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Abstract
An exaggerated response to emotional stimuli is one of several symptoms widely reported by
veterans of the 1991 Persian Gulf War. Many have attributed these symptoms to post-war stress;
others have attributed the symptoms to deployment-related exposures and associated damage to
cholinergic, dopaminergic, and white matter systems. We collected event-related potential (ERP)
data from 20 veterans meeting Haley criteria for Gulf War Syndromes 1–3 and from 8 matched
Gulf War veteran controls, who were deployed but not symptomatic, while they performed an
auditory three-condition oddball task with gunshot and lion roar sounds as the distractor stimuli.
Reports of hyperarousal from the ill veterans were significantly greater than those from the control
veterans; different ERP profiles emerged to account for their hyperarousability. Syndromes 2 and
3, who have previously shown brainstem abnormalities, show significantly stronger auditory P1
amplitudes, purported to indicate compromised cholinergic inhibitory gating in the reticular
activating system. Syndromes 1 and 2, who have previously shown basal ganglia dysfunction,
show significantly weaker P3a response to distractor stimuli, purported to indicate dysfunction of
the dopaminergic contribution to their ability to inhibit distraction by irrelevant stimuli. All three
syndrome groups showed an attenuated P3b to target stimuli, which could be secondary to both
cholinergic and dopaminergic contributions or disruption of white matter integrity.
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1. Introduction
Many veterans returned from the 1991 Persian Gulf War with multiple symptoms, including
cognitive impairments, emotional disturbances, fatigue, loss of balance/dizziness, tremors/
shaking, headaches, joint pain, rashes, and sleep disturbance (Fukuda et al., 1998; Haley,
1997; Levine et al., 2006). These symptom complexes have been attributed to postwar stress
syndromes such as posttraumatic stress disorder (PTSD; Dlugosz et al., 1999; Gifford et al.,
2006; Gray et al., 1999; Lincoln et al., 2006; Stimpson et al., 2003), which can manifest with
many of the reported symptoms. However, the contention that PTSD per se underlies these
cognitive, psychological, and somatic symptoms has been challenged (Golier et al., 2007;
Haley, 1997). Other studies (e.g., Research Advisory Committee on Gulf War Veterans’
Illnesses, 2008) have attributed the psychological, somatic, and cognitive symptoms to the
results of deployment-related exposures. Both the studies that attribute the unexplained
symptoms to PTSD and those that attribute them to organic/physiological origins agree that
deployed veterans report more nonspecific symptoms than do those not deployed.

Hyperarousal is one of the symptoms widely reported by Gulf War (GW) veterans
(Thompson et al., 2004). An exaggerated response to emotional stimuli is not only a
principal marker of PTSD but is also observed among individuals with other anxiety
disorders (Erwin et al., 2006; Pillay et al., 2006; Ruscio et al., 2004; Sachs et al., 2004),
schizophrenia (Nakamura et al., 2003), and traumatic brain injury (Rapoport et al., 2002).

It is possible to assess hyperarousal by measuring objective, electrophysiological responses
to threatening stimuli by recording event-related potentials (ERPs) derived from scalp-
recorded electroencephalographic (EEG) data. A heightened ERP response to emotional,
threatening stimuli has been deemed indicative of a hyperarousal response (Stanford et al.,
2001). This type of response can be elicited by using threatening stimuli in an oddball
paradigm for eliciting the P3a ERP component (Courchesne et al., 1975). In a three-
condition oddball task, the target stimuli are presented approximately 20% of the time and
require a specific response from the subjects each time they detect a target stimulus. The
ERP component elicited by response to the target is a positive deflection occurring around,
or after, 300 ms after the onset of the stimulus and has been variably termed the target P3,
the P300b, or P3b. The standard nontarget stimuli are presented approximately 60% of the
time and require a standard response or no response. The nontarget distractors are novel
stimuli that are presented the remaining 20% of the time. The subject gives the same
response to these stimuli as to the standard nontarget stimuli. ERP responses to the nontarget
distractor show a positive deflection with a peak latency shorter than that of P3b, and is
called a P300a or P3a. P3b has been proposed to reflect the intentional allocation of
attentional resources to a target to which a subject responds, whereas P3a indexes an
involuntary capture of attention (Friedman et al., 2001). A P3a response to trauma-related
distractors that is greater than the P3b response to target stimuli has been considered a
marker of a hyperaroused response or biased attention toward those stimuli in PTSD (Karl et
al., 2006).

In addition to the P300 responses, ERP components that index pre-attentional processes are
of value in evaluating hyperarousal. The auditory P1, or P50, component, a positive
deflection occurring 40–80 ms after sound onset, can be an indicator of hyperarousal, as it
has shown a heightened response in states of stress (Ermutlu et al., 2005), and has been
associated with the attentional difficulties and anxiety experienced in Huntington’s disease
(Uc et al., 2003), irritable bowel syndrome (Berman et al., 2002; Blomhoff et al., 2001), and
PTSD (Gillette et al., 1997; Skinner et al., 1999). The heightened P1 has been attributed to
compromised inhibitory gating in the very early stages of auditory processing.
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Previous neuroimaging studies of veterans meeting criteria for Gulf War Illness have found
differences in brain systems that are contributors to the three ERP components described
above. Reduced neuronal integrity in basal ganglia associated with higher dopaminergic
activity has been indicated in Haley Syndromes 1 and 2 (Haley et al., 2000a, 2000b;
Meyeroff et al., 2001). Additionally, Syndrome 1 showed significantly lower choline-to-
creatine (Cho/Cr) ratio in basal ganglia (Haley et al., 2000b). The P3b to target stimuli has
been shown to have a large contribution from basal ganglia (Rektor et al., 2005) and to
exhibit an inverted-U relationship with dopamine level wherein both low and high
dopaminergic systems are associated with blunted P3b amplitudes (Ergen et al., 2008;
Galvan and Wichmann, 2008; Li et al., 2003). The dopamine system is also considered a
major contributor to the generation of the P3a component (Polich, 2007). Increased P3a
amplitudes have been associated with increased arousal such as in panic disorder (Clark et
al., 1996), which may be due to a dysregulated dopamine system (Nikolaus et al., 2010).
However, atypical dopaminergic systems such as Parkinson’s disease and restless leg
syndrome have also be associated with reduced P3a amplitudes (Poceta et al., 2006).

