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ABSTRACT

Age-related macular degeneration (AMD) is the primary cause of
vision loss in elderly people of western European ancestry. Genetic,
dietary, and environmental factors affect tissue concentrations of
macular xanthophylls (MXs) within retinal cell types manifesting
AMD pathology. In this article we review the history and state of
science on the putative role of the MXs (lutein, zeaxanthin, and
meso-zeaxanthin) in AMD and report findings on AMD-associated
genes encoding enzymes, transporters, ligands, and receptors affect-
ing or affected by MXs. We then use this context to discuss emerg-
ing research opportunities that offer promise for meaningful
investigation and inference in the field. Am J Clin Nutr 2012;96
(suppl):1223S-33S.

INTRODUCTION

The dietary carotenoids lutein [(3R,3'R,6'R)-3,¢-carotene-
3,3’-diol] and zeaxanthin [(3R,3'R)-3,B-carotene-3,3’-diol] are
primary constituents of macular pigment (1, 2) and have been
examined for their effect on health and disease of the retina
for >200 y (3-5). These 2 nutrients and meso-zeaxanthin
[(3R,3'S)-B, B-carotene-3,3"-diol], a metabolite of lutein (6),
are known collectively as macular xanthophylls (MXs)’. Bi-
ological plausibility of MX-retinal disease relations exists be-
cause these compounds exhibit the following characteristics: 1)
intake-dependent and -modifiable accretion to the retina, 2)
preferential concentration and localization in retinal cells man-
ifesting retinal pathology, and 3) biophysical and biochemical
capacity to affect processes implicated in pathogenesis and
progression of retinal diseases.

A number of large-scale human studies on age-related macular
degeneration (AMD), the primary cause of irreversible retina-
based visual impairment in elderly people of western European
ancestry (7-9), showed AMD-nutrient relations with MX status
and intake (10-17). Bird (18) and Ambati et al (19) provided
details on the pathogenesis and pathophysiology of AMD.
Atrophic and confluent degeneration of retinal pigmented epi-
thelium (RPE) cells and adjacent photoreceptors is known as
geographic atrophy (or “dry” AMD). An estimated 1.7 million
(1.5%) US residents are living with advanced AMD (AAMD, ie,
geographic atrophy and/or neovascular AMD). Choroidal neo-
vascularization is the hallmark of “wet” or neovascular AAMD,
a condition characterized by florid sub- and trans-RPE pro-
liferation of new vessels from the choriocapillaris. A series of
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photographs (http://www.nei.nih.gov/photo/) and dynamic ren-
derings of AMD progression (www.nei.nih.gov/photo/eyedis/
VAO4.mov) are available from the National Eye Institute.

In the primate retina, high concentrations of MXs exist within
areas manifesting susceptibility to light damage and metabolic
challenge. The laminar concentration and topographic distribu-
tion of MXs may explain how the human retina is typically
capable of handling extreme physical and biochemical exposures
without appreciable loss of function for =6 decades; even in
people with AAMD, remarkable resilience of the MX-rich areas
is sometimes seen. Bone et al (20) stated that “in the advanced
form of AMD known as geographic atrophy, the foveal center,
which contains the highest concentrations of lutein and zeax-
anthin, tends to be spared until late in the course of the disease.”
The phenomenon of foveal sparing in MX-dense regions has
also been observed in a number of inherited macular diseases
(21).

