
RESEARCH Open Access

Federated ontology-based queries over cancer
data
Alejandra González-Beltrán1,2*, Ben Tagger2, Anthony Finkelstein2

From Semantic Web Applications and Tools for Life Sciences (SWAT4LS) 2010
Berlin, Germany. 10 December 2010

Abstract

Background: Personalised medicine provides patients with treatments that are specific to their genetic profiles. It
requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular
biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most
effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology,
where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques
(microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better
characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms -
or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult.

Results: Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to
distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is
associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain
metadata. The domain metadata consists of ontology-based annotations associated with the structural information of
each data source. However, caGrid’s current querying functionality is given at the structural metadata level, without
capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for
distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target
query language, where join conditions between multiple data sources are found by exploiting the semantic
annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is
applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-
based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included.

Conclusions: To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular,
pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a
challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides
an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures.

Introduction and background
Personalised medicine provides patients with treatments
that are specific to their genetic profiles. The aim is to
offer the safest and most effective therapeutic strategy
based on the gene variations of each subject. To that
end, it is necessary to interact across a variety of

scientific disciplines, such as molecular biology, pathol-
ogy, radiology and clinical practice. Disparate data types
from these domains need to be shared and integrated
efficiently.
In particular, this is appropriate to oncology, where

knowledge about genetic mutations has already led to
new therapies. Current molecular biology techniques
(microarrays, proteomics, epigenetic technology and
improved DNA sequencing technology) enable better
characterisation of cancer tumours. The vast amounts of

* Correspondence: a.gonzalezbeltran@cs.ucl.ac.uk
1Computational and Systems Medicine, University College London, Gower
Street, London WC1E 6BT, UK
Full list of author information is available at the end of the article

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

© 2011 González-Beltrán et al. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

mailto:a.gonzalezbeltran@cs.ucl.ac.uk
http://creativecommons.org/licenses/by/2.0

data produced coupled with the use of different terms in
each discipline - referred to as semantic heterogeneity-
make the retrieval and integration of information
difficult.
The UK National Cancer Research Institute (NCRI)

and the US National Cancer Institute (NCI) have imple-
mented programmes focusing on building and deploying
software infrastructures to manage and analyse data
generated from heterogenous data sources. These are
the NCRI Informatics Initiative (NCRI II) [1] and the
cancer Biomedical Informatics Grid® (caBIG®) [2] pro-
gramme. The NCRI II has developed the ONcology
Information eXchange (ONIX [3]) portal, enabling the
discovery and searching of biomedical resources. The
caBIG® programme has developed the caGrid [4] com-
puting infrastructure, and associated tools, supporting a
collaborative information network for sharing cancer
research data. caGrid deals with syntactic and semantic
interoperability of the data resources in a service-
oriented model-driven architecture. Each data source is
represented as an information model [5] in the Unified
Modeling Language (UML) [6], and it is exposed as a
data service. Semantic interoperability is achieved by
using a metadata registry, which maintains the informa-
tion models annotated with concepts from a domain
ontology, namely the NCI thesaurus (NCIt) [7]. The
data services also expose a common query interface
based on the caGrid query language (CQL). CQL
enables to query the data services relying on their indi-
vidual information models, i.e. the UML models. The
query functionality provided in caGrid does not, how-
ever, take into account the existing semantic annota-
tions based on NCIt. While the domain ontology is used
as a global schema for the specification of data sources,
the queries are not written in terms of the global
schema but rather on the structure of the shared data
resources.
In this paper, we provide an analysis of caGrid’s sup-

port for data integration and its querying capabilities.
We extend caGrid with additional services to support
ontology-based queries over the cancer research data
resources, taking advantage of the existing semantic
annotations. The biomedical researchers, as the end-
users of our system, can query the distributed data
resources using queries based on the domain knowledge
(expressed as concepts from the NCIt ontology). Thus,
it is not a requirement to know the underlying models
as for CQL, and the queries are reusable across
resources.
Our approach assumes that all data sources have a

corresponding information model with semantic annota-
tions, where each element in the model (e.g. classes and
properties) is associated with one or more concepts
from a domain ontology. These concepts provide

unambiguous meaning to the model’s elements and
could potentially belong to several ontologies. We
assume there are service-oriented interfaces to access to
the metadata registry, which stores the models and
annotations, and the data sources. While any ontology
could be use for the annotations, NCIt is the primary
ontology in caGrid and all the information models are
annotated with it [4]. Thus, for our implementation we
consider NCIt exclusively. Our evaluation is based on
data services from caGrid: we use data schemas and
annotations available in the caGrid metadata registry.
Our system provides a customised transformation

from the annotated information models to an ontologi-
cal representation using the Web Ontology Language
version 2 (OWL2) [8]. OWL is a recommendation from
the World Wide Web Consortium (W3C). Based on the
ontological representations of the data resources, we
have designed and developed a query reformulation
approach that converts concept-based queries into CQL,
the query language supported by the caGrid infrastruc-
ture. This approach is general and could be used to sup-
port other target query languages, as the only step
dependent on caGrid is the final one. This paper pre-
sents significant improvements over our previous work
[9]. We have extended our earlier work to support fed-
erated queries over the caGrid infrastructure, where the
selection of join conditions is provided by a semantic
analysis of the distributed resources. We present an
exhaustive performance evaluation of the query refor-
mulation for single data resources. We also present a
graphical user interface: the Cancer ONtology QUErying
SysTem (COnQueSt). COnQueSt offers an ontology-
based view of the caGrid data resources, allowing
resource-browsing as well as identifying the concepts
used therein. It also supports a query wizard to build
ontology-based queries, allowing the user selection of
the relevant data sources with respect to the concepts
used in those queries.

Data integration systems
Data integration refers to merging data from indepen-
dent sources and providing access to them through a
unified view [10]. There exist two common approaches
for the integration of data: the data-warehouse approach
and the federated database approach [11].
The warehouse approach collates the data from sev-

eral resources, translates them and combines them into
a single repository. Queries are executed over the aggre-
gated data, rather than the distributed sources of data.
Hence, distribution problems are avoided such as net-
work bottlenecks, the unavailability of sources or slow
response times, are avoided. Moreover, the execution of
queries is very efficient and it is possible to apply opti-
misations over the aggregated data. Having the data in a

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 2 of 24

single repository also permits added value in terms of
validation and annotation. On the other hand, the data
may become stale when the content or structure of data
sources change [11]. Addition of new data sources
requires an expensive process of translating its content
into the repository [11].
The federated databases approach is composed of a

mediator: a run-time component that reformulates
queries written in a global-schema (or mediated schema)
to queries on local schemas for each distributed data
source. In contrast to the warehouse approach, federa-
tion ensures that the latest version of the data and
structures is considered. Additionally, new databases can
be added easily. The distributed nature of the infrastruc-
ture, however, compromises query performance [11].
In the federated approach, there are several ways to

represent the mapping between the global schema and
the set of local schemas for the data sources [10]. Each
mapping associates a query written over the global
schema with a query written over the local schema.
These queries could be written in distinct languages.
The two main methods are called Global-As-View
(GAV) and Local-As-View (LAV) [12]. In GAV, each
element in the global-schema is associated with a
query over a local data source - i.e., each element in
the global schema is characterised as a view over the
data source. On the other hand, in LAV the global-
schema is specified independently from the sources
and each element of the data source is associated with
a query over the global-schema, meaning that the local
sources are characterised as a view over the global-
schema.

Halevy [12] compares the two approaches from the
point of view of query processing. In summary, query
processing in GAV systems is generally based on a sim-
ple unfolding strategy, as the mappings identify the
sources queries corresponding to elements in the global-
schema [10]. But for LAV systems, query processing is
more complex; it is not straightforward to determine
how to use the sources to answer a query over the glo-
bal-schema, as each source maintains only a partial view
of the data [10].

caBIG® semantic infrastructure
caGrid, the computing middleware in caBIG®, is a Grid
[13] extended to support data modelling and semantics
[4]. It follows a service-oriented, model-driven architec-
ture, with a number of core services and corresponding
application programming interfaces (APIs). In this sec-
tion, we present the caBIG® semantic infrastructure as
an analogy with the metadata hierarchy in [9,14] and
analyse the infrastructure in terms of its capabilities as a
data integration system.
caGrid follows a federated database approach, where

each data source is autonomous and its owner is
responsible for providing information about the
resource. Each data source is exposed as a data service,
using common interfaces and metadata at increasing
levels of abstraction, including syntactic, structural,
reference and domain metadata [14] (see Figure 1). Each
data service is an object-oriented virtualisation of the
underlying data [4]. The data types of the data source
are available as eXtensible Markup Language (XML)
schemas, managed by the Global Model Exchange

