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Significance testing one SNP at a time has proven useful for identifying genomic regions that harbor variants affecting
human disease. But after an initial genome scan has identified a “hit region” of association, single-locus approaches can falter.
Local linkage disequilibrium (LD) can make both the number of underlying true signals and their identities ambiguous.
Simultaneous modeling of multiple loci should help. However, it is typically applied ad hoc: conditioning on the top SNPs,
with limited exploration of the model space and no assessment of how sensitive model choice was to sampling variability.
Formal alternatives exist but are seldom used. Bayesian variable selection is coherent but requires specifying a full joint
model, including priors on parameters and the model space. Penalized regression methods (e.g., LASSO) appear promising
but require calibration, and, once calibrated, lead to a choice of SNPs that can be misleadingly decisive. We present a general
method for characterizing uncertainty in model choice that is tailored to reprioritizing SNPs within a hit region under strong
LD. Our method, LASSO local automatic regularization resample model averaging (LLARRMA), combines LASSO shrinkage
with resample model averaging and multiple imputation, estimating for each SNP the probability that it would be included
in a multi-SNP model in alternative realizations of the data. We apply LLARRMA to simulations based on case-control
genome-wide association studies data, and find that when there are several causal loci and strong LD, LLARRMA identifies
a set of candidates that is enriched for true signals relative to single locus analysis and to the recently proposed method of
Stability Selection. Genet. Epidemiol. 36:451-462, 2012. © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

efficiently, if bluntly, dealt with by the addition of regres-
sion covariates correcting for higher order geometric rela-
tionships in the data [Price et al., 2010] or probabilistically

Single locus regression has become a staple tool of hu-
inferred strata [Pritchard et al., 2000].

man genome-wide association studies (GWAS; WTCCC

[2007]). Despite the fact that it simplistically reduces the
often complex genetic architecture of a phenotype down
to effects at an individual single nucleotide polymor-
phism (SNP) (or other localized variant), it has proved
powerful in identifying major genetic determinants and
predictors of disease susceptibility [Cantor et al., 2010].
Many would acknowledge that simultaneous modeling
of all loci potentially yields fairer estimates of genetic
effect, more stable phenotypic predictions, and better
characterization of between-locus confounding [Hoggart
et al., 2008; Lee et al., 2008]. However, such multiple lo-
cus approaches are at present seldom used. This could be
because they are considered impractical, potentially hard
for readers to understand, or, with some theoretical sup-
port [Fan and Lv, 2008], unnecessary in an initial genome
scan. Certainly, much of the genome-wide confounding that
explicit multiple locus modeling would hope to resolve is

© 2012 Wiley Periodicals, Inc.

Nonetheless, once initial genome scans have been per-
formed and “hit regions” of association identified, short-
comings of a single-locus approach become apparent. Local
patterns of linkage disequilibrium (LD) in such hit regions
can make ambiguous both the number of underlying true
signals and the identity of the loci that most directly give
rise to them [e.g., Strange et al., 2010]. Statistical analysis
after this point is often ad hoc. It typically involves fitting
further regressions that condition on “top” loci that appear
most strongly associated in order to rule out neighbors or
rule in suspicions of an independent second signal [Barratt
et al., 2004; Udea et al., 2003]. This is followed by more in-
terpretive analysis based on annotation as a prelude to, for
example, investigation at the bench. In ad hoc condition-
ing, rarely is there formal consideration of the fact that the
association of the top locus is often insignificantly different
from that of its correlated neighbors, and that whereas its
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association with the phenotype is probably stable to sam-
pling error, its superiority in association over its neighbors
is probably not. This inherent instability of the relative
strengths of association between confounding loci makes
such strategies high risk: a slightly different sampling of in-
dividuals could demote the conditioning locus, result in an
alternative conditioning locus being chosen, and potentially
lead to altered conclusions. This approach becomes yet more
unstable when some of the loci are themselves known with
varying certainty, their genotypes having been partially or
wholly imputed [Zheng et al., 2011], such that weakness
of association is now also a function of imputation uncer-
tainty unrelated to the phenotype [e.g., Servin and Stephens,
2007].

There is thus great value in developing principled ap-
proaches to discriminate true from false signals in hit re-
gions. Joint modeling of all loci through multiple regression
seems attractive because it accounts for the LD of the data
[Balding, 2006]. Standard regression is unsuitable for this
purpose, however, because even when the number of con-
sidered loci p is much fewer than the number of individ-
uals n, LD creates multicollinearity that derails meaning-
ful estimation of locus effects. Stepwise multiple regression
techniques [Cordell and Clayton, 2002] formalize the ad
hoc conditioning approach but also inherit its weaknesses:
model selection choosing a single set of active loci typically
provides no indication about how sensitive that choice was
to, for example, sampling variability, making it a statistic
that is opaque at best and misleading at worst. Bayesian
approaches offer a coherent perspective by formally ac-
counting for uncertainty in model choice, effect estimation,
and imputation uncertainty [Stephens and Balding, 2009].
Nonetheless, these are often highly computationally inten-
sive, and require formal statements of prior belief relating to
the number of causal variants and their effects that analysts
may feel unprepared or unwilling to specify.