The cholinergic system has been shown to contribute to the early P1 and the later P3b. Both
the brainstem peduculopontine nucleus (PPN)-to-thalamus contribution to the P1 and the
hippocampal suppression of the P1 to repeated stimuli are mediated by cholinergic
projections (Adler et al., 1998; Reese et al., 1995). Acetylcholine (ACh) receptor agonist
administration has resulted in increased P3b amplitude (Münte et al., 1988) and ACh
receptor antagonist administration has resulted in decreased P3b amplitude (Hammond et al.,
1987; Meador et al., 1989). Disrupted cholinergic systems have been strongly associated
with GW Illness symptomology. Syndromes 2 and 3 tended to show exaggerated reactions
to the reversible cholinesterase inhibitor pyridostigmine bromide, which was used as an
anti–nerve-gas agent during the 1991 Gulf War (Haley et al., 1999). In response to the
cholinesterase inhibitor physostigmine, Haley Syndromes 2 and 3 showed changes in
regional cerebral blood flow (rCBF) in hippocampus that were significantly different from
that of controls and Syndrome 1 (Li et al., 2011) and showed reduced neuronal integrity in
brainstem as measured by N-acetylaspartate-to creatine (NAA/Cr) ratio (Haley et al.,
2000b).

The Research Advisory Committee on Gulf War Veterans’ Illnesses (2008) stated that
studies of GW veterans have indicated a PTSD rate of 3–6%, but whether the hyperarousal
reported by ill GW veterans is similar to PTSD or is secondary to the etiology of other GW-
related symptoms is less clear. In order to assess the hyperarousal symptom of GW illness,
we analyzed ERP data of 28 GW veterans during their performance of an auditory three-
condition oddball task where a lion roar and a gunshot were the threatening distractors. In
addition, each veteran received Clinician Administered PTSD Scale (CAPS) and Structured
Clinical Interview for DSM-IV (SCID) evaluations to assess for the presence of PTSD as a
contributing factor to the ERP differences.

Given the association of a heightened P3a to hyperarousal, the dopaminergic contribution to
this component, and the dopamine system dysregulation observed in the syndrome groups,
we hypothesized that the P3a amplitude to threatening distractors would be higher in the ill
GW veterans than in the controls. Given that the P3b receives contribution from
dopaminergic and cholinergic systems, both of which have shown dysfunction in GW
Illness, we hypothesized that the P3b to target stimuli would be lower in all syndrome
groups, especially among the veterans meeting criteria for Haley Syndromes 1 and 2. We
also hypothesized that the early P1 component would be higher especially in the veterans
meeting criteria for Haley Syndromes 2 and 3, given the brainstem, hippocampal, and
cholinergic differences observed in these groups. We used analyses of variance followed by
three non-orthogonal contrasts to inform these hypotheses: Controls compared to Syndromes
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1, 2, and 3; Controls and Syndrome 3 compared to Syndromes 1 and 2; and Controls and
Syndrome 1 compared to Syndromes 2 and 3.

2. Method
2.1. Participants

The participants were 28 male veterans who had been deployed during the 1991 Persian
Gulf War. Twenty of these met the Haley et al. (1997; 2000a) criteria for one of the
syndromes of GW Illness. Six met criteria for GW Syndrome 1, which is associated with
impaired cognition, marked by memory problems, confused thought, distractibility, and
fatigue. Eight were identified as Syndrome 2, which is associated with more debilitating
neurocognitive issues—confusion, word-finding and reasoning difficulties, emotional
lability—and balance problems such as frequent stumbling and vertigo. Six were identified
as Syndrome 3, which is generally associated with somatic complaints such as fatigue, joint
and muscle pain, weakness, and numb or tingling extremities. The remaining eight veterans
who remained well served as controls. The control group ranged in age from 51 to 76 years
(M=61.6, SD=7.58), Syndrome 1 from 47 to 60 years (M=53.17, SD=5.38), Syndrome 2
from 56 to 73 years (M=63.75, SD=7.05), and Syndrome 3 from 47 to 63 years (M=53.833,
SD=6.85). All participants had served in the same construction battalion of the United States
Naval Reserve during the 1991 Persian Gulf War and had participated in prior studies of
GW syndrome (Haley et al., 1997, 2000a, 2000b; Iannacchione et al., 2011). The subjects
were housed and monitored at The University of Texas Southwestern Medical Center’s
Clinical and Translational Research Center in 2008 and 2009, and underwent a week-long
multi-modal neuropsychological, neuroimaging, and biomarker study. An audiometric
examination was performed on each veteran. An analysis of variance showed that there were
neither main effects of syndrome group or ear nor an interaction on pure-tone average
thresholds, p>.31. All subjects gave written informed consent according to a protocol
approved by the university’s institutional review board.