Figure 1 caBIG® semantic infrastructure core services. Figure 1: caGrid core services, and their corresponding APIs, matched with the
different levelsofthe metadata hierarchy. At the syntactic level, caGrid counts with XML Schemas to indicate the data types shared on the grid.
These schemas are maintained in the Global Model Exchange, a service acting as an XML schema registry. The structural metadata is conformed
by UML models, which can be accessed using the caGrid Discovery API. A metadata registry, based on the ISO/IEC 11179 standard, is used to
manage common data elements (CDEs). The metadata registry, called caDSR, can be accessed with a specific API. A CDE is composed of an
object class, a property and a value domain. These components correspond to a UML class, UML attribute and the attribute’s data type,
respectively, and each of them is associated with a set of concepts from an ontology. These mappings between structural elements and
concepts constitute the reference metadata. The concepts are part of the domain metadata, and in caBIG® mainly belong to the NCI thesaurus
ontology. The LexEVS API allows to access the available terminologies.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 3 of 24

(GME) service [4]. These schemas conform the syntactic
metadata. The object-oriented representation of the data
source is given as UML models, offering structural
metadata about the data source. Each UML model is
associated with semantic metadata, which indicates the
meaning of the objects and associations between them.
The semantic annotations come mainly from the NCIt
ontology [7], which can be accessed via the LexEVS API
[15]. NCIt is the primary terminology used in caBIG® ,
but other well-structured ontologies should be suitable
for the annotations. The NCI Enterprise Vocabulary Ser-
vices (EVS) team reviews and approves suitable termi-
nology for use in caGrid.
The ontology-based annotations relate the domain

concepts with the structural information of each data
source, and constitute the domain metadata. The cancer
Data Standards Repository, or caDSR, is a metadata reg-
istry based on the ISO/IEC 11179 standard [16]. caDSR
manages common data elements (CDEs) and exposes
them through the caDSR API. The CDEs provide the
mappings between the ontology concepts (the domain
metadata from the global schema) and the UML models
for each available data service (the local schema). A
CDE is composed of an object class that relates to a
UML class, a property corresponding to a UML attri-
bute, and a value domain corresponding to the data
type of the attribute. The lower part of Figure 2 shows
the different levels of metadata available in the caBIG®

semantic infrastructure. In caDSR, models are annotated
with NCIt and we consider it as the only domain ontol-
ogy for our implementation. As a data integration sys-
tem, caGrid follows a federated approach with Local-As-
View mappings, where the NCIt ontology offers a uni-
fied view of the resources. Each element of the data
source (UML class, attribute and association) is related
with a query (realised as a concept or set of concepts)
over the global-schema (the NCIt ontology). In this way,
the local sources are characterised as a view over the
ontology. As seen before, CDEs offer these mappings
and are maintained in caDSR.
As mentioned above, the data services expose access

to the underlying data with a common interface based
on the object-oriented (UML) model of the resource.
This common interface also exposes a query processor
based on the caGrid or Common Query Language
(CQL) defined for caGrid. CQL is an object-oriented
query language reflecting the underlying object model of
the data resource while abstracting the physical repre-
sentation of the data [4]. CQL allows the definition of
one target object, representing the result of the query.
Additionally, it is possible to add restrictions on associa-
tions or attributes for the classes intervening in the
query. In this way, CQL is a navigational query lan-
guage: it allows the navigation of the UML model

through associations and the specification of conditions
over the attributes of the classes traversed during that
path navigation.
caGrid also supports basic distributed aggregations

and joins of queries over multiple data services by
means of the caGrid Federated Query Infrastructure
[17]. The distributed queries are expressed in the dis-
tributed extension of CQL, called DCQL [18], which is
translated into single resource queries in CQL. The ser-
vice responsible for translating DCQL queries into CQL
queries for the specific resources is the Federated Query
Processor (FQP). Both CQL and DCQL are structural
query languages, and require the user to know about
the underlying object-oriented models of the resources.
The basic constructs for DCQL coincide with those of

CQL, also permitting the navigation of the UML models
through paths of UML associations and the specification
of conditions on the UML attributes across the path. In
addition, aggregated queries allow the same query to be
run over more than one target service and return the
combined results. Distributed joins, on the other hand,
allow the definition of foreign associations. A foreign asso-
ciation element contains a join condition element and a
foreign object element. The join condition element
describes the logic for associating instances of the enclos-
ing class with instances of the class in the remote data
service that is described by the foreign object element.
To sum up, the caGrid infrastructure follows a LAV

federated approach and maintains rich semantic meta-
data in caDSR. NCIt is the primary ontology in use,
offering a unified view of the exposed data sources.
However, the querying capabilities are not based in this
global schema but on the object-oriented representation.

Semantic web/linked data approach for querying and
data integration
The semantic web was proposed as the method to solve
the problem of semantic heterogeneity in the World
Wide Web [19]. The proposal relies on extending the
Web with a semantic layer that makes data not only
human processable but also machine processable [20].
This approach allows the sharing and re-use of data on
the Web, and it is sometimes called the linked data
approach [21].
The semantic web methodologies, representation

mechanisms and logics are largely based on database
theory and practice [20]. However, there are important
differences between database technologies and the
semantic web - for example, databases are closed in nat-
ure (information not explicitly asserted is considered
false) and their objects must be uniquely identified,
while the semantic web assumes that information is
incomplete and it recovers the notion of unique identi-
fiers through Unique Resource Identifiers (URIs) [20].

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 4 of 24

The semantic web relies on a hierarchy of languages
of increasing level of expressivity [20]. The Web Ontol-
ogy Language (OWL) allows for the representation of
classes and relations among them, which are organised
in graph structures called ontologies. Each node repre-
sents a concept or class, and links codify logical rela-
tionships between the two concepts involved [20].
As discussed above, data integration depends on the

mappings between component data schemas, or models,
to a common schema. The semantic web supports the
use of an ontology to integrate different databases
[11,22]. In contrast to data models, ontologies encapsu-
late generic knowledge about a domain that can be
reused across applications [11].

Object-based queries
The concept of model-driven architectures (MDAs) [23],
which was developed by the Object Management Group

(OMG) [24], is based on platform-independent models
and their transformations. The models document busi-
ness functionality and behaviour of an application and
are usually represented in UML. The models decouple
the specification from the implementation that realises
them, allowing for the independent evolution of the
two. The models follow an object-oriented approach to
software development, where the objects represent the
entities in the system.
When database capabilities are combined with object-

based virtualisation of software systems, the result is an
object-oriented database management system. These
systems offer query languages supporting the retrieval of
objects stored in the system. The OMG proposed the
Object Query Language (OQL), which is modelled after
SQL, as a standard for object-oriented databases. As
seen above, the caGrid infrastructure has developed its
own object query language (CQL), based on the

Figure 2 caBIG® semantic infrastructure and semantic layer built in our COnQueST system. Figure 2: Different levels of metadata in the
caBIG® semantic infrastructure shown for two data sources that share a common data element (CDE). The CDE is annotated with concepts from
the NCI thesaurus ontology. The top part of the diagram (above the dotted line) shows the ontologies built in the COnQueST system to
facilitate ontology-based queries over caBIG® data services.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 5 of 24

navigation of UML models [4]. While object-oriented
databases provide powerful data abstractions, they gen-
erally lack a formal framework for query processing and
query optimisation [25]. Fegaras and Maier [25] pro-
posed the monoid comprehension calculus (MCC) as
such formal framework. It is a calculus based on mono-
ids and the homomorphisms between them. We use
MCC for the query reformulation process described in
the Methods section.