Penalized regression models can provide an alternative
that does not require a commitment to Bayesian learning.
Placing a penalty on the size of coefficients in the multiple re-
gression leads to moderated estimates of coefficient effects,
allowing their stable estimation even when many predic-
tors are in the model. In particular, the LASSO [Tibshirani,
1996], which penalizes increases in the absolute value of
each coefficient subject to a penalty parameter \, results in
some effects being shrunk to exactly zero. The result is a
“sparse” model in which only a subset of effects are ac-
tive. Increasing the level of penalization leads to greater
sparsity, effectively making \ a continuous model selection
parameter. Recent advances in fitting LASSO-type models
have made them more practical for analysis of large-scale
genetic data [e.g., Wu et al., 2009]. Nonetheless, as a tool for
modeling effects at multiple loci, the LASSO leaves impor-
tant questions unanswered. One problem is how to select \.
This is typically approached through criteria-based evalua-
tion methods [Wu et al., 2009; Zhou et al., 2010], such as AIC
and BIC, empirical measures of predictive accuracy (such
as cross-validation [Friedman et al., 2010]), or criteria aim-
ing to control type I error (such as permutation [Ayers and
Cordell, 2010]). Another problem is, given N\, how to charac-
terize uncertainty in model choice. Although LASSO mod-
erates estimated effects through shrinkage, it is no better
than stepwise methods in that it ultimately selects a single
model (or single “path” of models, when \ is varied), and
thus states with absolute confidence a statistic that could in
fact be highly sensitive to the sampling of observations.
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An intuitive way to characterize variability of model
choice is to estimate for each locus a model inclusion prob-
ability (MIP). A Bayesian approach would formulate this as
a posterior probability that conditions on both the observed
data and prior uncertainty in model choice. The Bayesian
MIP embodies a statement about whether the researcher
should believe the locus is included in the true model. A
frequentist alternative is to formulate the MIP as the prob-
ability a locus would be included in a sparse model under
an alternative realization of the data. This frequentist MIP
is thus a statement about the expected long-run behavior
of the model selection procedure. Valdar et al. [2009] pro-
posed an approach that applied forward selection of genetic
loci to resamples of the data and defined the resample MIP
(RMIP) as the proportion of resampled datasets for which a
locus was selected. This resample model averaging (RMA)
approach used either bootstrapping (i.e., “bagging”) or sub-
sampling (i.e., “subagging”), and followed an earlier appli-
cation to genome-wide association in Valdar et al. [2006] and
work on general aggregation methods by Breiman [1996]
and Bithlmann and Yu [2001] (cf. parallel applied work
by Austin and Tu [2004] and Hoh et al. [2000]). Indepen-
dently, Meinshausen and Biithlmann [2010] proposed “Sta-
bility Selection” (SS) that powerfully combines subagging
with LASSO shrinkage to produce a set of frequentist MIPs
at each specified \. Recently, Alexander and Lange [2011]
adapted this method with limited success to whole-genome
association.

Herein, we propose a statistical method for reprioritizing
genetic associations in a hit region of a human GWAS based
on case-control data that exploits and extends the resam-
ple aggregation techniques developed in Valdar et al. [2009]
and Meinshausen and Biihlmann [2010]. We demonstrate a
principled approach, LASSO local automatic regularization
resample model averaging (LLARRMA), that characterizes
sensitivity of locus choice to sampling variability and un-
certainty due to missing genotype data, and that provides
LASSO shrinkage automatically regularized through either
predictive- or discovery-based criteria. We show that when
multiple correlated SNPs are present in a hit region that has
been identified by standard single-locus regression, LLAR-
RMA produces a reprioritization that is enriched for true
signals.

METHODS

We start by considering a standard logistic regression to
estimate the effects of m SNPs in a hit region on a case-
control outcome in 7 individuals, and then describe statis-
tical approaches to identify a subset m, of SNPs that rep-
resent true signals. Herein, we define a “true signal” as the
SNP that most strongly tags an underlying causal variant,
a “background” SNP as an SNP that is not a true signal,
and an optimal analysis as one that distinguishes true sig-
nals from background SNPs in the hit region. We assume
that the hit region has been previously identified by an ini-
tial genome-wide screen using, for example, single-locus
regression, that many of the m SNPs may be in high LD,
and that m; <m <n. Lety = (1, ..., y,) be an n-vector of
the dichotomous response with each of the n; cases coded
by 1 and the ny controls coded by 0, let X be an # x m matrix
of SNP genotypes, where SNPs are coded to reflect additive-
only effects as {0, 1, 2} for unphased genotypes {qq,qQ,QQ},
and let D = {y, X} and NV = {1, ..., n}. Logistic regression
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models the case-control status of individual i as if sampled
from Y; ~ Bin(p;, 1), where i’s propensity p; = P(Y; = 1) is
determined by a linear function of the m SNP predictors

v)—“"f'ZB]xz/v (1)

logit(p;) = log (

where x;; is the value of the jth SNP for the ith individual
and the ijth element of the column-centered design matrix
X, w is the intercept, and B = (B1, ..., Bu) are the effects of
the m predictors.

We assume that only a subset of the m SNPs are true sig-
nals, and define a corresponding vector of 0-1 inclusions
Y =1, ..., Vm) such that y; = I(B; # 0). A common way
to infer vy, and to thereby estimate the identity of the true
signal, is to use a model selection procedure that maximizes
some criterion of fit. This returns a binary vector ¥, a hard
estimate declaring which SNPs belong to the model. Al-
though superficially attractive, ¥ has limited interpretabil-
ity because it provides no information about how sensitive
the selection could have been to finite sampling. That is,
whether ¥ would be expected to vary dramatically when
applied to alternative samples from the same population.
Moreover, although many selection procedures guarantee
that they will deliver the correct result in an infinite sample
(i.e., are consistent), this offers little reassurance when the
sample is finite, and suggests that the returned statistic ¥
could have high variance.

