find

a marginal overlap: across the 654 accelerated female aging genes, those

up- and down-regulated in females relative to males also tended to be

(A)

(D)

(B) (C)

(E)

Fig. 3 Sex, Alzheimer’s disease, and stress effects on gene expression. (A) Correlation between age-related expression changes and the effect of AD across all expressed

genes in SFG. x-axis: Pearson correlation coefficient between expression level and age; y-axis: effect size between AD and control samples. (B) AD effect among female-

accelerated genes. The 654 genes showing female-accelerated aging were separated into two groups: those showing higher expression in females ⁄ up-regulation during

aging (F > M), or lower expression in females ⁄ down-regulation during aging (M > F). y-axis: the AD effect size corrected by removing the correlation between the AD and

aging effects on expression (Methods). (C) Correlation between AD-related expression effects and sex differences exemplified in the case of UBXN8 (UBX domain protein 8)

expression. y-axis: standardized male and female expression levels; x-axis: age in years. The expression levels for the AD and control samples were normalized so that the

control individuals have the same mean and standard deviation as age-matched individuals in the SFG dataset. (D) The 654 genes showing accelerated female timing

separated into two groups as in panel B. The y-axis shows the stress effect size on gene expression in male monkey VMPFC, based on (Karssen et al., 2007). (E) Neuropeptide

Y and Neuropeptide Y5 receptor expression in the SFG.
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up- and down-regulated under stress, respectively (Fig. 3D; WT

P = 0.014).

We also checked possible expression dimorphism in neuropeptide

Y (NPY) and its receptors. These genes are strongly associated with

anxiety and depressive behavior in models organisms and in humans and

are down-regulated under stress (Heilig, 2004; Mickey et al., 2011). We

found that NPY, NPY1R, and NPY5R show significantly differential expres-

sion between males and females (F-test P < 0.05; Figs 3E and S9), with

lower expression in females. Notably, NPY5R was also strongly down-reg-

ulated in the spider monkey stress experiment. These results hint that

psychological stress could be a factor inducing the observed aging-related

sex differences in the brain.

Discussion

Our reanalysis of the Berchtold et al. dataset revealed that the vast major-

ity of expression changes in brain aging occur linearly and in the same

direction between females and males. Unexpectedly, however, within a

considerable proportion (�5%) of the SFG transcriptome, females reach

an ‘aged’ state significantly earlier or faster than males. The reverse pat-

tern was essentially absent.

In addition to the prefrontal cortex, the PCG, part of the somatosensory

cortex, also showed significant sexual heterochrony among 2.5% of

expressed genes and displayed a clear bias toward accelerated changes in

females (Fig. 2A). But heterochronic genes identified in the PCG showed

little overlap with heterochronic genes in the SFG (HT P > 0.1) and

showed weak association with aging-related functional processes, com-

pared to SFG clusters (Table S5). For these reasons, we chose to concen-

trate our analyses on heterochrony in the SFG.

Notably, the cluster profiles in Fig. 2C implied the existence of two dif-

ferent types of heterochrony: earlier initiating or faster age-related

changes in females (represented by clusters 1 & 2, compared to clusters 3

& 4, respectively). The former pattern could also be interpreted as a

shifted baseline between sexes, such that adult females, on average,

reach the molecular state of older males at a relatively younger age. Ear-

lier initiating vs. faster age-related changes could have distinct causes and

mechanisms. However, we did not find differences between gene clusters

1 & 3 or 2 & 4, with respect to functional annotation (data not shown).

The datasets used here also do not provide sufficient statistical power to

efficiently distinguish between the ‘earlier’ and ‘faster’ models, gene-by-

gene. We therefore chose to treat the two types of heterochrony as one

and refer to both types simply as ‘acceleration.’

Is accelerated female prefrontal cortex aging plausible?

Genes showing female acceleration in the SFG have clear associations

with brain aging-related processes. Immune reaction pathways, which

are up-regulated during normal aging, are up-regulated at higher levels in

females compared to same-aged males. Meanwhile, energy metabolism-

related genes, which show aging-related decline in expression, are

expressed at lower levels in females. We thus interpret the observed sex-

ual expression heterochrony as accelerated aging in the female SFG.