Results and discussion
CQL and DCQL analysis
A CQL query is defined by an XML document, which
must comply to a given XML schema [26]. The schema
indicates that a CQL query must specify a 〈Target〉 ele-
ment, which is the data type of the query result. Option-
ally, an 〈Attribute〉 element might indicate a predicate
over an attribute of the object with a 〈Target〉 type and
an 〈Association〉 may specify a link with a related object.
Next, we show how a CQL query is built recursively pre-
senting it as a context-free grammar, where 〈CQLQuery〉
is the start symbol, � is the empty string, 〈xsd:string〉 and
〈xsd:boolean〉 are the non-terminal variables representing
the xsd:string and xsd:string data types, respectively. The
CQL query context-free grammar is:
〈CQLQuery〉 ® 〈Target〉 |

〈Target〉 〈 QueryModifier〉
〈Target〉 ® 〈cqlObject〉
〈cqlObject〉 ® 〈Name〉 |

〈Name〉 〈Attribute〉 |
〈Name〉 〈Association〉 |
〈Name〉 〈Group〉

〈Attribute〉 ® 〈Name〉 〈Predicate〉 〈Value〉
〈Group〉 ® 〈LogicalOp〉 〈Attribute〉 〈Group1〉 |

〈LogicalOp〉 ® 〈Association〉 〈Group1〉
〈Group1〉 ® 〈Attribute〉 〈Group�〉 |

〈Association〉 〈Groupe�〉 |
〈Group〉 〈Groupe�〉

〈Groupe〉 ® 〈Group〉|�
〈Name〉 ® 〈xsd:string〉
〈RoleName〉 ® 〈xsd:string〉
〈LogicalOp〉 ® AND |OR
〈Predicate〉 ® EQUAL_TO |NOT_EQUAL_TO |

LIKE |IS_NULL|
IS_NOT_NULL|LESS_THAN |
LESS_THAN_EQUAL_TO |
GREATER_THAN |
GREATER_THAN_EQUAL_TO

〈Association〉 ® 〈RoleName〉 〈cqlObject〉
〈Value〉 ® 〈xsd:string〉
〈QueryModifier〉 ® 〈countOnly〉 〈DistinctAttribute〉|

〈countOnly〉 〈DistinctAttribute〉
〈AttributeNames〉

〈countOnly〉 ® 〈xsd:boolean〉
So, CQL traverses the UML class diagram graph,

where the 〈Target〉 is the initial class, the 〈Association〉
conditions allow for path navigation by traversing
sequences of consecutive classes and 〈Attribute〉 condi-
tions apply locally to individual classes. The terminal
symbols 〈Group〉 and 〈Group1〉 represent the combina-
tion of two or more constraints over a particular node
in the UML class graph.
Now, we present an example from caBIO, where the

CQLQuery encodes the traversal of the path from
NucleicAcidSequence to Protein (see Figure 3).
〈CQLQuery〉 ® 〈Target〉

® 〈qlObject〉
® 〈Name〉 〈Association〉
® 〈Name〉 〈RoleName〉 〈cqlObject〉

® 〈Name〉 〈RoleName〉 〈Name〉
〈Association〉

® 〈Name〉 〈RoleName〉 〈Name〉 〈Role-
Name〉 〈Name〉

® NucleicAcidSequence geneCol-
lection Gene proteinCollection Protein
DCQL [18] is an extension of CQL to traverse two or

more UML class graphs. The graphs are connected by
the definition of join conditions, which determine how
to associate instances of the enclosing class with
instances of the class in the remote data service. DCQL
specifies the service to which the query is sent to. This
is a context-free grammar representing DCQL:
〈DCQLQuery〉 ® 〈TargetObject) 〈targetServiceURL1〉
〈targetServiceURL1〉 ® 〈targetServiceURL〉 |

〈targetServiceURL〉
〈targetServiceURL1〉
〈targetServiceURL〉 ® 〈xsd:string〉
〈TargetObject) ® 〈dcqlObject〉
〈dcqlObject〉 ® 〈Name〉

〈Name〉 〈Attribute〉 |
〈Name〉 〈dcqlAssociation〉 |
〈Name〉 〈ForeignAssociation〉 |
〈Name〉 〈dcqlGroup〉 |

〈dcqlAssociation〉 ® 〈RoleName〉 〈dcqlObject〉
〈dcqlGroup〉 ® 〈LogicalOp〉 〈Attribute) 〈dcqlGroup1〉 |

〈LogicalOp〉 〈Association〉
〈dcqlGroup1〉
〈dcqlGroup1〉 ® 〈Attribute〉 〈dcqlGroupe〉 |

〈Association〉 〈dcqlGroupe〉 |
〈ForeignAssociation〉 〈dcqlGroupe〉 |
〈dcqlGroup〉 〈dcqlGroupe〉

〈dcqlGroupe〉 ® 〈dcqlGroup〉 | �
〈ForeignAssociation〉 ® 〈JoinCondition〉 〈ForeignOb-

ject〉 〈targetServiceURL〉
〈JoinCondition〉 ® 〈ForeignPredicate〉 〈localAttribute-

Name〉 〈foreignAttributeName〉

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 6 of 24

〈ForeignPredicate〉 ® EQUAL_TO |NOT_E-
QUAL_TO |

LESS_THAN |
LESS_THAN_EQUAL_TO |
GREATER_THAN |

GREATER_THAN_EQUAL_TO
〈localAttributeName〉 ® 〈xsd:string〉
〈foreignAttributeName〉 ® 〈xsd:string〉
Both CQL and DCQL are declarative, non-procedural

languages.

Ontology-based queries
We propose to exploit the caBIG® semantic infrastruc-
ture as a data integration system following the LAV
approach. This means that the NCI thesaurus ontology
is considered as the global-schema and queries over the
global-schema are reformulated as a set of queries over
the data sources [10].
As a consequence, our system extends the caGrid

querying functionality, which currently relies on the
structure of the underlying data resources, i.e. their
UML models. In caGrid, a biomedical researcher inter-
ested in retrieving data about, for example, a particular
gene of interest needs to explore the UML model of
each relevant data service and build a query considering
the specific attributes and associations of the class main-
taining the Gene objects. The queries can be built pro-
grammatically or also through the caGrid portal [27],

which supports the exploration of the UML models and
provides a query builder based on these models. The
queries are specific for a data source and cannot be re-
used.
On the other hand, users of our system can concen-

trate on the concepts from the domain, as represented
by the NCIt ontology on cancer, and build the ontol-
ogy-based queries which are high-level and descriptive.
By a high-level query, we mean a query that can be
written without specific details about the structure of
the target resource. By a descriptive query, we refer to
queries that provide the criteria for the desired data
rather than the procedure to find the data. Thus, the
ontology-based queries can be applicable to any of the
underlying data resources, and our system reformulates
them according to the specific UML models. The pro-
cess is semi-automatic, in some cases requiring input
from the users to select appropriate paths on the rewrit-
ing or join conditions, as will be explained in detail
below.
Apart from the cancer concepts found in NCIt, the

queries combine elements from an ontology we have
built with metadata on UML models, namely the UML
model ontology, and the list ontology [28], used to
represent combinations of concepts that annotate ele-
ments from the data sources. The UML model ontology
contains OWL classes to represent UML classes and
attributes (UMLClass, UMLAttribute), OWL object

Figure 3 DCQL Use Case. Figure 3: Sections of the UML models of the caBIO and PIR data services showing the classes annotated with
concepts included in the second query use case. This diagram corresponds to a solution of the query reformulation process involving multiple
data services.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 7 of 24

properties to represent UML associations and the rela-
tionship between a UML class and its attributes (hasAs-
sociation, hasAttribute) and a data property to represent
the values of attributes (hasValue). The upper part of
Figure 2 shows the ontologies built in our system in
order to support ontology-based queries over the
caBIG® semantic infrastructure.
The navigational characteristics of the target object-

query languages (CQL and DCQL for the caBIG®

infrastructure) are represented at the ontology level by
the hasAssociation object property. Given two UML
classes, they may have a direct UML association, or
the association may arise by traversing an association
path from the first class to the second one. In order
for our system to deal with those paths of associations,
without the user requiring knowledge of the specific
underlying UML model, we define the hasAssociation
property as transitive and use reasoning to determine
the paths.
In the case of distributed queries, the semantic anno-

tations of the models are leveraged to find the possible
join conditions automatically. The join conditions are
presented to the user, so that they can select the more
biologically-relevant one, depending on the specific
query.
Use cases
In this section, we present two simple but illustrative
use cases, presenting a query for a single resource and a
second query that requires the use of two resources to
provide a result. The first use case will show how our
system exploits the knowledge about the UML seman-
tics. The second use case is based on the query pre-
sented in caBIG® to demonstrate the federated query
capability [29]. We will show the steps of our query
reformulation process in the Methods section, giving
examples based on these use cases. More than a thou-
sand genetic mutations of the BRCA1 gene have been
identified with increased risk of breast cancer in women
[?]. The gene belongs to a class of genes identified as
tumour suppressors, i.e. the protein that they produce
helps prevent cells from growing and dividing too
rapidly or in an uncontrolled way. The BRCA1 gene
gives instructions for producing a protein that is directly
involved in repairing damaged DNA. Additionally, the
BRCA1 protein interacts with many other proteins,
including other tumour suppressors and proteins that
regulate cell division.
Some mutations on the BRCA1 gene can lead to the

production of abnormally short versions of the BRCA1
protein. Other mutations may even prevent the protein
being produced. Other mutations modify single amino
acids in the resulting protein, or delete large segments
of DNA from the BRCA1 gene.