LLARRMA

Resample Model Averaging. We seek to estimate
v in a way that incorporates uncertainty in model choice
arising through, for example, potential variability of the se-
lected set due to finite sampling. To do this we use RMA
[Valdar et al., 2009], applying a model selection procedure
to repeated resamples of the data, and basing subsequent
inference on the aggregate of those results. Rather than ob-
taining a binary estimate of each vy;, we instead seek to
estimate its expectation E(y;) over resamples, hoping to ap-
proximate its expectation over samples from the popula-
tion. We start by drawing subsamples k=1,...,K with
subsampling proportion d) , such that each subsample
comprises data D® = {y®), k)} on IN®| = ¢n individuals
N® ¢ N. Each subsample is produced by drawing ¢n; in-
dividuals at random without replacement from the 1, cases,
and ¢n, individuals at random without replacement from
the 1y controls. For each subsample k, we perform a fixed
model selection procedure to estimate §(D®) = 9®, the m-
length binary vector of inclusions based on the kth subsam-
ple. Applying this to all subsamples gives the K x m matrix
T, whereI'T = [§M, 9@, ... 5] The expected proportion
of times that the jth predictor is included in the model is
given by its RMA estimate

RMIP, = - Zy(w)]: =1

k=1

Zrk]v (2)

which we refer to as its RMIP.

Selection Within a Subsample Using the Lasso.
To select SNPs within the kth subsample, we use LASSO
penalized regression [Tibshirani, 1996]. This estimates 8 for
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subsample k as

B DY) = argmin g § —€B; DY)+ N BT, ()
j=1

where ¢(B; D) is the log-likelihood of B for data D®), and
\ is a penalty parameter. The LASSO estimate (\; D®)) eas-
ily translates into an estimate of the inclusions §(\; D®) =
I(B(\; D®) # 0). Nonetheless, to arrive at a single estimate
of v, as required for model averaging, we must devise a
suitable criterion for choosing the penalty . We propose
two alternatives, both of which identify a value \® specific
to subsample k (i.e., local): complement deviance selection
and permutation selection.

Predictive-Based Choice of \*: Complement
Deviance Selection. The complement deviance crite-
rion seeks a model that would perform well in out-of-
sample prediction. After estimating B(\; D®) over a grid
of \ to calculate the LASSO path, this criterion finds the
value of X that minimizes the deviance of the complement
of subsample k, i.e.,

)\CompDev
= argmin, { -2 Z [vilog(pin) + (1 — vi) log(1 — pin)]
ieN (b
where VOO = AM\N® is the set of (1 — ¢)n individuals not

selected for subsample k, and p; , is the predicted probabil-
ity of P(Y; = 1) based upon (\; D®) applied to the design
matrix of the complement subsample X"V

Discovery-Based Choice of A\®: Permutation
Selection. The permutation selection criterion is a mod-
ified version of that proposed by Ayers and Cordell [2010]
and seeks a conservative model that would tend to include
no SNPs under permutation of the response. Given a sub-
sample k, we estimate for a given permutation of the re-
sponse w(y) the smallest penalty required to zero out all
predictors, i.e.,

)\null(wv k) = TAro1

where x(k) is the jth column of the subsampled and mean-

centered design matrix X%, and (-, -) denotes the inner prod-
uct of its two arguments. Calculating this for each of S per-
mutations m, ..., ws, we estimate the permutation selec-
tion A for subsample k as

L0

Perm

= median({)\nuu(ﬁ] s k), }\nu]l(ﬂZa k), ey )\nu]l(ﬂs» k)}z )
4
Ayers and Cordell [2010] apply a similar criterion when
analyzing complete datasets, with the difference that they
estimate Ana as the maximum of {Anan(m1), - . ., Anun(7ws)}
for S=25. We prefer not to do this because the maxi-
mum is relatively unstable for S = 25, and is undesirable for
larger S because it potentially allows Anull = Mt (77s) where
7;(y) = y. In contrast, when using the median (Equation 4)
the accuracy of Aperm increases with S, although we find that
in simulations S = 20 is adequate.

Genet. Epidemiol.
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Fit lasso or randomized
lasso regrassion path

Calculate local lambda
[pisrmutation of
complement deviance)

Fig. 1. A comparison of LLARRMA and Stability Selection.

Incorporating Uncertainty Due to Missing Geno-
types: Hard, Dosage, andy Multiple Imputation.
SNP data within a hit region will often include combina-
tions of markers and individuals for which the genotype
is unknown or uncertain. To avoid a potentially wasteful
complete cases analysis, it is common to impute the missing
genotypes using a program such as MACH [Li et al., 2010],
IMPUTE [Howie et al., 2009], or fastPHASE [Scheet and
Stephens, 2006], and analyze the partly imputed data
as if it were fully observed. Imputation methods are
typically based on reconstruction and phasing of inferred
haplotypes. Dividing the SNP matrix X into missing
and observed elements X = {X,s, Xobs}, methods such as
fastPHASE [Scheet and Stephens, 2006] model the joint
distribution p(Xmis|Xobs, ®), where o includes additional
information used in the imputation (e.g., priors). Most
GWAS, however, do not use this joint distribution directly.
Rather, they replace X with a point estimate AA’mis, each
element of which is constructed from its marginal distribu-
tions. Specifically, Xy;s is replaced by either the “dosage,”
frﬂ‘ife, with elements defined as the expectation of the allele
count %;; = E(x;j|Xops, ®); or a “hard” imputation, Jahn?;d,
with elements imputed as their maximum a posteriori
genotype

. bs
%;j = argmax ge(o,l,z)P(xi/' = g|X", w).