2.2. Hyperarousal Ratings
We evaluated hyperarousal using a subset of items from the Mississippi Scale for Combat-
Related PTSD (Keane et al., 1988), administered to each veteran as part of their
psychological evaluation during their week-long participation in this study. Five doctoral-
level clinicians agreed on seven items (item nos. 16, 20, 21, 25, 30, 31, and 34) that were
most representative of hyperarousal. Internal consistency reliability for the seven-item
subset was high (Cronbach’s α = .88). Only 4 of the 20 ill veterans (two from the Syndrome
1 group, one from Syndrome 2, and one from Syndrome 3), and none of the controls, had
been diagnosed with PTSD by psychiatrist’s or psychologist’s clinical interview following a
structured interview technique (SCID).

2.3. Task Stimuli
The stimuli for the auditory task consisted of four 500-ms sounds sampled at a rate of 22050
Hz with 16-bit amplitude resolution. A 1000-Hz square wave tone served as the frequent
nontarget stimulus and represented 54% of the 224 trials. A 250-Hz square wave tone served
as the target stimulus, which was presented for 18% of the trials. The sound of a gunshot
(14% of the trials) and the sound of a mountain lion roar (14% of trials) served as the
threatening distractor stimuli. The root-mean-squared amplitudes of all four sounds were
digitally equated.

The stimuli were presented every 2 seconds from two speakers positioned approximately 1
meter in front of the subject. Each participant was assigned to one of six randomized
sequences of the 224 stimulus presentations. Intensity was adjusted to a level that was
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reported as audible and comfortable for each subject. Each subject sat in a comfortable chair
in a soundproof booth and was told to keep his eyes open during the task.

2.4. Procedure
After the participants were fitted with the electrode cap and prior to the beginning of the
task, they were shown and read the written instructions and were allowed to have their
questions answered. The participants heard examples of the target low (250-Hz) tone and
frequent high (1000-Hz) tone and were instructed to press the response button under their
right middle finger for the low tone and to press the response button under their right index
finger for all other sounds. The response buttons interfaced with Stim2 (Compumedics
Neuroscan) software, which recorded the accuracy of the responses and their reaction times.
A time-locked mark of each stimulus onset and response was recorded on the continuous
EEG.

The subject was not informed that any of the stimuli would represent threatening
circumstances. At the beginning of the task, the first stimulus was an aural repetition of the
instructions the subject had learned prior to the beginning of the task.

2.5. EEG Acquisition
EEG activity was recorded via a 64-electrode array mounted within an elastic cap that was
placed on the participant’s head. Electrodes placed at the superior and inferior orbital
margins monitored blinks and vertical eye movements. The reference electrode was located
near the vertex and the APZ electrode served as the ground electrode. Impedance for each
electrode did not exceed 10 kΩ as measured before the beginning of the task.

The EEG was recorded using a Neuroscan Synamps2 amplifier at a 1000-Hz sampling rate.
Data from the continuous EEG were high-pass filtered at .15 Hz and were re-referenced to
the global mean amplitude. Blink artifacts were filtered from the continuous EEG file by
using a spatial filter process in the Scan 4.4 Edit (Compumedics Neuroscan) software. From
each participant’s continuous EEG, 224 1400-ms slices, or epochs, consisting of 200 ms
prior to the presentation of each stimulus through 1200 ms after the onset of each stimulus,
were used to create four averages: an average of the responses to the target tone, an average
of responses to the nontarget tone, and the same for the responses to the lion roar and to the
gunshot. Each average consisted of epochs that had been baseline-corrected based on the
200-ms prestimulus data and low-pass filtered at 20 Hz.

3. Results
3.1. Hyperarousal Scores

An analysis of variance (ANOVA) where the hyperarousal subscore from the Mississippi
Scale for Combat-Related PTSD (Keane et al., 1988) was the dependent variable and GW
Illness syndrome group (control, Syndrome1, Syndrome2, Syndrome3; Haley et al., 1997)
was the between-subjects factor indicated a significant effect of GW Illness group on
hyperarousal scores, F(3, 24) = 10.601, MSerror= 26.217, p = .0001, η2=.570. Pairwise
comparisons showed that the control group’s hyperarousal scores were significantly lower
than scores from each of the ill veteran groups, p<.0007 (p< .0042, Bonferroni-corrected).
See Figure 1.

3.2. Event-related potentials
3.2.1. P1 Component—The P1 component was defined as the most positive point in the
event-related potential average from the frontal midline electrode (FZ) in the interval
between 30 and 75 ms after the onset of the auditory stimulus. The amplitude and latency
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measures were used as the dependent variables in two mixed ANOVAs where GW Illness
syndrome group was the between-subjects factor and condition (target tone, nontarget tone,
gunshot, lion roar) was the within-subjects factor. Three non-orthogonal contrasts were also
computed to inform our research questions regarding the contributions of the overall effect
of GW Illness (Contrast 1: Controls vs. Syndromes 1, 2, and 3), the basal ganglia/
dopaminergic dysfunction in Syndromes 1 and 2 (Contrast 2: Controls and Syndrome 3 vs.
Syndromes 1 and 2), and the brainstem, cholinergic, and hippocampal dysfunction observed
in Syndromes 2 and 3 (Contrast 3: Controls and Syndrome 1 vs. Syndromes 2 and 3). An
alpha level of .0166 was used to determine the significance of these contrasts. Age predicted
P1 amplitude (β =.264, p = .005) and latency (β =.204, p = .031) and was used as a covariate
in the analyses. There was an effect of GW Illness syndrome group on age (F(3, 24) = 4.239,
MSerror= 47.043, p = .0154, η2=.346) but this effect was not significant in any of the
contrasts (p > .12).