MODERN HISTORY OF RESEARCH ON THE ROLE OF
MXs IN HEALTH AND DISEASE OF THE RETINA

At least 200 y of clinical observation and research on macular
pigment preceded the 1980 report of Malinow et al (22) that
described an absence of retinal MXs and associated RPE defects
in macaque monkeys fed a MX-free diet across their life span. We
refer the interested reader to an extensive scholarly review of the
field published in 1981 by Nussbaum et al (3) and to works
including early historical references (4, 5). A chronology of key
findings from reports that applied biochemical analyses of retinal
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MXs is shown in Table 1, starting with the 1984 works by
Snodderly et al (23, 24) on MX spatial distribution and ab-
sorption properties in the primate retina and subsequent work by
Bone et al (1), which identified lutein and zeaxanthin as the
major chromatographically separable components of macular
pigment. The first evidence of MX-AMD relations in large-
scale, well-phenotyped multicenter human cohorts emerged in
the early 1990s from observational studies by Seddon et al (11),
Mares-Perlman et al (36), and the Eye Disease Case-Control
Study Research Group (37). Around this time, Bone et al (38)
applied mass spectroscopic methods to determine the stereo-
chemistry of macular pigment, thus providing information with
which to model the biophysical properties of MXs in mem-
branes. Conceptual frameworks for MX-AMD research have
evolved from international congresses convening over the past
20 y (39-41) and from progressive reviews (4, 23, 24, 28, 42—
50). Results from randomized, double-masked, placebo-
controlled trials on MXs and visual function emerged in the
mid-2000s (51, 52). In the largest of these, Richer et al (51)
reported significant improvements in visual acuity among
participants randomly assigned to receive 10 mg lutein/d for 12
mo. The Age-Related Eye Disease Study 2 (www.areds2.org)
and the Carotenoids and Co-Oxidants in Age-Related Macul-
opathy Study (53) are large-scale trials designed to examine
structural and functional retinal response to MXs in people
with AMD.

CHEMICAL STRUCTURE OF MXs

MXs are dipolar dihydroxy carotenoids, existing as structural
isomers and characterized by an internally symmetrical form with
a conjugated polyene chain and 2 terminally hydroxylated ionone
rings. Details on structures of MXs (C4oHs60;) and their me-
tabolites appear in Khachik et al (28) and Bernstein et al (54).
Two- and three-dimensional renderings may be accessed at
http://pubchem.ncbi.nlm.nih.gov/ (lutein, CID: 6433159; zeax-
anthin, CID: 5280899).

TABLE 1
Reports on biochemical analysis of MXs in primate retina’
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CORE CONCEPTS TO GUIDE TRANSLATIONAL
RESEARCH ON MX-AMD RELATIONS

Primates cannot synthesize lutein and zeaxanthin de novo (6,
22) and have adapted with a capacity for efficient MX uptake (26,
55), transport (56, 57), retention (20, 46, 58—60), and protection
(49) in the retina; the efficient operation of these processes may
be testimony to the physiologic significance of MXs in retinal
health and disease. Biological plausibility for protective actions
of MXs in AMD is supported by the following: /) MX structure
and natural biophysical properties (43), 2) specific accretion of
MXs to the retina from a pool of ~40 dietary (61) and ~ 15
circulating (62, 63) carotenoids, and 3) specific laminar and
topographic distribution (23, 24, 31, 32, 64) and unique mem-
brane disposition of MXs (65). A number of unifying concepts,
which are helpful in guiding the effort to determine how regu-
latory mechanisms and metabolic fate of MXs may affect MX-
AMD associations, have emerged over the past 2.5 decades.
These are as follows:

1) MX concentration is increased 1000- to 10,000-fold from
the circulation to the retina (43, 54) via active transport
mechanisms (43) involving specific binding proteins
(19, 21, 22, 60, 61).

2) MXs are selectively concentrated (48) and specifically dis-
tributed in the retina with optical detection limits at linear
distances out to 1.2-1.5 mm from the center of the fovea
and biochemical signals quantifiable out to ~4.0-5.8 mm
from this same area (4). Noninvasive in vivo imaging
technologies have been used to measure macular pigment
optical density (MPOD; a quantitative estimate of the
capacity of MXs to attenuate energy in the range of visual
blue light), topographic distribution, and membrane dis-
position of MXs (reviewed in references 54 and 66). MX
concentration is ~ 1 mmol/L in the human fovea (44) and
retinal concentrations can be 2 to 3 orders of magnitude
higher than those in other tissues (43, 67). The average
mass of lutein + zeaxanthin per unit retinal area is 1.33