The simplest approach to modeling missing genotypes
within LLARRMA is first to estimate X, as either )?If\?sse
or /'Ehn';’gd and then subsample X = {;Y\mis, Xops} as if it were
complete. This plug-in approach underestimates variabil-
ity because it fails to incorporate uncertainty about the
imputation. Zheng et al. [2011] show that doing this when
modeling effects at single loci reduces power by a negligible
amount when the imputation accuracy is reasonably high.
Nonetheless, ignoring imputation uncertainty could be
more problematic in multiple-locus settings, if, for example,
the posterior distribution of haplotypes p(Xmis|Xobs, ®)
differs substantially from joint distribution implied by the
product of marginal posteriors ]_[ijE Xonie p(xi| Xops, ) [e.g.,
Servin and Stephens, 2007]. A natural way to incorporate
imputation uncertainty into our resampling framework is
through multiple imputation [Little and Rubin, 2002]. At
each iteration k, we sample a new A7, from its posterior
P(Xmis| Xops, @), subsample the resulting X* = {7, Xobs}
to give {X*,y}® = D*®, and then calculate RMIPs using
2(D*®) in place of ¥(D®) in Equation 2. The resulting
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Stability
Selection

LLARRMA ==—3p

Average bogi model
inclusion indicators
ower subsamples for
each loc

RMIPs incorporate additional variability because each
subsample now includes a potentially different imputa-
tion of missing genotypes. We implement hard, dosage,
and multiple imputation using posterior draws from
fastPHASE (making use of the -s option).

COMPETING METHODS

LLARRMA calculates a score (an RMIP) for each SNP in
a case-control study. We compare the ability of those scores
to discriminate true signals from background with the SNP
scores calculated by two alternatives: the traditional GWAS
approach of single-locus regression, and the LASSO-based
subsample model averaging method stability selection
(SS) recently proposed in a more general context by
Meinshausen and Biihimann [2010].

Single Locus Regression. We perform single locus
regression with logistic regression as used in, for exam-
ple, PLINK [Purcell et al., 2007]. For each SNP, we fit a
single-predictor version of Equation 1 and score its — log,, P
(logP), where P is the P-value from a likelihood ratio test
against an intercept-only model.

Stability Selection. SS differs from LLARRMA in
two main respects (see Fig. 1). First, whereas LLARRMA
selects variables within each subsample using a local (i.e.,
subsample-specific) penalty A\®), SS uses a single global
penalty N\ applied to all K subsamples. Second, whereas
LLARRMA chooses each \® automatically, SS leaves its
global \ as a free parameter. In SS, the RMIP (referred to as
the “selection probability” in Meinshausen and Bithlmann
[2010]) is thus left as a function of \,

K
RMIPs(); = o Y IB0DD), 200 ()
k=1

giving rise to a sequence of RMIPs (a “stability path”) for
each locus j. Meinshausen and Bithlmann [2010] provide
little guidance for choosing N. As a choice of \ is required
to produce a unique RMIP and thereby ensure meaningful
comparison with LLARRMA, we select X to produce the
stiffest possible competition: as the value that maximizes
the criterion used for comparing methods. Specifically,
given a criterion of success u(y, ¥) comparing truth y with
guess ¥, we define

)A\oracle = argmax }\M(’Y, RMIPSS()\)) s
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where “oracle” reflects the fact that choosing this unfairly
advantageous value requires foreknowledge of y. We
consider SS with the oracle property defined by setting u to
be the initial area under the curve (AUC) (described below).

ROC-BASED EVALUATION

We assess the performance of LLARRMA and its com-
petitors by simulation, examining the ability of each to dis-
criminate true signals from background in simulated case-
control studies. Performance is evaluated formally using
receiver operator characteristic (ROC) curves. ROC curve
methodology can vary between studies [Krzanowski and
Hand, 2009], so we describe ours in full. A given simulation
study comprises a set of simulation trials S = {1, ..., S}. In
each trial s, a given method is presented with m SNPs of
which m, will be a true signal. That method calculates a
single score for each SNP (an RMIP or logP). For a given
threshold ¢, define power,(t) as the proportion of m, true
signal SNPs scoring > t (i.e., the power to detect), and the
false-positive rate FPR,(t) as the proportion of the m —m,
background SNPs scoring > t (i.e., the false positive rate;
FPR). We define the area under curve in trial s for FPRs
between a and b as AUC, (a,b) = [ power, (FPR;(x)) dx,
where FPR;l(x) returns the threshold t at which the FPR
is x, and the integration is approximated using the trapez-
ium rule. For a given method and set of simulations S,
we define the estimated AUC between FPR 4 and b as
AUC(a,b) =Y ,.s STTAUC(s,a,b), and assume this esti-
mate to be approximately normally distributed with vari-

- 2
ance(S—1)7' Y, s (AUC(a, b) — AUC(s, a, b)) . We define
the “initial ROC” as the ROC curve in the range FPR e

[0, 0.05], and the “initial AUC” as AUC(0, 0.05); the “full
ROC” iswhere FPR € [0, 1] and the “full AUC” is AUC(0, 1).
When plotting ROC curves for each method, we use thresh-
old averaging [Fawcett, 2006], varying t over its range ([0, 1]
for RMIPs; [0, co) for logP) and at each ¢ plotting x and y co-
ordinates S7' " _ FPR,(f) and S' Y, _; power,(F), respec-
tively.