As these mutations alter the normal function of the
BRCA1 gene, their accummulatation can provoke
uncontrolled cell division and growth, causing a tumour.
Taking into account this knowledge about the BRCA1

gene and knowing that its molecular location is at chro-
mosome 17, a biomedical researcher investigating it will
be interested in dealing with the results of the following
queries:
Query 1
Find single nucleotide polymorphisms associated with

the chromosome whose name is 17.
Query 2
Find nucleotide sequences associated with the gene

whose symbol is BCRA1 and whose organism’s scientific
name is homo sapiens.
Using our system, these queries can be written using

concepts from the NCI thesaurus ontology, whose cor-
respondence with the above natural language phrases is
straightforward. Our graphical user interface provides a
Query Builder facilitating the query construction using
concepts from NCIt. Once these queries are expressed
with concepts, the internal representation is as follows
(in Manchester OWL Syntax [30]):
Concept-Based Query 1
Single_Nucleotide_Polymorphisms and hasAssociation

some (Chromosome and hasAttribute some (Name
and hasValue value “17”)).
Concept-Based Query 2
Nucleotide_Sequences and hasAssociation some

(Gene and hasAttribute some (Gene_Symbol and has-
Value value “BCRA1”)) and hasAssociation some
(Organisms and hasAttribute some (Scientific_Name
and hasValue value “homo sapiens”)).
In order to answer these concept-based queries in the

caBIG® infrastructure, the researcher is able to find out
through our interface about these two relevant data ser-
vices:

• the cancer Bioinformatics Infrastructure Objects
(caBIO) [31] data service: a robust resource for
accessing molecular annotations from a variety of
curated data sources, including CGAP, Unigene, the
Cancer Gene Index (CGI) project ands the Pathway
Interaction Database (PID);
• the Protein Information Resource (PIR) data ser-
vice [32]: a data resource for genomic and proteomic
information, which contains rich and high-quality
annotated data on all protein sequences and is sup-
ported by the UniProt Knowledgebase (UniProtKB)
and other relevant protein databases.

For the first query, the user chooses a single data
resource as target, namely caBIO, as it contains data

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 8 of 24

about single nucleotide polymorphisms and chromo-
somes. Figure 4 shows a section of the caBIO UML
model corresponding to a possible path between the
SNP class, corresponding to the concept Single_Nu-
cleotide_Polymorphism, and the Chromosome class,
corresponding to the homonym concept. We note
that our system is able to reason about the structure
of the data resource. Then, it automatically infers,
based on the data service ontology, that the path
between the two classes arises by considering the
hierarchy of location classes (SNPPhysicalLocation,
PhysicalLocation and Location) and that UML associa-
tions (in this case the chromosome association) are
inherited by the sub-classes. The interpretations of
the UML semantics are left to the user in the current
caBIG® infrastructure. Consequently, in caBIG® there
is the assumption that the user will be highly techno-
logically knowledgeable.
For the second query, the user chooses the two data

services as target, caBIO and PIR, in order to build a
distributed query. While caBIO has data about nucleo-
tide sequences and genes, PIR has information about
organisms. Figure 3 shows sections of the two services’
UML models, which refer to the classes annotated with
concepts included in the concept-based query. Using
our system, the researcher is presented with the possible
join conditions for the distributed query. A join condi-
tion is composed of a pair of UML classes and a pair of
UML attributes, corresponding to each of the classes.
For the query to make sense, the join condition must
contain semantically equivalent (or at least semantically
related) classes and attributes. Two UML classes

(attributes) are semantically equivalent if and only if
they are annotated with the same concepts. By using a
merged ontology combining the two data service ontolo-
gies, our system determines the list of possible join con-
ditions. In this case, the join conditions include the pair
of classes (caBIO:Gene, PIR:Gene) and (caBIO:Protein,
PIR:Protein). Each pair of classes are annotated by the
same concept, ncit:Gene and ncit:Protein. In turn, the
semantically equivalent attributes for the pairs of classes
are: (caBIO:Gene_symbol, PIR:Gene_name) and (caBIO:
Protein uniProtCode, PI:Protein_uniprotkbEntryName).
While the gene names (or symbols) are not unique, as
there are several synonyms for each of the existing
genes, the protein codes assigned by the UniProt Knowl-
edge Base are unique. Thus, the biomedical researcher
selects the Protein classes and codes from UniProt as a
suitable join condition.
Software architecture
Figure 5 shows the extension of the caGrid service-
oriented architecture with novel semantic services
(shown in the upper part).
The semantic services are:
OWL generation service. This service generates NCIt

modules for each of the available caGrid data services.
The metadata is retrieved either from the caDSR service
or directly from the individual data service. Additionally,
this service generates OWL ontologies from the infor-
mation models, i.e. the annotated UML models. The
ontologies import the specific NCIt ontology module as
well as the list ontology and the UML model ontology.
The generated ontologies contain concepts and relation-
ships but no data instances (or individuals).

Figure 4 Use Case. Figure 4: Section of the caBIO UML model representing the relationship between the SNP class, corresponding to single
nucletoide polymorphisms and the Chromosome class. This section of the UML model is relevant for the first query use case, where the solution
involves a single target data service.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 9 of 24

Semantic query service. This service is responsible
for rewriting, translating and processing semantic
queries at different levels of abstraction, from ontol-
ogy-based queries to a chosen target language. In the
case of the caBIG® infrastructure, the target languages
are CQL or DCQL, depending on whether the query is
applied to a single or multiple data sources, respec-
tively. The approach utilises the Monoid Comprehen-
sion Calculus as an intermediate language, allowing the
translation to different target languages for other
infrastructures.
More details about these services are given in the

Methods section.

Implementation
We have implemented two modules, with the function-
alities described above. The implementation was done in
Java and uses caGrid version 1.3 [33], the OWLAPI ver-
sion 3.1.0 [34] (after upgrading from OWLAPI version
2), and relies on the reasoners Pellet 2.2.2 [35] and Her-
miT 1.3.0 [36].

OWLGen caGrid analytical service
For the first module, we also produced a caGrid analyti-
cal service called the OWLGenService [37] and it is
accessible through the caGrid portal [27].
The service provides a simple API allowing for:

• extraction of modules from NCIt
• data service ontology generation

Both methods accept a project short name and version
from the caDSR service or the URL of the data service
of interest.
COnQueSt graphical user interface
In order to demonstrate the functionality of the query
rewriting process, we have developed a web-based inter-
face, which we call COnQueSt - Cancer Ontology Query-
ing System, that affords the user several key abilities;
Browser (inFigure 6) The user can browse the pro-

jects available in CaDSR and investigate the NCIt con-
cepts in each project. We provide information such as
definitions and links to the NCIm [38].

Figure 5 System Architecture. Figure 5: The caGrid service-oriented architecture (bottom part) extended with novel semantic services for the
generation of ontologies and querying and a bespoke user interface (shown in the upper part of the diagram)

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 10 of 24

Search Tool (inFigure 7) The user can search for
NCIt concepts, either by matching patterns or exact
searches, returning metadata about the concepts and the
projects that contain those concepts.
Query Builder (inFigure 8) We provide a custom

query-building interface that demands no prior knowl-
edge of description logics or OWL class expressions.
The query builder uses a point-and-click interface with
auto-suggestion concept boxes that force the user to
create syntactically valid, description-logic based
queries.
Query Rewriting Users can interact with the query-

rewriting process, choosing from the available UML
extractions and selecting the appropriate paths during
the path-finding stage. The user is prompted for a
choice when required, the ultimate result of which is a
CQL query that the user can inspect visually to verify
the semantic correctness.
Query Execution (inFigure 9) Users can run the

rewritten query against the service of their choice and
retrieve and save their results in a variety of formats.
The interface has been developed using the Google

Web Toolkit (GWT) with a MySQL Database backend.
Client-server communications employ the Java RPC
implementation1.

Performance evaluation
For an evaluation of the query reformulation process,
our experimental analysis covers the following:

1. We present some metrics to assess the OWL
representation of the information models. In particu-
lar, since an important step in the rewriting process
is the property path finder, we examine the
sequences of concepts linked by object properties
(paths).
2. We provide results of the generation times for the
module extraction, the ontology generation and the
inference of the ontologies using both the Pellet and
HermiT reasoners. These results show that the gen-
eration of the ontologies, which enable our
approach, can be done in a performant manner.
3. We perform an evaluation of the query rewriting
process, showing a breakdown of the constituent
parts of the rewriting algorithm.
4. We compare explanation generation times, simu-
lating the request of 1-5 explanations, demonstrating
the effects on the rewriting process.

The tests were run on a Red Hat Enterprise Linux
Server release 5.3 (Tikanga 64 bit) and 48285 MB of

Figure 6 Screenshot of the browser tool in COnQueSt interface. Figure 6: The browser tool in COnQueSt interface: the upper left panel
shows the list of projects (or information models) available, the bottom left panel shows the concepts used to annotate the selected project,
and the right panel allows to view the concepts definitions, including links to the NCI thesaurus browser. All panels have a searching facility: for
instance, it is possible to search projects by their name.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 11 of 24

Figure 8 Screenshot of the query builder in COnQueSt interface. Figure 8: The COnQueSt query builder tool allows to search available
concepts and to specify an association between them, to indicate that has a property specified by another concept or indicate a specific value.