An alternative explanation of the observed sexual heterochrony could

be that the observed expression differences are remnants of brain

maturation rate differences that arise during adolescence, when female

brain maturation is known to proceed slightly faster [reviewed in (Lenroot

& Giedd, 2010)]. However, we did not find any comparable indication of

sexual heterochrony in a human prefrontal cortex postnatal development

dataset (Somel et al., 2009) (Fig. S7C). Thus, the observed sexual

heterochrony most likely appears during adulthood, not before.

If the observed expression differences represent faster aging, are the

predicted aging rate differences biologically plausible? In other words,

given that the study subjects were healthy individuals, is it possible that,

as predicted by the DTW-S algorithm (see Fig. S3), certain characteristics

of a 50-year-old female brain match that of a centenarian male? In fact,

only 5% of the SFG transcriptome shows such stark heterochrony and it

is possible that the remainder of the transcriptome partly compensates

for the accelerated aging trend in females. Moreover, the observed

molecular differences are not direct measures of cognitive differences

between sexes. Still, they may reflect differences in propensity for degen-

erative disorders, like AD.

Importantly, accelerated aging-related changes in females have also

been observed in other systems. For example, muscle sympathetic activity,

which regulates blood pressure, increases with age more dramatically in

women than in men (Narkiewicz et al., 2005). Female reproductive senes-

cence is another example. However, faster female aging in these specific

organ systems does not entail faster female aging across all tissues and

physiological processes. In the case of brain aging, for instance, we

observe strong heterochrony mainly in SFG and at weaker levels in PCG,

indicating that heterochrony is not systemic across the brain. Even if the

male SFG ages slower than the female SFG, rapid aging in other organ sys-

tems, as well as gender- or sex-specific environmental hazards could read-

ily overshadow this trend, culminating in higher male mortality.

Do accelerated expression changes represent increased AD

risk in women?

Another finding that supports a connection between expression

heterochrony and aging-related functional decline is the overlap between

sex differences and AD effects on the transcriptome. In line with previous

reports [e.g. (Miller et al., 2008)], we also observe a strong positive

correlation between aging-related changes and gene expression changes

under AD (Fig. 3A), implying that the AD profile in SFG represents a

hyper-aged state. In fact, AD is known to involve the SFG (Covington

et al., 2010), and, as mentioned earlier, the condition may also show

higher prevalence among elderly women (Andersen et al., 1999; von

Strauss et al., 1999; Barnes et al., 2005; Schmidt et al., 2008). Together,

these results suggest that the observed expression patterns may represent

an increased likelihood of AD development among elderly women.

A challenge to this hypothesis is the lack of strong sexual expression

heterochrony in HC and EC, two other regions strongly affected by AD

(Raji et al., 2009; Salat et al., 2011). Using the same AD dataset as

mentioned earlier, we also find no overlap between sex expression

differences identified in the HC and the AD effect in the HC (Fig. S10; WT

P = 0.23) (Methods). The connection between sexual expression hetero-

chrony and AD thus appears to be unique to the SFG and is not seen in

other structures known to show alteration under AD. Nevertheless, the

molecular mechanisms of AD progression across different brain regions

are not fully known, and it is possible that AD progression is exacerbated

by transcriptomic changes unique to SFG. A study of synaptic loss in AD,

for example, has found varying trends across regions, with the strongest

effect observed in SFG and the weakest in EC (Scheff & Price, 2003). It

thus remains conceivable that accelerated expression changes in the

female SFG could specifically contribute to AD development in women.

Can environmental insults drive accelerated female aging

and AD?

Intriguingly, the phenomenon of accelerated changes affects about half

the female population sampled in these datasets, including women of
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various ages. Although we lack demographic, clinical, or physiological

information on the subjects (except ethnicity), the fact that we observe

consistent sex differences across three independent datasets indicates the

reproducibility of accelerated female aging in the prefrontal cortex. The

expression variation within the female population, in turn, implicates envi-

ronmental insults in sexual heterochrony. Interestingly, we do find a mar-

ginally significant positive correlation between stress-induced expression

changes and female–male differences (Fig. 3D–E). This, in turn, fits a

number of findings involving sex-specific differential stress response and

the role of stress in aging: (i) Stress induces aging-like molecular changes:

for example, white blood cells of women with higher levels of self-per-

ceived stress have shorter telomeres, a marker of aging (Epel et al., 2004).