There was a significant main effect of GW Illness syndrome group on P1 amplitude, F(3,
23) = 3.509, MSerror= 2.021, p = .031, η2=.171. Only Contrast 3, comparing Syndromes 2
and 3 to Controls and Syndrome 1, was significant, F(1, 23) = 9.915, p = .004. There was no
main effect of condition on P1 amplitude, F(3, 69) = 1.630, MSerror= .617, p = .19. A very
strong trend toward an interaction between group and condition was indicated, F(9, 69) =
3.509, MSerror= .617, p = .050, η2=.09. We used three orthogonal single-df interaction
contrasts to test whether the groups differed in their mean change between distractor stimuli
(gunshot and lion roar) and task-relevant stimuli (target and nontarget tones): (a) comparing
controls to Syndromes 1, 2, and 3; (b) comparing Syndromes 2 and 3 to Syndrome 1; and (c)
comparing Syndrome 2 to Syndrome 3. Only the second contrast was significant, p = .0006
(p=.0018, Bonferroni-corrected). The mean increase in P1 amplitude from distractor to tone
stimuli for the Syndrome 1 group was significantly different from the mean decrease in P1
amplitude observed in Syndromes 2 and 3. This pattern of P1 mean amplitudes is shown in
Figure 2.

There was also a main effect of syndrome group on P1 latency, F(3, 23) = 7.416, MSerror=
115.830, p = .001, η2=.246. Only Contrast 3, comparing Syndromes 2 and 3 to Controls and
Syndrome 1, was significant, F(1, 23) = 22.025, p = .0001. Syndromes 2 and 3 showed
longer mean P1 latencies. This pattern of P1 mean latencies is shown in Figure 3. There was
no effect of condition on P1 latency, F(3, 69) = 1.467, MSerror= 69.327, p = .231, nor was
there an interaction, F(9, 69) = 7.416, MSerror= 115.830, p = .988.

3.2.2. P3 Components—The gunshot and lion roar distractors were both included in the
task in order to evaluate whether the hyperarousal (measured with the P3a) to war-related
(gun) stimuli was higher than hyperarousal to less war-related (lion) distractor stimuli, as
would be expected in PTSD patients. There was, however, no difference between the P3a
responses to the gun and lion stimuli nor was there an interaction between distractor
stimulus type and group, p>.273. Thus both distractors were collapsed into one level. The
auditory task ERP data showed the P3a response to the threatening distractor stimuli
(response to the lion and gun stimuli) to be maximal at right frontal electrode F4, and the
P3b to the target tone stimuli maximal at the right centroparietal electrode CP2. This
predominantly right distribution is typical in nonverbal sound tasks (e.g., Kayser et al.,
1998; Tillman, 2010). The P3a peak amplitude chosen from each participant’s ERP average
of their responses to the distractor stimuli was defined as the most positive point in the ERP
average from right frontal electrode F4 in the interval between 245 and 400 ms after the
onset of the distractor stimulus. The P3b peak amplitude was defined as the most positive
point in the ERP average to the target tone from right centroparietal electrode CP2 in the
interval between 350 and 800 ms after the onset of the target stimulus.
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Amplitude and latency measures for the P3a to distractor stimuli and the P3b to target
stimuli were used in four separate analyses of variance where syndrome group was the
between subjects variable. The same three contrasts that were computed to define
differences in P1 amplitude and latency were used in the analysis of the P3a and P3b
components. An alpha level of .0166 was used to determine the significance of these
contrasts. Age showed a trend toward a linear relationship with the amplitude of the P3a (β
=.343, p = .074) and of the P3b (β =.332, p = .084), consistent with previous studies (e.g.,
Goodin et al., 1978; Mueller et al., 2008); thus, age was used as a covariate in the analyses.

3.2.2.1. P3a: Mean P3a amplitudes from each syndrome group are shown in Figure 4. The
one-way between-subjects ANOVA showed an effect of syndrome group on P3a amplitude,
F(3, 23) = 4.700, MSerror= 1.188, p = .011, η2=.060. Only Contrast 2, comparing Syndromes
1 and 2 to Controls and Syndrome 3, was significant, F(1, 23) = 11.172, p = .003.

There was no omnibus effect of GW Illness syndrome group on P3a latency, F(3, 23) =
1.775, MSerror= 441.372, p = .18, nor were any of the contrasts significant.

3.2.2.2. P3b: An ANOVA revealed an effect of GW Illness syndrome group on P3b
amplitudes, F(3, 23) = 5.287, MSerror= 4.020, p = .006, η2=.169. Only Contrast 1 was
significant (F(1,23) = 14.316, p = .001), indicating an overall effect of GW Illness (Figure
5).

There was no omnibus effect of GW Illness syndrome group on P3b latency, F(3, 23) =
1.959, MSerror= 15016.08, p = .148, nor were any of the contrasts significant.