SIMULATION STUDY 1: FIVE LOCI IN CANCER
DATA

We obtained genotype data from phase 1 of a case-control
GWAS for colorectal cancer from collaborators at the Well-
come Trust Centre for Human Genetics, University of Ox-
ford. Two forms of the data are used here. The “cancer data”
comprise complete genotype information on 1,493 subjects
for 183 SNPs covering a hit region previously identified on
18q21. The cancer data are a subset of the “full cancer data,”
which comprises incomplete genotype information on 1,859
subjects for the hit region.

Generating Missing Genotypes. To assess the sen-
sitivity of the compared methods to alternative strategies
for modeling missing genotypes, we generate incomplete
versions of the cancer data by deleting genotypes accord-
ing to a random missingness algorithm. The missingness
algorithm is based on empirical modeling of the pattern of
missing data in the full cancer data. The full cancer data
genotypes contained 854 missing genotypes (~0.25%). We
observed that the proportion of missing genotypes varied
considerably from SNP to SNP, but that missingness across
individuals was consistent with a random allocation. To

generate each incomplete dataset, we therefore do the fol-
lowing. First, for each SNP j, we assign a missingness pro-
portion ;s ; generated as a random draw Yins j ~ fmis,
where fns is an empirical density based on the histogram
of missingness proportions of SNPs in the full cancer data.
Second, we select a subset of nys <n individuals eligi-
ble to receive missing genotypes. Third, at each SNP j
we delete d; = iy, x min(ciim;s, j, 1) marker genotypes at
random from the n.,;s individuals, where ¢ is chosen such
that the overall proportion of missing data is fixed value
Pmis = (mn)1 " i d;. To generate a more conservative level
of missingness while ensuring at least 10% of individuals
had complete data, we set pis = 0.1 and 1,5 = 0.9

Simulating Phenotypes. Phenotypes are simulated
based on a binomial draw from the logistic model in Equa-
tion 1. Given a set of SNPs representing true signals, with
genotypes X, and effects B,, we first calculate the inter-
cept necessary for an expected 50/50 ratio of cases to con-
trols as p = —n~'1"(X;B,), calculate individual propensi-
ties as p; = logit " (u + x;Bq), and then draw phenotypes
as Y; ~ Bin(1, p;).

Placing Causal Loci. To ensure a degree of confound-
ing correlation between loci, we choose five true signal SNPs
at random but in a restricted manner from the LD blocks
shown in Figure 2. Specifically, in each simulation trial, two
SNPs are chosen from block 1 at random but subject to cor-
relation r > 0.4, two SNPs are from block 2, also subject to
r > 0.4, and one SNP is randomly chosen from block 3.

Simulation 1A: Moderate Effects. To aid an ini-
tial illustrative comparison between methods, our first
study on the cancer data simulates a relatively constant
effects structure. In each simulation trial, we assign a
permutation of the effects (on the odds scale) exp{B,} =
(1.287,1.398, 1.246, 1.357, 1.419) to the selected five SNPs.

Simulation 1B: Small Effects. Providing a more
challenging and variable set of causal targets, our sec-
ond study on the cancer data randomly chooses true sig-
nal SNPs as in 1A but draws each element B,; of effects
B, independently as exp{p,;} ~ N(1.25(—1)"/, 0.02?) with
v; ~ Bin(1, 0.5). The resulting effects are comparable to the
small effects estimated in many GWAS [Manolio et al., 2009].

SIMULATION STUDY 2: ONE TO SEVEN LOCI
IN ‘58 DATA

The “’58” data are a complete-genotypes subset of data
collected during the human GWAS for seven diseases de-
scribed in WTCCC [2007] . It comprises genotypes for 2,199
subjects on 500 SNPs in the region 39.063723-40.985321 Mb
on chromosome 22, this region being chosen by us as a con-
tiguous run of markers that exhibits a mixture of high and
low LD (Fig. 2). To assess the how the number of true sig-
nals affects the relative utility of modeling single vs. multi-
ple loci, we evaluated methods in seven distinct simulation
substudies, simulating 1, . .., 7 true signals, respectively. In
each simulated trial of each substudy, the set of true signals
is chosen at entirely random from the 500 SNPs and the SNP
effects are generated as in simulation 1B above.