Figure 7 Screenshot of the search tool in COnQueSt interface. Figure 7: COnQueSt search tool: when searching for a concept, the result
shown includes the projects (or information models) with matching concepts as well as the concepts themselves. While the “search” button
considers all the concepts containing the search criteria, the “I’m feeling lucky” button retrieves the concept that matches exactly the search
criteria.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 12 of 24

RAM. The output files corresponding to the perfor-
mance evaluation are available at [37].

Analysis of the OWL representation of the information
models
Throughout this section, we group caGrid projects into
three distinct subsets: projects available from the caDSR
service, data services that are registered with the caGrid
default index service [39], and Information Models
(those models that are supported by a deployed service
from the caGrid Index Service). It should be noted that
not all caDSR projects are included in the metrics; some
contained errors (their semantic metadata is not com-
plete or refers to an older version of the NCI thesaurus)
and some models are targeted for data modelling, rather
than specifically holding data, making them unrepresen-
tative for our system. Out of the 136 projects in caDSR,
16 were excluded from the analysis for these reasons.
However, none of the excluded projects had an asso-
ciated service. Additionally, the caGrid subset has 63
services and InfoModels has 23 projects. The groups
caGrid and InfoModels are the more relevant for our
system, as it is only possible to execute CQL queries
against projects that have an associated caGrid service.
While InfoModels include a single project from caDSR
for a set of deployed services corresponding to that pro-
ject, caGrid may include the results for several services
that correspond to a single model. Thus, the caGrid

results will be skewed according to the relative weight
of services as opposed to models.
There are several tools for establishing ontological

metrics including ONTOMETRIC, OntoQA and Protégè
as the main available proposals [40]. ONTOMETRIC
[41] is a framework that allows users to measure the
suitability of a particular ontology with respect to the
requirements of their system. ONTOMETRIC provides
a taxonomy of characteristics for each ontology, from
which the user can choose a selection to compare
against another ontology. While Proteégè is primarily a
tool for creating and modifying ontologies, it does pro-
vide a limited selection of metrics for an ontology, but
they are not semantic metrics. There are other ontology
metrics that focus on cohesion, most of which focus on
mining inconsistencies in the ontology [40]. While
ontology metrics have been defined in several of these
tools [40], these have focused on basic metrics (e.g.
number of classes) or semantic-based metrics (e.g. rela-
tionship richness) that allow for the comparison and
quality evaluation of the ontologies. Therefore, we will
focus on the presentation of some bespoke metrics we
developed to measure the proliferation and complexity
of paths within the ontologies, as these will ensure the
viability of our approach.
Our rewriting process seeks to remove the upper-level

and transitive object property hasAssociation and
express the query using only non-transitive properties,

Figure 9 Screenshot of the results panel in COnQueSt interface. Figure 9: The query results panel shows a table listing the properties of
each result object.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 13 of 24

which correspond to the UML associations in the mod-
els. In order to achieve this, we consider the paths
between pairs of concepts from the query connected
through the hasAssociation property. The calculation of
these paths is not trivial; there may be many intermedi-
ate nodes and there may be more than one path for a
given pair of concepts. We define a journey as a traver-
sal from one concept to another. A journey may have
one or many paths, which represent the possible routes
that the traversal can take. Thus, it is important to eval-
uate these aspects of the ontologies in order to assess
the viability of our rewriting tool.
We propose the following metrics as a measure of

complexity in this respect. The Longest Path is the max-
imum path length that may be computed within a given
ontology. Each node in the path can be visited at most
once so as to avoid looping. The longest path length
provides an indication of the worse case for path calcu-
lation times. The Average Paths per Journey reflects the
degree of path expansion within the rewriting algorithm,
as each journey (e.g. from Node A to Node B) may have
many different paths. The rewriting algorithm should be
capable of returning all possible paths as each path may
refer to a different expression of the query. When we
consider that a single query may include multiple inde-
pendent journeys, the possible query rewritings can
become very large. The Average Nodes per Path is the
average number of nodes that must be visited in order
to return a single path. These metrics can affect the
path calculation time as well as the complexity of the
resulting query.
Figure 10 illustrates three box plots with the results of

the path metrics for each project subset. We observe
that while the longest path can have up to 36 nodes, for
75% of the projects in each category their length is less

than 17 or 18. The median of the average path length
varies between 4 and 7 nodes over the three subsets,
and for 75% of the Information Models the average path
length is less than 8. The median of the average paths is
around 2 paths per journey, and for 75% of the projects
in each category the average path per journey is less
than 2.5. This indicates that we will be returning a low
number of path combinations as a result. These results,
then, verify that the paths within the ontologies are
manageable and appropriate for our rewriting tool. By
appropriate, we mean that, given that the tools are pre-
sented as part of a web-based interface with the time-
restraints that accompany that implementation, results
can be gathered within an appropriate time frame. By
manageable, we suggest that the returned paths will not
prove too complex for user interpretation. We also note
that in all the metric diagrams, the caGrid subset is
often very densely clustered around the mean. This is
due to the fact that there are often many caGrid services
for the same project that differ to one another very
slightly or even not at all, which can result in multiple
similar or identical results in our analysis.

Ontology generation, module extraction and classification
In order to isolate any overhead caused by variations in
network performance, we extracted the XML corre-
sponding to each project (or information model) in
caDSR. This is a preliminary step so that the perfor-
mance evaluation can be run locally, and we do not
include any data or results of the performance of this
stage. We generate four ontologies for each project: the
NCIt module ontology (incorporating the concepts from
NCIt relevant to the project), the annotated UML ontol-
ogy (including the classes describing the UML model)
and two inferred versions of the UML ontology. We

Figure 10 The path metrics. Figure 10: Three box plot diagrams showing path metrics for each subset of information models: caDSR, caGrid
and Info Models. The path metrics considered are, from left to right: the longest path, the average number of nodes per path and the average
number of paths per journey.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 14 of 24

generate the inferred ontologies by classifying the gener-
ated ontologies using both the HermiT and Pellet rea-
soners. We recorded the time for each generation and
Figure 11 illustrates the times for the four ontologies of
the each project grouped by subset. The times are pre-
sented in a logarithmic scale to enhance readability. We
can see that the vast majority (75%) of NCIt modules
take less than 2 seconds to generate and even less time
for ontology generation. The classification of the gener-
ated ontologies is also timely, with the average inference
of the Pellet and HermiT reasoners never longer than
100 milliseconds. We conclude that the generation and
inference of the ontologies used in our approach does
not present a barrier to the timely execution of the
rewriting process.

Query rewriting evaluation
We have developed a test suite of over one hundred
queries of varying complexity in order to evaluate the
query rewriting. More details on the performance eva-
luation can be found in the ConQueST website [37].
These queries are run over several services, which are
publicly available from caGrid. The test suite currently
queries the following models (available as services):
caBio 4.2, caArray 2.4, caTissue 2.1 and PIR 1.2. The
results are presented in Figure 12, which shows the
times of each stage of the query reformulation process.
These correspond to each stage of query rewriting: par-
sing, UML extraction, path finding, MCC conversion
and CQL conversion. We grouped the test queries by
query path length and these are presented in Figure 12.
The path length refers to the number of intermediate

nodes in the rewritten query. We can see from Figure
12 that, while the path length has an effect on the time
taken at the path finding stage, the other stages of
implementation remain largely unaffected. We therefore
maintain that, given our analysis of paths within our tar-
get ontologies described above, we can provide query
reformulation in a timely and efficient manner.
There are two principal factors that affect the perfor-

mance of the path-finding stage of the query rewriting
process; the length (complexity) of the returned path
and the number of explanations requested to describe
that path. The length of the returned path is the length
(as an indication of complexity) of the path that is
found between two nodes. We have shown in Figure
12 that there is a correlation between the length of the
resulting path and the time taken in generation,
although we accept that the overall effect is minimal.
The path-finding stage makes use of an explanation
generator [42] in order to find paths through the
ontologies. We can ask for a number of explanations
for one particular journey but we have no control over
the order in which they are returned and we can make
no inferences of how long each explanation took. Due
to the black-box nature of the explanation generator, it
is difficult to make any further assumptions of the
internal processes at this stage. Rather, we endeavour
to present a thorough evaluation of the performance of
this stage to ensure the suitability of the method. Dur-
ing the rewriting evaluation described above, the path-
finder was configured to return only a single explana-
tion and, therefore, a single path for each query. The
explanations returned during the path-finding process,

Figure 11 Ontology and modules, generation and inference times. Figure 11: The box plot diagram on the left shows the generation
times for the NCIt module ontology and the annotated UML ontology for the three groups of information models (caDSR, caGrid and Info
Models). The box plot diagram on the left depicts the inference times for the UML ontology using Hermit and Pellet reasoners. Both diagrams
use logarithmic scale.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 15 of 24

while technically correct according to the ontology, are
not necessarily desirable or biologically relevant. It is,
therefore, sometimes necessary to request multiple
explanations in order for the user to choose the
desired path. The number of explanations requested
has a marked influence of the time taken to return the
paths.
Figure 13 shows the time taken during the path-find-

ing stage configured to return various numbers of expla-
nations. Each requested explanation will result in the
return of an additional single path. Looking at Figure
13, two things are clear. Firstly, as more explanations
are requested, the time required for the path-finding

stage increases. In some outlier cases, the path-finding
times are very high (more than 3 minutes). Due to the
the explanation generator being a black-box component
using ontology reasoning, as we have already mentioned,
it is difficult to assess the precise reasons behind these
very long anomalies. Secondly, we can see that despite
the lengthy times of some queries, the average time for
a query remains relatively constant, with only a gentle
correlation as we request more explanations. We there-
fore maintain, based on the average times, that query
rewriting can be provided in a timely manner although
care should be taken when requesting increased num-
bers of alternative paths.