First author (reference) Year Sample Key contributions

Snodderly (23) 1984 Monkey MP absorbance spectra and localization in primate
Snodderly (24) 1984 Monkey MP spatial distribution in primate retina

Bone (1) 1985 Human L and Z identified as major constituents of MP

Bone (25) 1988 Human L- and Z-specific distributions within the retina
Handelman (2) 1988 Human MX quantities accurately estimated in retina
Handelman (26) 1991 Monkey MX from fixed retina used for densitometry

Bone (27) 1997 Human L:Z ratio first plotted with retinal eccentricity

Khachik (28) 1997 Primate 3 major xanthophylls and 11 metabolites in retina
Bernstein (29) 1998 Human MX in vivo imaging method validated on biochemistry
Sommerberg (30) 1999 Human 25% of retinal carotenoids exist in rod outer segments
Rapp (31) 2000 Human MXs exist in rod outer segments in perifoveal region
Bernstein (32) 2001 Human Expanded analysis of MX concentration outside of retina
Bone (33) 2001 Human Retinal MXs lower in people with AMD (vs AMD-free)
Johnson (6) 2005 Monkey L is a dietary source of M-Z

Bhosale (34) 2007 Human M-Z distribution varies with age

Bhosale (35) 2007 Human MX concentrations higher in persons taking MX

supplements

! AMD, age-related macular degeneration; L, lutein; MP, macular pigment; MX, macular xanthophyll (lutein,
zeaxanthin, meso-zeaxanthin); M-Z, meso-zeaxanthin; Z, zeaxanthin.
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ng/rnm2 at the foveal center and 0.81 ng/mrn2 at an ec-
centricity of 1.6-2.5 mm (25). The highest concentrations
of MXs extend from the center of the fovea to ~0.10 mm
and decline exponentially thereafter. At 2.0 mm eccen-
tricity from the foveal center, biochemical analyses show
a 300-fold decrease in MX concentration; here, the in
vivo optical detection signal for MXs is negligible. Peak
MX concentration in all retinal layers exists at the foveo-
la. The Henle fiber layer (a region in the outer plexiform
layer of the central retina containing photoreceptor axons)
is the most densely MX-concentrated area per unit area in
the eye. In the parafovea, the next most concentrated area
is the inner plexiform layer (a region occupied by a neuro-
pil of cellular processes connecting interneurons and ret-
inal ganglion cells). MXs are detectable in appreciable
quantities in the outer retina within photoreceptor outer
segments (30, 31), albeit in relatively lower concentra-
tions than in the inner retina laminae. MX concentrations
are relatively lower in the O,-rich region of the outer
retina (photoreceptors and RPE) than they are in the
low partial pressure of O, environment of the inner retina
(layer of Henle and inner plexiform layer); however,
highly specific lutein-binding proteins are localized to
the metabolically active photoreceptor inner segment [re-
viewed in Bernstein et al (54)].

The distribution of total MXs within retinal laminae
varies with retinal eccentricity (25, 27, 44). With in-
creasing distance from the fovea, pigment concentrations
decrease most rapidly in inner retina layers. At ~0.4 mm
from the foveal center, the distribution of MXs shows
a relatively balanced distribution, with approximately the
same density of MXs in the nerve fiber layer as in most
other layers. The distribution of specific MXs varies with
retinal eccentricity; zeaxanthin and meso-zeaxanthin
dominate in the fovea with concentrations declining more
rapidly than those of lutein as the distance from the fovea
increases (25, 27). The lutein:zeaxanthin ratio at 0-5 is
~1.0:1.5; at 5-19°, ~1.5:1.0; and at 19-38", ~2.0:1.0 (a
1" angular subtense in the retina represents ~0.29 mm of
retinal extent]. Meso-zeaxanthin is virtually absent in the
human food supply and plasma; it is present at similar
concentrations to zeaxanthin in the foveola and has neg-
ligible signal outside of the fovea (55). The relatively
lower concentration of lutein within the central retina has
led to speculation that meso-zeaxanthin may be metab-
olized from oxidized lutein via a cone-photoreceptor—
specific enzyme (25, 27, 28, 44). In 2005 Johnson et al (6)
identified lutein as a dietary precursor of meso-zeaxanthin.