3.3. Behavioral Data
Percent correct and reaction times were used as dependent variables in two separate
ANOVAs where GW Illness syndrome group was the between-subjects factor and condition
was the within-subjects factor. The mean reaction times are depicted in Figure 6. There was
a main effect of syndrome group on reaction time, F(3, 24) =3.323, MSerror=38407.416, p=.
0367, η2=.237. Only Contrast 2 was significant (F(1, 23) = 9.509, p =.005), indicating that
mean reaction times of Syndromes 1 and 2 were significantly longer. There was also a
significant main effect of condition on reaction time, F(3, 72) =12.609, MSerror=12352.248,
p<.0001, η2=.2896. Correct responses both to the gun shot and to the nontarget tone were
significantly faster than responses both to the lion roar and to the target tone, p<.003 (p= .
018, Bonferroni-corrected). The test for interaction between GW Illness syndrome group
and condition was also significant, F(9, 72) =2.310, MSerror=12352.248, p=.0242, η2=.159.
We examined the nature of this interaction using the same three orthogonal single-df
interaction contrasts as were used to examine the interaction effect on P1 amplitudes. The
second contrast was significant, p=.011 (p=.034, Bonferroni-corrected). The mean reaction
times for distractor stimuli (gunshot, mountain lion) are shorter than for task-relevant stimuli
(tones) in the Syndrome 1 group, but the opposite is true for Syndromes 2 and 3, whose
mean reaction times for distractor stimuli are longer than for task-relevant stimuli. When an
outlier from the Syndrome 1 group was removed from the analysis, the nature and
significance of the interaction remained.

There was an effect of condition on accuracy, F(3, 72) =4.736, MSerror=.081, p=.0045, η2=.
0649. Post hoc comparisons showed that this was due solely to a significantly lower correct
response rate to the lion roar stimulus than to the nontarget tone stimulus, p=.0004. This is
depicted in Figure 7. There were no other main effects or interactions.
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4. Discussion
We found that those participants meeting the criteria for Haley syndromes 1–3 (Haley et al.,
1997), reported significantly more symptoms of hyperarousal than deployed controls. Our
hypotheses were only partially supported. The early P1 component amplitude was
significantly higher in those meeting criteria for Syndromes 2 and 3, especially in response
to the threatening distractor stimuli, but the Syndrome 1 group showed the opposite
response. Contrary to our hypothesis, the amplitude of the P3a to threatening stimuli in the
veterans meeting criteria for Syndromes 1 and 2, who reported high hyperarousal symptoms,
was significantly lower than the P3a amplitude of the veterans who served as controls. The
P3a amplitude of those meeting criteria for Syndrome 3 was similar to that of controls,
although Syndrome 3 veterans reported significant hyperarousal symptoms as well. The P3b
to target stimuli was significantly lower among all the ill veterans, rather than lower in only
Syndromes 1 and 2. Taken together, these data are consistent with there being at least two
possible sources of hyperarousal in GW Illness: dysfunction in the early sensory response
system indicative of inadequate filtering or habituation, seen more in Syndromes 2 and 3;
and dysfunction in later attentional control processes, seen more in Syndromes 1 and 2.

Although many questions remain addressing the nature of GW Illnesses and the nature of
hyperarousal as a strongly represented symptom of those illnesses, the ERP component
patterns observed among the syndrome groups here are quite compatible with previous
findings in imaging and self-report studies of GW veterans, especially with regard to
previously reported observations of dysfunction of the cholinergic system, damage to the
basal ganglia and dopaminergic system, and disruption of white matter integrity.

4.1. Cholinergic System
Many of the symptoms associated with GW Illness have been linked to agents that act on
cholinergic systems. Exaggerated reactions to the anti–nerve-gas agent pyridostigmine
bromide, a reversible cholinesterase inhibitor, were shown to be strongly associated with
Haley syndromes 2 and 3 (Haley et al., 1999). GW veterans with an R allele of the PON1
gene—who are less able to hydrolyze the cholinesterase inhibitors sarin, soman, and
diazinon—were more likely to have suffered severe pyridostigmine reaction and were more
likely to experience the neurological symptoms that mark GW Illness (Haley et al., 1999).
Additionally, Li et al. (2011) found abnormal hippocampal blood flow in all three syndrome
groups at baseline, but that Syndromes 2 and 3 showed an increase in rCBF in response to
physostigmine, whereas Syndrome 1 and controls showed a decrease. Pesticides, which
included cholinesterase-inhibiting organophosphate chemicals, were widely used by GW
troops to manage the pervasive insect problem. The insect repellent N,N-diethyl-m-
toluamide (DEET) and the insecticide permethrin were also widely used (Institute of
Medicine, 1995). It has been reported that in adult rats even low exposure to pyridostigmine
bromide, DEET, and permethrin, combined with stress, was associated with blood-brain
barrier disruption, neuronal death, decreased acetylcholine esterase activity, and decreased
acetylcholine receptor binding (Abdel-Rahman et al., 2004; Abou-Donia et al., 1996, 2004).