Figure 12 Query rewriting performance. Figure 12: Times taken in each stage of the query reformulation process (parsing, UML extraction,
path finding, MCC conversion and CQL conversion) at varying path lengths.

Figure 13 Path finding performance. Figure 13: Path-finding times for varying numbers of explanations, ranging from 1 to 5. Each
explanation generates a path.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 16 of 24

Conclusions
The realisation of personalised medicine requires the
integration of data from a variety of scientific disciplines,
such as molecular biology, pathology, radiology and clin-
ical practice. Software infrastructures have been devel-
oped to facilitate the discovery and management of
these types of data in oncology, including the NCRI
ONIX system and the NCI caBIG® infrastructure.
The caBIG® infrastructure is based on the caGrid ser-

vice-oriented middleware, which follows a federated
Local-As-View approach to data integration by defining
mappings from distributed data sources to a global-
schema. The global-schema is realised by the NCI the-
saurus ontology describing the cancer domain. The NCI
thesaurus ontology is used to provide unambiguous
meaning to the data sources. However, it is not cur-
rently used to provide a unified view for querying the
data sources. Current querying capabilities in caGrid
rely on the structure of the data sources.
This paper has presented an ontology-based querying

system, which works over service-oriented and model-
driven infrastructures for sharing cancer data. The
design relied on generating ontologies from existing
information models and reformulating ontology queries
into resources’ queries. The implementation was based
on the caGrid infrastructure, but the approach could be
used over similar model-driven software infrastructures.
This work has extended our previous results [9] with
the theory and implementation to handle federated
queries, a more extensive evaluation of the query refor-
mulation process, and the development of a graphical
user interface aimed at cancer researchers. This paper
has described the entire approach in detail, presenting:

a) the generation of customised OWL2 ontologies
from annotated UML models, based on the
ISO11179 standard for metadata registries. This dif-
fers from traditional UML-to-OWL conversions and
it supports annotations with primary concept and
qualifiers;
b) an analysis of the generated ontologies by deter-
mining several relevant ontology metrics, existing
and new metrics that justify the viability of our
rewriting technique;
c) an extended version of the query reformulation
stages (including query rewriting and translation) to
transform a domain ontology-based query into
queries for a single resource or multiple resources;
the latter involves the definition of join conditions,
which can be found automatically by capitalising on
the semantic annotations of the data sources; two
simple use cases to illustrate the reformulation
stages;

d) a caGrid analytical service implementing the
OWL Generation facility;
e) an analysis of the capabilities of the caGrid query
languages, both CQL and DCQL;
f) an extensive performance evaluation of the OWL
generation, module extraction, querying rewriting
and translation process.

Methods
OWL generation
UML is the de-facto visual modelling language for
object-oriented design and the foundation for model-
driven architectures. The ISO/IEC 11179 metadata reg-
istry in caGrid relies on UML class diagrams and their
mappings to the NCIt ontology. In order to manage and
reason about UML models and their annotations, we
engineered OWL ontologies as a unified representation
of the domain and data sources. In the following sec-
tions, we describe the approach for OWL generation, as
outlined in the Ontology-based Queries section. The
generation approach includes OWL models of UML
class diagrams, OWL models of the NCIt-based annota-
tions, and the extraction of modules from the NCIt
ontology so that only the relevant concepts and proper-
ties for each data source are considered.
We observe that the generated ontologies contain only

concepts and properties, i.e. terminological components
or TBoxes. The assertion components, or ABoxes, corre-
spond to the instances in the data sources.
OWL model of UML class diagrams
First, we present our customised UML-to-OWL trans-
formation. This transformation differs from previous
approaches transforming UML to OWL (for more
details see [9,43]). We then describe the transformation
and the use cases presented above to give examples.
Every UML element is related to its counterpart in the

UML model ontology: all UML classes and attributes are
defined as subclasses of UMLClass and UMLAttribute,
respectively (see equations 1 and 2 below, where the
prefixes are: c: for the caBIO ontology, u: for the UML
model ontology, n: for the NCIt ontology and l: for the
list ontology). We note that the name of an OWL class
corresponding to an attribute includes the class name to
avoid duplications and for associations, it includes its
domain and range. All the UML associations are sub-
properties of hasAssociation (equation 4), and the data-
type property hasValue is used to specify the type of the
attributes (equation 3) as an existential restriction. Con-
trary to other UML-to-OWL transformations, we repre-
sent UML attributes as OWL classes. This is required
so that the ontology-based queries can include the con-
cepts associated with attributes.

c:Chromosome � u:UMLClass (1)

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 17 of 24

c:Chromosome number � u:UMLAttribute (2)

c:Chromosome number � ∃u:hasValue.xsd:string (3)

c:Chromosome locationCollection Location � u:hasAssociation(4)

UML subclass and superclass relationships are repre-
sented with subsumption (Eq. 5). For each UML class,
existential restrictions are added for its associations (Eq.
6) and attributes (Eq. 7). While UML does not explicitly
represent inherited associations, our OWL representa-
tion makes them explicit, modelling the semantics of
UML. For example, as the UML class Location has an
association chromosome with the class Chromosome, this
association is inherited on the subclass SNPPhysicalLo-
cation (Eq. 8).

c:CytogeneticLocation � c:Location (5)

c:Chromosome � ∃c:Chromosome locationCollection Location.
c:Location

(6)

c:Chromosome � ∃u:hasAttribute.u:Chromosome number (7)

c:SNPPhysicalLocation � ∃c:Location chromosome Chromosome.
c:Chromosome

(8)

We note that the generated OWL ontologies comply
with OWL2EL [44], an OWL2 profile specifically
designed to allow efficient reasoning of large terminolo-
gies, which is polynomial in the size of the ontology.
While OWL2EL disallows universal quantification on
properties, it does allow the inclusion of transitive prop-
erties. Thus, it is suitable for our UML-to-OWL trans-
formation customised for the rewriting approach already
outlined.
OWL representation of the semantic annotations
Apart from representing the UML model, we also model
its mapping to NCIt, as maintained in caDSR. Through
the CDEs, UML elements are annotated with a primary
concept, which indicates the meaning of the element. In
turn, a list of qualifier concepts may be used to modify
the primary concept, providing a specific meaning [5].
As OWL2 does not natively supports the representation
of lists, we used Drummond et al’s design pattern for
sequences [28] to model primary concepts and qualifier
lists. The following equations give some examples of the
modelling of the semantic annotations of UML classes
(Eq. 9) and attributes (Eq. 10) with a single concept.
Equation 11 models the class cSNPPhysicalLocation as a
n:Location qualified with l:Chromosome_Band and n:Sin-
gle_Nucleotide_Polymorphism.

c:Chromosome � n:Chromosome (9)

c:Chromosome numer � n:Name (10)

c:SNPPhysicalLocation � n:Location � (1:OWLList�
∃1:hasContents.n:Chromosome�
∃1:hasNext.(1:OWLList�
∃1:hasContents.n:Single Nucleotide Polymorphism))

(11)

Module extraction from NCI thesaurus ontology
The NCIt ontology is very large, as it provides a com-
mon vocabulary for the whole cancer domain [7]. Each
caGrid data service is, in general, concerned with data
pertaining to more specific domains than the whole
NCIt ontology. Thus, for each caGrid data service refer-
ring to a subset Σ of the NCIt vocabulary, there is a
subset of terms and relationships from NCIt that is rele-
vant, called a module from the ontology [45]. The mod-
ule M represents all knowledge about the terms of the
signature Σ. One of the approaches to relevance is logic-
based: the module M is relevant for the terms Σ if all
the consequences of the ontology that can be expressed
over Σ are also consequences of M[45]. We follow that
approach by Sattler et al [45] and extract an NCIt mod-
ule for each of the information models in caGrid. For
succinctness and efficiency, we use this module, as
opposed to the whole NCIt ontology, for the semantic
annotations of UML models and subsequent reasoning.
We observe that we removed the disjoint axioms from
the NCIt modules, as we noted before [43,46] that using
subsumption to represent UML class to concept map-
ping may result in inconsistent ontologies as the annota-
tions for a single class may come from two high-level
branches in NCIt that are declared as disjoint.