There is substantial interindividual variation in global
(4) and local (68-70) topographic macular pigment den-
sity (59, 71-73). Sharifzedah et al classified 5 major
patterns in the distribution of macular pigment in elderly
people with resonance Raman (74) and 2 wavelength au-
tofluorescence (75) imaging techniques: very low foveal
MPOD existed in 10% of those studied; 1 in 5 persons
showed a slightly enhanced foveal MPOD with extension
of MXs to eccentric regions; 1 in 3 persons expressed
a “sole, sharp, central distribution” of MPOD; 20% of
persons showed a dense foveal MPOD with a ring of

3)

4)

5)
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pigment surrounding this area; and 1 in 10 persons ex-
pressed a “uniform, laterally extended distribution” of
MPOD.

Membrane orientation and localization of MXs affects
cytoarchitectural stability, light filtering, and the capacity
to modulate oxidative stress in the retina (43, 65).

MXs show a capacity to affect processes implicated in
AMD pathogenesis, because they have been shown to

e interact with membrane-bound proteins (65, 76) and
lipids (65, 77) of the retina

e absorb-attenuate energy in the range of damaging am-
bient blue light (43, 78, 79)

e modulate oxidative stress and redox balance (80-87)
by scavenging oxidizing agents and re-reducing ox-
idized macromolecules (88), quenching triplet excited
states of photosensitizers (44), and neutralizing singlet
oxygen, peroxyl radicals, and nitric dioxide

e interact with key molecules in signal transduction
cascades (76, 89-91) inhibiting cell growth and stim-
ulating differentiation (92-94), transactivating nu-
clear receptors (92), antagonizing nuclear receptor
activation (95), influencing expression of connexin
genes (96, 97) acting in adhesion complexes to main-
tain cellular homeostasis (98), and binding immuno-
modulatory lipocalin proteins (76, 99).

Biochemical analyses (1, 2, 25, 27, 35) and in vivo im-
aging studies (54, 66) indicate that genetic (100, 101),
dietary (54, 102, 103), and environmental (102) factors
can affect MX tissue concentrations within retinal layers
and cell types manifesting pathology in AMD (4, 30,
31, 49, 54, 64). Points germane to these issues are as
follows:

e Serum and plasma MX concentrations vary directly
with dietary MX intake (104-112) and supplement
use (113, 114), according to most reports.

e Neuringer et al (103) and Johnson et al (6) used bio-
chemical and in vivo imaging methods to analyze
retinal tissue in rhesus monkeys receiving an MX in-
tervention to provide direct evidence that /) MX
supplementation late in life is capable of strongly
increasing retinal MX concentrations, even after “nu-
tritional deprivation”, and 2) lutein is a dietary
source of meso-zeaxanthin. This in vivo primate
model also was used to examine the effect of MX
intake on the retinal vulnerability to acute photo-
chemical damage induced by small-spot exposures
of coherent light at 476 nm (115). Rhesus monkeys
were fed a lifelong MX-free diet, and at the start of
the study had no MXs detected biochemically in
serum or adipose tissue or by reflectometry in the
retina. The absence of retinal MX was confirmed
biochemically in post mortem samples (6). Dietary
supplementation with either pure lutein or zeaxan-
thin for 6-24 mo brought retinal MXs to concentra-
tions similar to or higher than those of animals
receiving dietary MXs across their life spans (6).
After ~6 mo of MX supplementation, the animals
showed reduced amounts of ophthalmoscopically de-
termined damage within the fovea, compared with
measurements made before supplementation (115).
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The degree of foveal damage in the supplemented
animals was similar to that of animals fed since birth
on a standard laboratory-based diet containing MXs
and significantly less than that of a comparison group
maintained on the MX-free diet. Furthermore, in
both the standard diet controls and the supplemented
animals, the foveal region showed less damage than
the parafoveal region located at 1.5 mm (~6) ec-
centricity, outside the area of detectable MPOD,
whereas before supplementation no such foveal pho-
toprotection was found. No differences due to MX
status or supplementation were seen in the paraf-
oveal region beyond the area of dense macular
pigment.