COMPUTATION

Genotype imputation was performed using fastPHASE
[Scheet and Stephens, 2006]. All other analyses were per-
formed in R [R Development Core Team, 2011], with the

Genet. Epidemiol.
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Fig. 2. LD structure of the two genotype datasets used in the simulations. Shading indicates pairwise LD between SNPs, ranging from
72 = 0 (white) to > = 1 (black). Red highlighting shows blocks where true signals were placed in simulation studies 1A and 1B.

glmnet package [Friedman et al., 2010] used for fitting
LASSO models. On a 2.4 Ghz MacBook Pro with 4 Gb RAM,
on average 100 subsamples on the cancer data take the fol-
lowing times: LLARRMA with permutation selection, 39.8
sec (SD = 2.6 sec); LLARRMA with complement deviance
selection, 389.2 sec (SD = 64.6 sec); SS, 305.7 sec (SD = 48.5
s). Use of multiple/hard /dosage imputed data incurs negli-
gible extra computation, assuming the imputation itself has
been done in advance.

RESULTS

SIMULATION STUDY 1A: MODERATE LD,
MODERATE EFFECTS

We simulated 1,000 case-control datasets based on the
cancer data (see Methods and Fig. 2). Each simulated dataset
had approximately balanced cases and controls, with in-
dividuals’ outcomes influenced by five SNPs of moder-
ate effect (odds ratios 1.246-1.419) out of 183 SNPs in to-
tal, and existed in both a complete form, referred to as
the “complete” dataset, and an incomplete form, in which
some genotype values were set to be missing. The incom-
plete form was available in three alternative imputations: a
“hard” imputation, a “dosage” imputation, and an ensem-
ble of 100 sampled imputations that constituted a single
“multiple” imputation set (these imputations being gener-
ated by fastPHASE [Scheet and Stephens, 2006]). At each
simulation, we tested four different analysis methods that
each produced a score per SNP. Our subsequent compar-
isons of those methods were based on how well their scores
discriminated the five SNPs that represented true signals
from the 178 that did not. The four methods examined
were (short names in parentheses): single SNP logistic regres-
sion (single-locus regression); LLARRMA using permutation
selection (permutation selection); LLARRMA using comple-
ment deviance selection (complement deviance); SS using or-
acle penalization (oracle SS). All methods were applied to
the complete, hard imputation, and dosage imputation ver-
sions of each simulated dataset; resample-based methods
(i.e., all except single-locus regression), which were set to
use K = 100 subsamples, were also applied to the multiple
imputation set.

An Example Simulation. Figure 3 plots SNP location
against SNP-score for each method in an example simula-
tion applied to complete data. True signal SNPs are plotted
as black crosses and the remaining (background) SNPs as
gray dots. In single-locus regression (Fig. 3A), SNPs are
scored as —log,, P (logP; see Methods). Although the true
signals between 1 and 50 tend to attract higher scores, so do
many of the backgrounds SNPs between 1 and 60, giving
rise to a cloud of association that is characteristic of many
hit regions in real GWAS. The remaining methods (3 B-D)
report inclusion probabilities (RMIPs) for each SNP. These
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Fig. 3. Results of four methods applied to an example case-control
dataset from simulation study 1A. Plots show SNP score (logP or
RMIP) against SNP location in the cancer data, with true signal
SNPs in black and background SNPs in gray.

describe a frequentist probability that each SNP would be
included in a sparse model that seeks to estimate the joint
effects of multiple SNPs. Because SNPs compete with each
other for inclusion in these methods, the resulting scores
more clearly differentiate those SNPs. In this example, that
increased sparsity coincides with the set of higher scored
loci being more enriched for true signals than is the case
with single-locus regression.

Results From 1,000 Simulations. Figure 4 plots
ROC curves (see Methods) for each of the four methods,
with single locus regression applied to complete genotype
data and resample-based methods applied to genotype data
with ~10% missingness that has been multiply imputed (see
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Methods and below). The ROC curve plots the trade-off be-
tween power (the proportion of true signals declared as
influential) and FPR (the proportion of background SNPs
declared as influential) when thresholding the SNP scores
(logPs or RMIPs) at different values. The initial ROC is ar-
guably of greater relevance to GWAS than the full ROC
because it focuses on enrichment of true signals among the
top-scoring SNPs. A method whose top four SNPs are true
signals, but which never finds the fifth true signal SNP, is ar-
guably more valuable than one whose top SNPs are false but
which finds all five true signals among its middle scoring
SNPs. Figure 4 shows both the full ROC curve (right) and
the initial ROC curve (i.e., where FPR < 5%; left). Figure 5
plots the AUC for the initial and full ROC curves for all four
methods under four conditions: where the available geno-
type data are complete, or have ~10% of genotypes missing
but available in hard-, dosage- or multiply-imputed forms.
All point estimates (plotted curves in Fig. 4 and mean AUCs
in Fig. 5) are based on averages over the 1,000 simulations.

Figure 4 shows, for this example, that single-locus regres-
sion most powerfully discriminates true signals from back-
ground when the experimenter is prepared to follow up 10%
or more of the available SNPs. When at most the top 5% of
SNPs can be followed up, however, single-locus regression
is dominated by LLARRMA'’s permutation selection. When
follow-up is restricted to the top ~2% of SNPs, single-locus
regression is also dominated by complement deviance and
oracle SS. Figure 5 echos these trends. It also shows how
the methods perform under different forms of imputation,

estimate is based on 1,000 simulations and is plotted as the mean (dot)

although no consistent pattern emerges favoring one form
over the others.