Query reformulation
This section describes how an ontology-based query is
rewritten and then translated, first to the intermediate
optimisation language MCC and subsequently to the
target CQL/DCQL languages. While the overall
approach is similar to our previous work [9], we have
comprehensively improved it, including extending the
translation of queries over distributed data sources. In
this section, we describe the query translation steps for
both single and multiple-service queries. In most cases,
the stages are the same (or negligibly different). We
make clear the steps that are significantly different in
the approach. We provide Figure 14 as an illustration of
the query reformulation process. Within the figure, we
make mention of the following;

• The constituent stages of the rewriting, describing
the branching of the process for both single and
multiple services (blue).
• The form of the query at each stage of the process
(yellow).
• The points of user-interaction (red).

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 18 of 24

Parsing
First, the user query is syntactically parsed. The query
uses concepts from the NCIt, the UML model ontology
and the list ontologies [28]. If this stage fails, the user
will be required to correct the query before continuing
the reformulation process.
UML extraction
Initially, we express the query using NCIt concepts with
the benefit that we require no knowledge of the structure
of the underlying UML model and therefore, the query
can be run over all the data services containing the con-
cepts used. Having made this assertion, we must then
translate the concepts to specific UML classes for specific
data sources. This process is facilitated by our generated
ontologies that specify a subclass relationship between a
concept and the corresponding UML classes or UML
attributes, depending on their position in the query.
Therefore, in order to perform UML extraction, we must
look to the relevant concept in the ontology and, using a

reasoner, retrieve the subclasses of that concept that are
also subclasses of the class UMLClass or of the class
UMLAttribute, respectively. This denotes that the OWL
class represents a UML class or UML attribute.
It is often the case that a single NCIt concept will cor-

respond to many UML classes and, in such cases, each
corresponding UML class is returned to form one single
possible query. Therefore, the outcome of the UML
extraction is a combination of possible queries given the
extracted UML classes or attributes. Through the gra-
phical interface, the user will be required to select the
preferred UML extraction. In the second use case pre-
sented above, one possible UML extraction for the Con-
cept-Based Query 2 for services caBIO and PIR is:
cabio:NucleicAcidSequence and (hasAssociation

some (pir:Gene and hasAttribute some pir:Gene_na-
me="BRCA1”)) and (hasAssociation some (pir:Organ-
ism and hasAttribute some pir:
Organism_scientificName="homo sapiens”))

Figure 14 Query reformulation stages. Figure 14: The stages of query rewriting for both single and multiple target data services are depicted
in blue. The form of the query at the different stages is represented in yellow and in red, we show the points of user interaction.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 19 of 24

Data values extraction
As the generated ontologies do not contain instances,
the semantic validation of the query, expressed as an
OWL class expression, must ignore the data expressions.
This step extracts the data expressions, which will be
reinserted later on.
In the Query 2 use case, this step results in:
cabio:NucleicAcidSequence and hasAssociation some

pir:Gene and hasAssociation some pir:Organism
Semantic validation
We use a reasoner to check that the resulting query can
be satisfied. If the query cannot be satisfied, subsequent
reformulation of the query is halted.
Path finder
Single data source path finder This step deals with the
ontology corresponding to the UML model of data
source (the semantic annotations do not need to be
considered further) and aims to find the path of UML
classes related through the transitive property hasAsso-
ciation2. The path finder rewrites the expression using
non-transitive properties, corresponding to UML asso-
ciations, by using an explanation generator [42] that
retrieves the justification for two classes to be connected
via the transitive property, and thus allowing to find the
intermediate classes. The path finder may find more
than one path between a set of nodes and, in such
cases, will return each path as a combination of possible
queries for user selection. In Query 1, the path finder
stage retrieves:
cabio:SNP and hasAssociation some cabio:SNPPhysi-

calLocation and hasAssociation some (cabio:Chromo-
some and hasAttribute some (cabio:
Chromosome_number))
Federated path finder The process of query reformula-
tion differs when translating to single-service CQL
queries and multiple-service DCQL queries. Although
the change is minimal or entirely absent in other stages,
the path-finding stage has required the engineering of a
new component, which we refer to as the federated path
finder. Figure 15 illustrates the processes within the fed-
erated path finder, which again contain similarities to
the single-service approach. The first step is to merge
the UML model ontologies according to the classes pre-
sent within the selected UML extraction. The merging
of two ontologies results in an ontology which simply
contains all the axioms of the two original ontologies.
At this point, we extract the join conditions of the

ontologies within the single merged ontology. Given an
scenario whereby we have no prior knowledge of where
or how to join the ontologies, finding the join condi-
tions between two ontologies is a two-part process. This
process relies on the existing annotations with NCI the-
saurus concepts. Firstly, we find the UML classes in
each ontology that are annotated with the same

concepts, implying that the classes are semantically
equivalent. We then look at the attributes of those
classes, searching for those that are also annotated with
the same concepts. This provides us with the semanti-
cally equivalent attributes of the semantically equivalent
classes. Through the interface, the user selects the pre-
ferred join conditions based on their biological rele-
vance. An Equivalent Class axiom between the
semantically-equivalent UML classes from the join con-
dition is defined in the merged ontology. This new
axiom allows to establish a path that can traverse from
one ontology to another. Additionally, the join condi-
tions are retained for lookup during the MCC transla-
tion. Additionally, we envision storing these join
conditions for later use. These join conditions could be
shared between users together with queries that use
them.
The federated path-finder expands paths in the same

way as the single-service path finder, except that expla-
nations are generated from the merged ontology rather
than a single ontology. This allows paths to be found
that traverse more than one service (using the join con-
ditions). When such an event occurs, we split the result
each time we join to another ontology. The result of the
federated path-finder, therefore, is a list of service-speci-
fic queries and the join conditions between them. This
is subsequently passed to the MCC translator, which for
federated queries has been extended to take a list of
queries and, using the defined join conditions, forms the
MCC expression.
In the Query 2 use case, two paths are found (one for

each service):
Path finder result for caBIO
cabio:NucleicAcidSequence and (cabio:geneCollection

some (cabio:Gene and cabio:proteinCollection some
cabio:Protein))
Path finder result for PIR
pir:Protein and (pir:geneCollection some pir:Gene)

and (pir:organismCollection some pir:Organism)
The join condition chosen between these two services

includes the semantically equivalent classes cabio:Protein
and pir:Protein with semantically equivalent attributes
cabio:uniProtCode and pir:uniprotkbEntryName. This
join condition links the two paths above.
Data values addition
At this point, we can retrieve the data expressions
removed earlier and re-insert them into the correspond-
ing OWL classes.
OWL expression to MCC translation
CQL and DCQL are object-oriented query languages,
although no calculus or algebra has been defined for
them. In order to provide a translation with D/CQL as
target languages, we have decided to use the monoid
comprehension calculus (MCC), as it is a formal

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 20 of 24

framework to support object queries optimisations [25].
This formalism allows to manipulate object queries and,
as we mentioned in the Object-based Queries section,
using it as an intermediate language makes our
approach general. Translating the ontology-based query
to other target languages will involve only modifying the
last step, MCC to C/DCQL, which is the only one
dependent on caGrid. Also, adapting the system for
future/modified versions of D/CQL will be simple. Addi-
tionally, the previous steps in the query reformulation
process produce rewritings resulting from reasoning
over the generated ontologies. This step, on the other
hand, translates ontology-based expressions to monoid
comprehensions, meaning that manipulation of the
expressions is based on the calculus from now on. Last
but not least, the use of MCC ensures support for
optimisations.