Importantly, target P3b amplitude, which was significantly reduced in the ill veterans in this
study, has been shown to be sensitive to changes in cholinergic activity. Decreased P3b
amplitude has accompanied impaired performance on memory tasks after the administration
of the muscarinic antagonist scopolamine (Hammond et al., 1987; Meador et al., 1989),
whereas the muscarinic receptor agonist WEB1881 FU (Nebracetam) has resulted in
increased P3b amplitudes (Münte et al., 1988). Irrespective of location of damage,
dysfunction in the acetylcholine system can contribute to the attenuated P3b amplitudes seen
in these GW veterans.
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The cholinergic system also contributes to the generation of the P1 potential (Buchwald et
al., 1991; Dickerson and Buchwald, 1991; Reese et al., 1995; Uc et al., 2003). Evidence has
accrued to support the significant contribution of cholinergic input from the
pedunculopontine nucleus (PPN) of the reticular activating system (RAS) to P1 amplitude
(see Reese et al., 1995). The overarching function of the brainstem RAS is to regulate
arousal; thus, Buchwald et al. (1991) concluded that the P1 reflects an aspect of mental
alertness. Many of the cholinergic projections from the PPN project to muscarinic receptor
populations (Dickerson and Buchwald, 1991) in many areas of thalamus (Reese et al., 1995),
including the intralaminar nuclei. The posterior intralaminar nucleus projects to amygdalae
(Ledoux et al., 1991), as part of the noncortical pathway for relay of coarse but possibly
survival-salient auditory information. The P1 is known to habituate to rapidly repeated
auditory stimuli in healthy subjects (Erwin and Buchwald, 1986), but this auditory sensory
gating has been found to be significantly attenuated in subjects with PTSD (Skinner et al.,
1999), schizophrenia (Siegel et al., 1984), Huntington’s disease (Uc et al., 2003), and
traumatic brain injury (Arciniegas et al., 200), all of which are associated with anxiety and
attentional difficulties. The suppression of the P1 to repeated auditory stimuli is mediated by
cholinergic projections to nicotinic receptors in hippocampus (Adler et al., 1998; Bickford et
al., 1993; Freedman et al., 1995; Luntz-Leybman et al., 1992), in which pathology has been
indicated in Syndromes 2 and 3 (Li et al., 2011). Syndromes 2 and 3, whose P1 amplitude
and latencies to especially the distractor stimuli showed higher values, also showed reduced
neuronal integrity in brainstem as measured by N-acetylaspartate-to creatine (NAA/Cr) ratio
(Haley et al., 2000b). Although significant brainstem dysfunction was not indicated in the
Syndrome 1 group (Haley et al., 2000b), report of deployment exposure to agents that act on
cholinergic systems and lower blood flow to hippocampus (Li et al., 2011) in Syndrome 1
may indicate small physiological changes that are more easily detected using
electrophysiology. Thus the high-amplitude P1, as seen in the Syndromes 2 and 3 groups, or
low-amplitude P1 of Syndrome 1, may indicate dysfunction of cholinergic PPN neurons,
thalamic muscarinic receptor sites, or hippocampal nicotinic-receptor–mediated cholinergic
mechanisms. Dysregulation of cholinergic activity in this brainstem area may also play a
role in the central pain (Haley et al., 2001) that has been used to identify Syndrome 3.
Antinociceptive effects are induced by acetylcholine binding to nicotinic receptors of the
PPN (Iwamoto, 1991; Iwamoto and Marion, 1993), but are known to be modulated by
several adrenergic, serotonergic, and muscarinic sites in spinal cord.

4.2. Basal Ganglia and Dopamine System
Basal ganglia and associated dopamine dysregulation may also be reflected in the ERP
patterns found in ill GW veterans. Acetylcholine is known to play a role in striatal function
(Calabresi et al., 2000; Bonsi et al., 2011) and in modulating dopaminergic activity (Exley
and Cragg, 2008), which in turn modulates acetylcholine activity (Aosaki et al., 2010;
Deboer et al., 1996). Thus, dysfunction in either system can result in dysfunction in the
other. Magnetic resonance spectroscopy (MRS) studies measuring N-acetylaspartate-to-
creatine (NAA/Cr) ratio showed evidence of reduced neuronal integrity in basal ganglia in
Haley GW Syndromes 1 and 2), and that lower NAA/Cr ratio in left basal ganglia was
closely associated with higher dopaminergic activity (Haley et al., 2000a, 2000b; Meyeroff
et al., 2001). The basal ganglia choline-to-creatine (Cho/Cr) ratio was significantly lower in
the Syndrome 1 group (Haley et al., 2000b). In an investigation of neural contributors to the
target P3 (Rektor et al., 2005), intracranial recordings from motor cortices and the basal
ganglia, made while subjects performed auditory and visual oddball tasks, demonstrated
significantly higher target P3b amplitude in basal ganglia than in cortical areas, indicating a
prominent role for these deep gray matter structures in the generation of the target P3b.
Dopamine has been implicated in P300 amplitude variance, in that systems with both low
dopaminergic activity, such as in Parkinson patients (Galvan and Wichmann, 2008), and
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high activity, such as schizophrenia (Howes and Kapur, 2009), show decreased P3b
amplitudes (Ergen et al., 2008; Li et al., 2003).

Polich (2007) concluded that the dopamine system is the most important contributor to P3a
generation. Reduced P3a amplitudes have been associated with atypical dopaminergic
systems (Bonsi et al., 2011; Connor et al., 2009; Sagvolden et al., 2005; Toda and Abi-
Dargham, 2007), such as those of persons with schizophrenia (Merrin and Floyd, 1994),
restless leg syndrome or Parkinson’s disease (Poceta et al., 2006), attention-deficit/
hyperactivity disorder (Kemner et al., 1996), and the met/met allelic variant of the catechol-
O-methyltransferase (COMT) gene (Marco-Pallarés et al., 2010). Each of these syndromes
is also marked by anxiety and/or poor emotional regulation (Anastopoulos et al., 2010;
Drabant et al., 2006; Laviolette, 2007; Sevim et al., 2004; Stocchi and Brusa, 2000),
generally interpreted to be due to inefficient inhibitory mechanisms.