(ii) The female mammalian brain may be more sensitive to stress: in labo-

ratory rats, acute stress impairs learning in females but not males, an

effect depending on the PFC-amygdala pathway (Maeng et al., 2010).

Estrogen induces increased dendritic length in PFC neurons that project

into the amygdala and increases stress sensitivity (Shansky et al., 2010).

Notably, depression also shows higher prevalence among women (Weiss-

man et al., 1996). (c) Stress-induced changes within the brain can accu-

mulate. For example, stress leads to increased concentrations of

hyperpolarized Tau protein and beta-amyloidogenesis in the brain, both

of which are molecular changes associated with AD (Devi et al., 2010;

Aznar & Knudsen, 2011; Carroll et al., 2011; Sotiropoulos et al., 2011).

These observations and our results together hint that lifelong exposure

to higher levels of stress, or higher stress sensitivity, might permanently

shift the female SFG transcriptome toward an aged and AD-like state

(Joel, 2011). Still, we lack any direct evidence for such a connection.

Notably, factors such as reproductive history or past trauma could also

influence the SFG transcriptome and induce aging-like changes.

Finally, we note that the ten females showing accelerated aging-like

expression patterns in the SFG (Fig. S8) also tended to show divergent

expression patterns in other brain regions (Fig. S11), although to lesser

extent. This suggests that the causal factor of divergent expression in

these individuals, possibly stress, may affect multiple brain regions simul-

taneously, although it is detected as a faster aging signal only in SFG. This

discrepancy may be due to differences in aging dynamics among the

brain regions.

Conclusion

Here, we have identified a conspicuous trend toward faster female aging

in the prefrontal cortex using transcriptome analysis. It remains to be

shown which endocrinological, psychological, and medical conditions

give rise to faster SFG aging rates. It is also unclear whether the observed

sex differences reflect temporary differences among individuals, or an

accumulating, irreversible molecular load. Future work using larger and

better-annotated human postmortem datasets, and brain transcriptome

analyses of mammalian stress models, could help identify any causal rela-

tionships between sex differences in brain aging, the effects of stress, and

disease susceptibility.

Methods

Dataset preprocessing

We conducted heterochrony analysis with the gene expression age-series

dataset reported in (Berchtold et al., 2008), available at the NCBI

GEO database (http://www.ncbi.nlm.nih.gov/geo/; GEO ID GSE11882),

and which we refer as DATASET1. This is based on Affymetrix

HG-U133Plus2.0 microarrays where gene expression was measured in

healthy males and females, �20 per sex, across four brain regions. CEL

files were processed in the R environment; expression levels per gene

were summarized, log-transformed, and quantile normalized using the R

‘affy’ library ‘rma’ function. Probe sets were defined based on Ensembl

genes (Dai et al., 2005) (ENSEMBL version 61). We excluded 13 samples with

potential sex mislabeling or technical problems: (i) we checked sex iden-

tity by XIST and Y-chromosome-linked gene expression, which revealed

atypical expression (too high or too low) in ten samples (accession IDs:

GSM300213, GSM300250, GSM318840, GSM300288, GSM300287,

GSM300326, GSM300212, GSM300255, GSM300192, GSM300300;

four females & six males). (b) We checked the overall variation among

individuals in each region using principle components analysis (PCA) and

k-means clustering, using the R ‘prcomp’ and ‘kmeans’ functions. This

revealed three samples as potential outliers (accession IDs: GSM300198,

GSM300301, GSM300196; two females & one male). Specifically, in

k-means clustering, we found that for 400–600 genes, these samples had

mean expression level >3 standard deviations distant from the average

mean, whereas all other samples were within one standard deviation. For

the analyses presented in the main text, we preprocessed CEL files

for each brain region separately, and without including the outliers ⁄
misidentified individuals.