SIMULATION STUDY 1B: MODERATE LD,
SMALL EFFECTS

We performed a second set of simulations with a design
identical to 1A above except with smaller SNP effects (odds
ratios around 1.25). The results in Figures 6 and 7 show that
although some of the LLARRMA methods dominate in the
first third of the initial ROC curve, they generally offer lit-
tle improvement over single-locus regression under these
conditions. The poor performance of oracle SS is striking.
“Oracle” refers to the fact that SS was applied in a way that
required foreknowledge of the answer: in this case, their free
parameter \ was set to maximize their initial AUC. The fact
that LLARRMA does not have this oracle advantage and yet
still dominates oracle SS suggests a systematic shortcoming
of SSin this setting. Figure 8 helps explain the phenomenon.
It plots values of the selection parameter \ as estimated by
LLARRMA and SS in a representative set of 50 of the 1,000
simulations (using the complement deviance criterion for
LLARRMA, which seeks to maximize out-of-sample pre-
dictions). Each vertical series shows estimated \’s from one
simulation: gray crosses show the K = 100 distinct values
of A (i.e., A\D, N® . A\ estimated for, and used for selec-
tion in, subsamples k =1, ..., K by LLARRMA; black plus
signs show the single A chosen by oracle SS to be applied

Genet. Epidemiol.
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uniformly across all K subsamples. The plot thus contrasts
locally optimal vs. globally optimal choices of the selection
parameter. In particular, if a dominating strategy allows
each subsample k to have its own A® then this plot illus-
trates how even the best choice of global \ corresponds to a
suboptimal local \® for most subsamples.

SIMULATION STUDY 2: STRONG LD, SMALL
EFFECTS

To examine the relative performance of the single and
multiple locus methods in a more challenging setting, we
simulated 700 case-control datasets based on the ‘58 data,
a region on chromosome 18 containing blocks of strong LD

Genet. Epidemiol.

from the GWAS of WTCCC [2007] (see Methods and Fig. 2).
Each simulated dataset had a complete set of genotypes
and approximately balanced cases and controls. Individu-
als’ outcomes were influenced by between one and seven
true signals of small effect (allelic odds ratios of around
1.25), with 100 simulations devoted to each simulated num-
ber of true signals m, =1, ...,7. Figure 9 shows the initial
and full ROC curves from the 100 simulations in which five
true signals were simulated. In this high correlation—weak
signal setting, all forms of LLARRMA dominate single-
locus regression in the initial ROC curve, suggesting an
advantage of simultaneously modeling multiple loci in the
presence of high LD. By contrast, oracle SS equals or un-
derperforms single-locus regression, a result similar to that
in 1B above, suggesting that this modeling is suboptimal
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in SS. Figure 10 summarizes results from all 700 simulation
trials and shows the effect of varying the number of true
signals. With one true signal, single locus regression equals
or betters any other method; but as the number of true sig-
nals increases, its advantage over multiple locus methods
diminishes. In particular, for four or more loci LLARRMA
consistently outperforms in the initial AUC, whereas oracle
SS consistently underperforms both LLARRMA and single
locus regression.

DISCUSSION

We present a general approach for characterizing frequen-
tist variability in LASSO-based model choice, LLARRMA,
and apply it to a problem for which it should be well suited:
discriminating true from false signals among a set of SNP
predictors that are often highly correlated. In doing so, we
evaluate two criteria for automatically choosing the LASSO
penalization parameter A (permutation and complement de-
viance selection), demonstrate potential superiority of local
vs. global regularization in subagging (through comparison
with SS), and propose a natural way to combine resampling

aggregation with multiple imputation to account more com-
prehensively for different sources of variability in model
choice.

LLARRMA'’s intended use is in focused analyses on hit
regions that have been already identified during whole-
genome analysis. Rather than replacing single locus regres-
sion, its value lies in what it subsequently adds to that analy-
sis. When there are few causal variants and mild LD, the best
LLARRMA methods add little. But when there are many,
applying LLARRMA produces a top set of loci that is, on
average, enriched for true signals relative to that obtained
by single SNP association (cf. > 4 true loci in simulations
2B). Of our two alternatives for automatically selecting the
penalty A, we found a slight but consistent advantage of
permutation selection (modified from Ayers and Cordell
[2010]). This could reflect its discovery-based motivation
matching our discovery-oriented evaluation, and does not
preclude complement deviance, our alternative, being su-
perior in predictive settings.

We explored the use of SS [Meinshausen and Biithlmann,
2010] in this context but find it no better than, and usu-
ally inferior to, LLARRMA, despite the fact that our eval-
uation of SS is based on an optimal calibration of its (un-
specified) penalization parameter. One explanation is that

Genet. Epidemiol.
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SS’s use of a single global A\ for all subsamples underfits
the data, in that it fails to accommodate structural differ-
ences between LASSO paths fit to different subsamples.
The local automatic regularization in LLARRMA implies
a different perspective: that \ is a parameter intrinsic to,
and only meaningful in the context of, a single LASSO
path on a single (subsampled) realization of the data. An-
other factor could be our evaluation scheme: by calculating
power and FPR at different thresholds of RMIP, we (rea-
sonably, in our view) assume that RMIPs should be com-
parable across simulated datasets. But when we thresh-
old instead on the ranks of the RMIPs within simulated
datasets (such that the best RMIP in trial s =1 is equiv-
alent to the best RMIP in s =2), the performance gap
between SS and LLARRMA narrows (data not shown),
suggesting SS RMIPs are discriminatory but their abso-
lute values are less comparable across studies. Lastly, al-
though our implementation of SS uses subsample pro-
portion ¢ = 2/3 rather than the original ¢ = 1/2 of Mein-
shausen and Biithlmann [2010], our preliminary studies (not
shown) do not suggest this biases comparisons with LLAR-
RMA.