That a reduced P3a is attributable to inefficient inhibition is consistent with many
interpretations of the nature of the P3 response to novel or distractor stimuli. The P3a has
been assumed to represent an involuntary capture of attention to or processing of deviant
stimuli, but the complex nature of the P3a component is still being assessed (Friedman et al.,
2001; Goldstein et al., 2002; Polich, 2007). Goldstein et al. (2002) posited that detection of
rare or deviant stimuli by preconscious mechanisms may initiate several processes—as may
be indicated by the multiple contributors to P3a generation (Alho et al., 1998; Baudena et
al., 1995; Dien et al., 2003; Elting et al., 2008; Knight, 1984, 1996)—whose purpose is to
generate the appropriate response to the deviant stimulus. At any point in this cascade of
initiated processes, correct identification of the stimulus and task relevance information
requires the active inhibition of further processing, no matter the emotional salience of the
deviant stimulus. Polich (2007) described and distinguished the P3a, novelty P3, and NoGo
P3 but concluded that the three components are most likely variations of the same
component, and that inhibition may be the underlying process. A reduced NoGo P3
amplitude is associated with impaired inhibition, or high false-alarm rate, on a Go-NoGo
task. Children with ADHD (Jonkman et al., 2003; Spronk et al., 2008), patients with
schizophrenia (Weisbrod et al., 2000), and symptomatic GW veterans (Tillman et al., 2010)
have all shown high false-alarm rates and low NoGo P3 amplitudes.

Whereas the enhanced P3a in PTSD presents a scenario where considerable effort—as
indicated by overactivity in the ventrolateral prefrontal cortex (PFC; Fassbender et al., 2004;
Morey et al., 2009)—is exerted in the need to inhibit further processing of emotional but
task-irrelevant stimuli, individuals with ADHD or schizophrenia show less ventrolateral
PFC activation (Kaladjian et al., 2011; Stevens et al., 2007) and a blunted P3a (Jonkman et
al., 2003; Merrin and Floyd, 1994; Spronk et al., 2008), but considerable distraction by
novel stimuli and poor behavioral inhibition. We suggest that GW veterans with the reduced
P3a amplitude are more similar to patients with syndromes marked by anomalous dopamine
systems than to those with PTSD in that the GW veterans’ heightened distraction by novel
stimuli is due less to a greater need to inhibit and more to a compromised ability to inhibit
due to dysfunction in dopaminergic systems. The robust P3a seen in the ERPs of the
deployed controls, who have significantly lower hyperarousal scores, may indicate the
successful inhibition of the further processing of alerting but task-irrelevant stimuli.

Although the PPN both receives and sends input from dopaminergic areas of basal ganglia
(see Reese et al., 1995, for a review), few studies have reported a specific dopaminergic
contribution to P1 generation. Thus, as revealed by the current auditory oddball task,
veterans meeting criteria for Syndromes 1 and 2 seem to be more affected by basal ganglia/
dopamine dysregulation than those meeting criteria for Syndrome 3. This is consistent with
the findings of greater dysregulation in basal ganglia and altered dopaminergic activity
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among Syndromes 1 and 2, whereas Syndrome 3 demonstrated greater brainstem
dysfunction (Haley et al., 2000a, 2000b; Meyerhoff et al., 2001).

4.3. White Matter Integrity
Another plausible etiology of the P3b findings is disruption of white matter integrity.
Reductions in white matter volume in GW veterans have been shown to be significantly
correlated with the amount of sarin exposure (Heaton et al., 2007). Using data from MRI
and ERPs recorded during a visual three-stimulus oddball task, Cardenas et al. (2005) found
that P3a latency variability was not related to brain structural integrity; however, P3b
latency variability was related chiefly to white matter volume and not to gray matter factors.
These results imply that the connectivity between generators rather than solely the
generators themselves influences the latency variability of the P3b. Latency variability,
which can occur with compromised white matter integrity, can account for differences in
amplitude and is especially prevalent in endogenous components such as the target P3b
(Spencer, 2005). All syndrome groups in the current study showed significantly reduced P3b
amplitude relative to controls.

4.4. Limitations
Limitations of this study include the possible confound of age, the unknown role of
depression, and too few subjects in each syndrome group limiting the power to perform all
pertinent post hoc comparisons. Additionally, although the findings from this study
correspond well to findings from previous non-ERP studies of ill GW veterans, the findings
need to be replicated in a more representative sample of the GW veteran population.
Although the mean ages of the controls and Syndrome 2 group were higher than the mean
ages of the Syndrome 1 and Syndrome 3 group, this difference was not significant in any of
the contrasts that were used to examine the omnibus effects. In addition we used age as a
covariate in all the analyses. Depression is considered a major symptom in the clusters
identified by Haley et al. (1997, 2001) and Fukuda et al. (1998). In this study there was a
significant difference in the distribution of depression diagnoses across group ((χ2=16.156,
p=.0011, Cramer’s V = .76), in that only one of the controls was SCID-diagnosed as
depressed and only two of the 20 ill veterans were not diagnosed as depressed, a disparity
that precluded using depression diagnosis as a factor in the analyses. Studies examining the
effects of depression on the amplitude and latency of ERP components show conflicting
results, which have be attributed to depression type, task paradigm, and task difficulty
variances (Bruder et al., 2012). In general, both the P3a and P3b tend to be attenuated in
depressed patients and tend to show longer latencies in those with melancholic or bipolar
depression. Both components were attenuated in the Syndrome 1 and Syndrome 2 groups
and the P3b was attenuated in the Syndrome 3 group in this study, but the latencies were not
different from those of controls. Assessing how depression contributed to the lower
amplitudes, toxic exposure contributed to the depression and to the P3 attenuations, or both
will require further study.