Tests for age and differential expression effects

For testing the effect of age on expression levels per gene, we used a fam-

ily of polynomial regression-based tests, and for testing differential

expression between two series, an analysis of covariance-based test. Both

are based on the adjusted r2 criterion and are described in (Somel et al.,

2009). Importantly, our approach differs from the original analysis, which

had sorted individuals into four distinct age-bins and had identified age-

related genes by comparing each group to the consecutive one (Berchtold

et al., 2008). Relative to this approach, modeling the data using regres-

sion models can increase statistical power to identify gradual changes

across lifespan.

Consequently, we selected 2490 genes in SFG, 2102 genes in PCG,

584 genes in HC, and 186 genes in EC as the test gene set for applying

DTW-S, satisfying the following criteria: (i) significant expression change

with age, (ii) significant expression difference between males and

females, and (iii) significant positive correlation (co-directional change)

between male and female expression profiles (Data S1).

Heterochrony analyses with DTW-S

We used the DTW-S algorithm to analyze heterochrony (Yuan et al.,

2011). Compared to similar warping algorithms, DTW-S has a number of

advantages, such as relaxing the end-matching requirement, estimation

of shifts per time point per gene, the introduction of a significance test

for the identified heterochrony patterns based on simulation, and fast

implementation. Using the gene sets defined above, for each gene, we

aligned female expression trajectories to male trajectories, and vice versa.

In each case, we estimated the time-shift (heterochrony) between the

aligned trajectories and conducted simulations to estimate the signifi-

cance of the shift (Yuan et al., 2011). We considered genes as ‘signifi-

cantly heterochronic’ if they showed shift at P < 0.05 in both alignments

(Fig. S12, Table S2).

Additional human brain aging datasets

We used three additional datasets to confirm our results. DATASET2

(Colantuoni et al., 2011) is based on Illumina BeadChips and contains
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158 males and 73 females with ages between 0 and 78 years (GEO ID:

GSE30272). DATASET3 (Torkamani et al., 2010) (GEO ID: GSE21138)

contains 19 males and five females with ages between 29 and 80 years.

DATASET4 (Maycox et al., 2009) (GEO ID: GSE17612) contains nine

males and ten females with ages between 38 and 94 years; the latter two

are based on Affymetrix HG-U133Plus2.0 arrays (Table S1). For quality

control and preprocessing information, see Data S1.

AD and stress datasets

To gain functional insight into the identified sexual heterochrony, we

used two datasets, one studying the effects of Alzheimer’s disease on the

human brain transcriptome (Liang et al., 2008) using Affymetrix

HG-U133Plus2.0 arrays, the other, the effects of social stress on the

spider monkey brain transcriptome (Karssen et al., 2007) using Affyme-

trix HG-U133A2.0 arrays. The SFG subset of the AD expression dataset

(GEO ID: GSE5281) contained n = 23 AD-afflicted individuals (age range,

68–95 years) and n = 11 age-matched controls (age range,

63–102 years). Both groups contained �60% males. The HC subset of

the AD expression dataset contained n = 10 AD-afflicted individuals and

n = 13 age-matched controls. We calculated the Alzheimer’s disease

effect size for each gene using the Cohen’s D measure. Given the correla-

tion between these values and the expression-age Pearson correlation

coefficient across genes (Fig. 3A), we calculated residuals from a linear

regression model between AD effect size vs. the age-expression

correlation coefficient across genes, this measure we treated as a ‘cor-

rected effect size’. Repeating the comparison using only females in the

AD dataset revealed the same significant relationship between SFG sex

differences and AD, as observed using all subjects (P < 0.0001), while

using only males revealed no signal (P > 0.1).

The VMPFC subset of the spider monkey dataset was downloaded

from http://www.pritzkerneuropsych.org/?page_id=400 (the RMA data-

set preprocessed by the authors). This contained n = 9 stressed (at juve-

nile or adult stage) and n = 3 control (not stressed at either stage)

individuals.

Additional heterochrony and functional analysis

We applied the original DTW algorithm (Aach & Church, 2001) and an

alternative algorithm based on nonlinear least squares (Somel et al.,

2009), on all the genes tested for heterochrony in SFG. Both methods

yielded a clear excess of genes showing female acceleration (92% and

96%, respectively). Details of functional analyses are provided in Data S1.
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