Alexander and Lange [2011] recently demonstrated SS’s
inferiority to single locus regression for identifying un-
linked quantitative trait loci (QTL) in whole-genome as-
sociation (also using data from WTCCC [2007]). The
weakness we identify in SS may help explain that poor
performance. Nonetheless, we believe that to expect SS (or
LLARRMA for that matter) to beat single locus regression
at its own game is not only optimistic, especially given the
near optimality of marginal approaches suggested by Fan
and Lv [2008], but also distracts from the potential advan-
tages of multipredictor shrinkage for disentangling highly
correlated signals in LD blocks following an initial single
locus scan.

Multiple imputation is simply accommodated by our
resampling scheme, with draws from an arbitrarily com-
plex imputation algorithm dovetailing naturally with the
drawing of each subsample from the full data. However,
our results suggest that even with 10% missing geno-
types multiple-locus inference is served just as well by
simpler “plug-in” imputation estimates (hard and dosage).
Nonetheless, we advocate multiple imputation where pos-
sible because it more comprehensively models imputation
uncertainty (among genotypes or other covariates) that
could be more pronounced in messier datasets.

Resample aggregation techniques, such as bootstrap ag-
gregation (“bagging”; [Breiman, 1996]) or subsample ag-
gregation (“subagging”; Bithlmann and Yu, 2002]), have
been found to produce estimates of y that are more
stable than from a single estimation run in the sense
that those estimates have lower frequentist risk under
squared error loss [Bithlmann and Yu 2002]. We prefer
subagging (as in Meinshausen and Biithlmann [2010], Val-
dar et al. [2009]) to bagging for two reasons. First, the-
oretical results in Politis et al. [1999, pp. 47-51] sug-
gest that subsampling is less efficient but more gen-
eral than bootstrapping; specifically, that whereas boot-
strap methods must often assume that the estimated
statistic is at least locally smooth (which the true or
sampled <y is not), this assumption is not needed for
subsampling. Second, resampling individuals with re-
placement (bootstrapping) poorly approximates varia-
tion in GWAS samples because it produces frequent
duplicates in a scenario where observing multiple in-
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dividuals with identical genetic composition would be
improbable.

In our simulations, we measure performance by a sim-
ple but stringent criterion. We define a “true signal” as the
SNP that most strongly tags an underlying causal variant,
consider all other SNPs as “background,” and regard suc-
cess as discrimination of one from the other. In doing so, we
provide a criterion for assessment that is unambiguous and
in line with many comparable studies [e.g., Alexander and
Lange, 2011; Basu et al., 2011; Basu and Pan, 2011; Chun
et al., 2011]. Nonetheless, important alternatives exist. A
more sophisticated assessment of accuracy, for example,
might use a softer criterion that counts as true all SNPs
within a given distance or LD-cutoff of a causal locus [e.g.,
Ayers and Cordell, 2010; Shi et al., 2011; Zhang, 2012]. That
more nuanced approach can be helpful in evaluating meth-
ods for genome-wide association, but would be counterpro-
ductive in our setting for the following reasons. We target
hit regions already identified through genome-wide asso-
ciation, and in those regions attempt to discriminate causal
from correlative variants in the presence of confounding
LD. This goal is not easily reconciled with an assessment
mechanism that allows a margin of error in SNP choice.
For example, the definition of a useful cutoff for declar-
ing a true positive is highly sensitive to the marker den-
sity and the pervasiveness of LD in the hit region of in-
terest, and both of these vary considerably between our
two datasets. Moreover, given a suitable cutoff, it is de-
batable (yet crucial for assessment) whether, for example,
one or three hits within range of two causal loci would
count as identifying both. Our hard criterion avoids such
ambiguities, and provides a stark but clear assessment. It
also makes our results particularly relevant to scenarios in
which many of the examined variants are essentially in-
distinguishable, such as for extremely dense genotype or
sequence data.

We introduce LLARRMA as an approach for characteriz-
ing model uncertainty when working within the frequen-
tist paradigm. Alternative Bayesian variable selection ap-
proaches do exist [e.g., Guan and Stephens, 2011; Wilson
et al, 2010; Zhang, 2012]. At the request of a re-
viewer, in Supporting information we assess the per-
formance of a contemporary Bayesian variable selection
method (PIMASS; Guan and Stephens, [2011]) within
our simulation framework, comparing it with LLAR-
RMA, oracle SS, single-locus regression, and forward se-
lection.

Although we describe LLARRMA in the case-control
setting using the logistic model, it is easily extended
to the analysis of quantitative traits or any response to
which the LASSO can be applied. Similarly, although we
model under the simplistic assumption of additive effects
and no local epistasis, these assumptions could be re-
laxed by a more sophisticated specification of locus effects,
for example, using the group LASSO [Meier et al., 2008;
Yuan and Lin, 2006] or a similar structured penalization
scheme.

In summary, we describe an approach for characterizing
frequentist variability of model choice in binary data that
can be usefully applied to the reprioritization of SNPs in hit
regions of a case-control GWAS. The method uses LLAR-
RMA and integrates well with schemes for imputation of
missing data. The authors will provide an implementation
of LLARRMA an R-package R/llarrma as soon as is practi-
cable.
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