4.5. Conclusion
In summary, Gulf War veterans meeting criteria for Haley Syndromes 1–3 indicated
significantly higher hyperarousal rates than controls. The heightened early P1 amplitudes
observed in Syndromes 2 and 3 suggest that the hyperarousal symptoms in these two
syndrome groups may be at least partially due to an early over-response to or an under-
inhibition of incoming auditory stimuli, likely indicative of brainstem cholinergic
dysfunction. This is consistent with the findings of lower NAA/Cr ratios in brainstem, the
report of more negative reactions to pyridostigmine bromide (Haley et al., 2000a), and
abnormal increase in hippocampal rCBF in Syndromes 2 and 3 (Li et al., 2011). The
attenuated P3a amplitudes observed in Syndromes 1 and 2 suggest that dysfunction of the
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dopaminergic contribution to later inhibitory mechanisms may be a greater contributor to
their hyperarousal symptoms. This is consistent with the lower NAA/Cr and Cho/Cr ratios in
basal ganglia and associated dopamine system dysfunction in Syndromes 1 and 2 (Haley et
al., 2000a, 2000b). The P3b response, which has dopaminergic, cholinergic, and white
matter contributions, was attenuated in all three syndrome groups.

Dysfunction in the basal ganglia or white matter, or in the dopaminergic or cholinergic
neurotransmitter systems have most likely contributed to the anomalous P1 amplitudes,
insufficient P3a responses to threatening stimuli, and even more reduced P3bs to target
stimuli in ill GW veterans. The dysfunction associated with these etiologies is consistent
with neurotoxic exposure in these subjects resulting in the neurobiologic disruptions. Each
of these plausible dysfunctions has neurotoxicological etiologies that have been linked to
specific agents these veterans were exposed to during the GW.
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Highlights

• Hyperarousal is more prominent in ill veterans than in control veterans.

• Syndromes 2 and 3 show stronger auditory P1 amplitudes, indicating inhibitory
gating issues.

• Syndromes 1 and 2 show weaker P3a, suggesting dysfunction in inhibition to
distraction.

• Ill veterans show reduced P3b, possibly secondary to cholinergic, dopaminergic,
and/or white matter damage.

• Each dysfunction has etiologies that can be linked to neurotoxic exposure during
the Gulf War.
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Figure 1.
Mean hyperarousal scores of each of the ill veterans (Syndromes 1–3) were significantly
higher than the scores of the control veterans (p< .0007). Error bars indicate standard
deviation.
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Figure 2.
P1 amplitudes showed a main effect of syndrome group, p=.0154. Syndromes 2 and 3 P1
amplitudes were significantly higher, p=.004 (p = .012, Bonferroni-corrected). A strong
trend toward an interaction between syndrome group and stimulus condition (p=.050) was
due to Syndromes 2 and 3 showing a stronger response to the threatening stimuli whereas
Syndrome 1 showed a stronger response to the task-relevant stimuli (p=.035, Bonferroni-
corrected). Error bars indicate standard deviation.
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Figure 3.
P1 peak latencies showed an effect of syndrome group, p = .001. Syndromes 2 and 3 were
significantly longer than those of controls and Syndrome 1, p= .0001 (p =.0003, Bonferroni-
corrected). Error bars indicate standard deviation.
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Figure 4.
P3a mean amplitudes to distractor stimuli showed an effect of syndrome group, p = .011.
Mean amplitudes of Syndromes 1 and 2 were significantly lower than those of controls and
Syndrome 3, p = .003 (p = .009, Bonferroni-corrected). Error bars indicate standard
deviation.
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Figure 5.
P3b mean amplitudes to target stimuli showed an effect of syndrome group, p = .006. Mean
amplitudes of the ill veteran groups were significantly lower than those of controls, p = .001
(p = .003, Bonferroni-corrected). Error bars indicate standard deviation.
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Figure 6.
Mean reaction times grouped by syndrome group. There was a significant main effect of
syndrome group on reaction time, p = .0367. Syndromes 1 and 2 mean reaction time was
longer than those of controls and Syndrome 3, p = .005 (p = .015, Bonferroni-corrected).
Stimulus condition also had a main effect on reaction times, p < .0001. Responses to both
the gun shot and the nontarget tone were faster than responses to mountain lion and target
tone stimuli, p < .003 (p<.018, Bonferroni-corrected). An interaction between syndrome
group and stimulus condition was also indicated, p = .0242. Mean reaction times for
distractor stimuli (gunshot, mountain lion) are longer than those for task-related tones for
Syndromes 2 and 3, whereas the opposite is seen in Syndrome 1, p=.011 (p=.034,
Bonferroni-corrected). Error bars indicate standard deviation.
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Figure 7.
Accuracy rates grouped by stimulus condition. There was a significant effect of stimulus
condition on accuracy (p = .0045) due solely to the difference between the percent correct
responses to the lion stimulus and percent correct response to the nontarget stimulus, p = .
0004 (p = .0012, Bonferroni-corrected). Error bars indicate standard deviation.
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