Biochemical measurement of retinal response to MX
intake exists from post mortem human studies. Bhosale
et al (35) reported 3-fold higher retinal MX concentra-
tions in ~20% of eye donors from their 131-person
cohort aged =48 y. Retrospective surveys on MX in-
take for this high-MX-retinal-status group indicated
frequent daily use of high-dose MX supplements in
82% of people; the remaining 18% had a history of
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consuming MX-rich diets. Surveys on a random sam-
ple of 20 eye donors with retinal MX concentrations
within expected limits indicated that none of these
people regularly took MX supplements or consumed
foods concentrated in MXSs.

Increased MX intake (11-13, 16, 17) and status (33,
36, 37, 45) are inversely associated with advanced
AMD. As with work on MX status-AMD relations,
equivocal findings exist for endpoints restricted to
early or intermediate AMD.

THE PROMISE OF MOLECULAR GENETICS FOR
EXAMINING THE EFFECT OF MXs ON AMD

AMD is a complex disease with a strong hereditary component
(116). Aspects of retinal MX absorption, distribution, metabo-
lism, and excretion are genetically determined, as shown by
studies in twins (117, 118) and first-degree family members
(119-121). Notably, retinal MX status profiles have shown
stronger relations among monozygotic than dizygotic twins
(101). Findings from a large cohort of married people indicate
that interspouse relations exist for dietary intake and serum
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FIGURE 1. Distribution of proteins affecting or affected by macular xanthophylls in primate retina. Full names for genes are available from http://www.
ncbi.nlm.nih.gov/gene. Superscripts on gene symbols refer to reference numbers of immunolocalization studies containing micrographs. Am, amacrine cell;
B, bipolar cell; BrM, Bruch’s membrane; C, cone photoreceptors; CC, retinal choroid layer; DA, displaced amacrine cell; ELM, external limiting membrane;
G, ganglion cell; GCL, ganglion cell layer; H, horizontal cell; ILM, inner limiting membrane; INL, inner nuclear layer; IPL, inner plexiform layer (interneurons);

M, Miiller cell; NFL, nerve fiber layer; ONL, outer nuclear layer; OPL, outer

plexiform layer; PRIS, photoreceptor inner segments; PROS, photoreceptor outer

segments; R, rod photoreceptors; RPEa, retinal pigmented epithelium apical area; RPEDb, retinal pigmented epithelium basal area. *Retinal layers with macular
xanthophyll concentrations. The schematic was created by D Fisher and reproduced with permission from reference 187.
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concentrations of MXs (100), but not for MPOD (a proxy for
retinal MX status). Work in the field examining the molecular
genetics of AMD has focused on both DNA sequence variation
in genes encoding constituents of the complement system and
those involved in HDL transport and metabolism. The link be-
tween MX status, complement genes, and AMD (122) has been
examined in a cross-sectional sample of 302 healthy adults
(123); carriers of AMD-associated complement factor H and
age-related maculopathy susceptibility 2 (ARMS2) variants had
lower MPOD values than their peers. An axis of AMD-HDL-
MX status relations may also exist, because MXs are carried on
HDL (124) and interact with numerous receptors and trans-
porters affecting cholesterol metabolism.

Key references on relations of AMD with variants in genes
encoding receptors, targets, transporters, enzymes, and hormones
affecting or affected by MXs, their metabolites, and cofactors are
shown in Table 2; findings are presented in the context of in-
formation on MX status relations with these same genes. Find-
ings from immunolocalization studies on constituents of this
MX gene set in primate retina are summarized in Figure 1 (55,
57, 125, 142, 164, 169). Information on gene expression for
these genes exists at the Retina Central database (University of
Regensburg, http://www.retinacentral.org/) and the NEIBank
(http://neibank.nei.nih.gov/index.shtml). We are currently ap-
plying the evidence base presented in Table 2 and Figure 1 to
guide investigations designed to identify core elements of
a “molecular phenotype” (a pattern gene regulation/expression
and DNA variation) representing individual capacity to use
transporters, receptors, enzymes, and hormones targeting or af-
fected by MXs in ways that may reduce risk of AMD incidence
or progression. Although we have not yet identified any single
sequence variant explaining a proportion of variance in AMD
risk comparable to those of the complement pathway genes,
there is now informative work examining putative AMD-associated
single-nucleotide polymorphisms present in genes encoding
proteins involved in MX transport (121, 131, 137, 146, 148-154,
156-161), binding/capture (141, 162, 163), cleavage (158, 160),
and diseases associated with lower MX status (177-184). Pro-
jects examining the associations of MX-related genes with retinal
pathophysiology in in vivo models have supported inferences on
AMD relations with variants in MX transport genes (128, 130,
136, 143).

KNOWLEDGE GAPS AND RESEARCH OPPORTUNITIES

Findings on the biochemical and biophysical actions of MXs
in primates may be integrated with bioinformatic data on MX-
related genes and proteins to investigate the putative actions of
these factors in AMD pathogenesis and pathophysiology. We see
promising opportunities for meaningful advances in the field with
the following:

1) Ultrastructural localization studies on MX-affected pro-
teins in the retina. Although specific binding proteins
for lutein and zeaxanthin exist in the human and monkey
retina (19, 21, 22, 25, 67), sites of subcellular MX local-
ization are still unknown (65).

2) Broader analysis of genetic variation and regulation in
DNA sequence encoding proteins responsible for MX
binding in the retina. Genotyping efforts for STARD3

SANGIOVANNI AND NEURINGER

and GSTP1 have not been comprehensive. Exome-focused
sequencing and analysis of regulatory elements (microRNA
and transcription factor binding sites, histone methylation
and acetylation marks) are likely to yield informative re-
sults. We provide a list of single-nucleotide polymorphisms
capable of producing deleterious peptide shifts in STARD3
and GSTPI (see the supplemental material under “Supple-
mental data” in the online issue).

3) Development of model systems (in vivo animal models
and targeted mutagenesis in human retinal cells) based
on findings from

e natural models of metabolic MX insufficiency
(ALDH3A2 and ABCA4 genes)
o findings from efforts discussed in number 2

4) Integrated systems-based approaches to examine meta-
bolic fate of MXs, their precursors, and metabolites.
AMD is a polygenic disease, and we must reasonably ex-
amine relations of gene variation, regulation, and expres-
sion in dynamic biological systems. We give the example
for GSPT1 and the protein encoded by the Fanconi anemia
complementation group C (FANCC, 9q22.3). The FANCC
gene product increases catalytic activity of GSTP1 during
apoptosis by preserving the structure of bonds in GSTP1
that normally sustain disruptions in disulfide structure with
exposure to oxidizing agents (158). Direct interaction of
FANCC and GSTP1 has been shown in a model by using
the in vitro coimmunoprecipitation paradigm (186). We
have observed a number of coinherited AMD-associated
variants in FANCC in a number of our large-scale cohorts
(rs356666, P = 0.004; rs356677, P = 0.001; rs356669,
P = 0.0005). rs356669 exists in a binding domain for
MafK and MafF transcription factors; this relation may
provide leads in the study of GSTP1 activation in AMD.
Although P values are not in the range of those reported
for complement system genes, the biological plausibility
of these findings in the context of the evidence base
supports the rationale to extend investigations in future
studies.

Concepts discussed in this article provide a foundation for
planning mechanistic, translational, and applied clinical research
projects for investigation of MX-AMD relations. To make
meaningful inferences from such efforts, multidisciplinary teams
must work to /) develop a mechanism- and system-centered
evidence base on the molecular genetics of enzymes, trans-
porters, ligands, and receptors affecting or affected by MXs and
influencing MX uptake, transport, retention, and protection in
the neural and vascular retina, and 2) apply this evidence base in
the context of the science on AMD pathogenesis and patho-

physiology.
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