Our approach is similar to the work by Peim et al
[47], as they map description logics queries into the
MCC. However, the are significant differences with our
reformulation process. First, Peim et al’s solution is for
GAV systems rather than LAV systems. In their system,
each concept in the ontology is viewed as a named per-
sistent set of database objects. Also, they assume that
the data sources are described using the Object Defini-
tion Language (ODL). Moreover, while they use an
expansion algorithm to rewrite an OWL expression
based on a set of acyclic definitions, we follow the speci-
fic steps described in this section. We support query
rewriting from OWL expression to the target languages
using justifications of entailments [42] within the infor-
mation model ontology.
The results of object queries are collections of homo-

geneous objects. The MC calculus offers a uniform

Figure 15 Federated path finder. Figure 15: Processes involved in finding paths in the information models when dealing with queries over
multiple data services.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 21 of 24

notation for types representing collections, such as lists,
bags and sets. The rationale is that the union operation
over sets or bags, and the concatenation operation over
lists are monoid operations. A monoid operation is asso-
ciative and has an identity element. A monoid is an
algebraic structure consisting of a set of elements and a
monoid operation.
Definition 1 (Monoid) A monoid is an algebraic

structure defined by the triple < T⊕, ⊕,Z⊕ >, where T is
a set, ⊕ is a binary associative operation ⊕:
⊕ : T⊕xT⊕ → T⊕ called the merge function for the
monoid, and the identity element Z⊕ is called the zero
element for the monoid.
The basic structure of the MCC is the monoid

comprehension:
Definition 2 (Monoid comprehension) A monoid

comprehension is an expression of the form ⊕{e|q̄} where
⊕ is a monoid operator called the accumulator, e is the
header and q̄ = q1, ...qn, n ≥ 0 is a sequence of qualifiers.
A qualifier can take the form of a generator, v ¬ e’ with
v a range variable and e’ an expression constructing a
collection, or a filter predicate.
For each rewritten query after addition of data values,

given as an OWL expression, we provide a transforma-
tion to MCC such that: the header variable is deter-
mined by the first concept in the query and the
qualifiers are built for each of the remaining expres-
sions. The header variable identifies the instances to be
retrieved by the query, and the qualifiers specify the
conditions that the instances must satisfy. The transla-
tion uses annotation properties included in the gener-
ated ontologies, which provide attributes such as
ClassName for OWL classes representing UML classes,
AttributeName for OWL classes representing UML
attributes and RoleName for the name of the associa-
tions represented by object properties, which are sub-
properties of hasAssociation.
Next, we define the reformulation function ℝ to trans-

late OWL class expressions into MCC. The definition of
ℝ is compositional: it is applied to the whole OWL class
expression representing the query after UML extraction
and data values addition, and subsequently to sub-
expressions. Finally, the translation of sub-expressions is
composed to produce the MCC expression that repre-
sents the overall translation. In the following definitions,
Expri represents a general OWL class expression, A and
B represent OWL classes, C represents a constant and p
represents an object property. The function ℝvar denotes
the assignment of variables, such that ℝvar() creates a
new variable, and ℝvar(A) retrieves the variable assigned
to the OWL class A if it exists, otherwise it creates a
new variable for A. If A is an OWL class representing a
UML attribute, the function C(A) retrieves the UML
class containing the attribute A. The function D(p)

retrieves the domain of the object property p.

R(Expr1 and Expr2) =

⎧⎨
⎩

�{Rvar()|R(A) = C},
if Expr1 = hasAttribute some A and Expr2 = p2value C

�{Rvar()|R(Expr1) and R(Expr2), otherwise
(12)

R(A) =
{ �{Rvar(A)|Rvar(A) ← R(A)} A represents a UML class

Rvar(C(A)).AttributeName(A) A represents a UML attribute (13)

R(p some Expr) =

⎧⎨
⎩

�{newVar = Rvar()|newVar ← Rvar(D(p)).RoleName(p), newVar ← R(Expr)}
if p represents a sub-property of hasAssociation

R(Expr), if p represents the object property hasAttribute
(14)

R(Expr1 or Expr2) = or {Rvar()|R(Expr1), R(Expr2)}(15)
When receiving a list of OWL class expressions from

the previous step (federated path finder with data values
reinserted) and the join conditions, the MCC generator
uses the reformulation function above for each of the
OWL class expressions. It then combines them into a
single MCC expression by defining the join condition as
vi.localAttributeName = vj. foreignAttributeName, where
vi and vj correspond to the local and foreign semanti-
cally-equivalent classes, respectively.
Once the algorithm obtains an MCC expression, it is

normalised using the rules described in [25] and simpli-
fied, i.e. the number of variables used is reduced.
In the Query 2 use case, the resulting MCC expression

is:

�{v0|
v0 ← gov.nih.nci.cabio.domain.NucleicAcidSequence,

v1 ← v0 · geneCollection,
v1 ← gov.nih.nci.cabio.domain.Gene,

v2 ← v1 · proteinCollection,
v2 ← gov.nih.nci,cabio.domain.Protein
v2.uniProtCode = v3.uniprotkbEntryName

v3 ← edu.georgetown.pir.domain.Protein,
v4 ← v3.geneCollection,

v4 ← edu.georgetown.pir.domain.Gene,
v4.name =′′ BRCA1′′

v5 ← v3.organismCollection,
v5 ← edu.georgetown.pir.domain.Organism

v5.scientificName =′′ homo sapiens”}

(16)

MMC to D/CQL translation
Translating the MCC expression into CQL includes the
following; define as Target the type of the variable that
appears in the header; including an Association per each
pair of generators, one determining the name (the class
to which they belong) and the other identifying the role
name; include an Attribute restriction for each filter.
When the MCC expression contains a sub-expression

corresponding to a join condition, the result will be a
DCQL query. Each MCC expression is translated simi-
larly to the description above, where the overall target is
the TargetObject. Additionally, the expressions of the
join conditions are used to define the ForeignAssociation
(s), where the equivalent attributes are used to define
the JoinCondition and the target from the second MCC
expression is the ForeignObject.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 22 of 24

Foot Note
1Several videos demonstrating the interface can be
found at http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/
conquest/

2We note that the ontology is compliant with the
OWL2 EL profile, as OWL2 EL supports the use of
transitive object properties. For more information, see
http://www.w3.org/TR/owl2-profiles/

Acknowledgements
The authors are grateful to the National Cancer Research Institute
Informatics Initiative for support of their research.
This article has been published as part of BMC Bioinformatics Volume 13
Supplement 1, 2012: Semantic Web Applications and Tools for Life Sciences
(SWAT4LS) 2010. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S1.

Author details
1Computational and Systems Medicine, University College London, Gower
Street, London WC1E 6BT, UK. 2Department of Computer Science, University
College London, Gower Street, London WC1E 6BT, UK.

Authors’ contributions
AGB designed the approach for ontology-based queries over cancer data,
which included two components: one for the generation of ontologies from
information models and another one for the query reformulation process.
The latter component used the Monoid Comprehension Calculus (MCC) as
intermediate language, and AGB provided the translation rules from OWL
class expressions to MCC. AGB and BT implemented the both components
and designed the evaluation methods. BT compiled the results of the
evaluation. BT wrapped the ontology generation code as a caGrid service
and developed the graphical user interface to expose the query system. AF
provided vision, scope, requirements analysis throughout the project. All
authors participated in revision and have read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 25 January 2012

References
1. NCRI Informatics Initiative. [http://www.cancerinformatics.org.uk/].
2. caBIG® Programme. [https://cabig.nci.nih.gov/].
3. ONIX. [http://www.ncri-onix.org.uk/].
4. Saltz J, Oster S, Hastings S, Langella S, Kurc T, Sanchez W, Kher M,

Manisundaram A, Shanbhag K, Covitz P: caGrid: design and
implementation of the core architecture of the cancer biomedical
informatics grid. Bioinformatics 2006, 22:1910-1916.

5. Tobias J, Chilukuri R, Komatsoulis GA, Mohanty S, Sioutos N, Warzel DB,
Wright LW, Crowley RS: The CAP cancer protocols-a case study of
caCORE based data standards implementation to integrate with the
Cancer Biomedical Informatics Grid. BMC Med Inform Decis Mak 2006,
6:25-25.

6. UML. [http://www.uml.org].
7. Hartel FW, de Coronado S, Dionne R, Fragoso G, Golbeck J: Modeling a

description logic vocabulary for cancer research. Journal of Biomedical
Informatics 2005, 38:114-129.

8. OWL2 language overview. [http://www.w3.org/TR/owl2-overview/].
9. González-Beltrán A, Tagger B, Finkelstein A: Ontology-based Queries Over

Cancer Data. In Proceedings of the Workshop on Semantic Web Applications
and Tools for Life Sciences (SWAT4LS 2010, Berlin, Germany). CEUR Workshop
Proceedings;Burger A, Marshall MS, Romano P, Paschke A, Splendiani A
2010:[http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
698/].

10. Lenzerini M: Data integration: a theoretical perspective. PODS ‘02:
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems New York, NY, USA: ACM; 2002, 233-246.

11. Cheung KH, Smith AK, Yip KY, Baker CJ, Gerstein MB: Revolutionizing
Knowledge Discovery in the Life Sciences, Springer 2007 chap. Semantic Web
Approach to Database Integration in the Life Sciences .

12. Halevy AY: Answering queries using views: a survey. The VLDB Journal
2001, 10:270-294.

13. Foster I: The anatomy of the grid: enabling scalable virtual organizations.
Cluster Computing and the Grid (CCGRID) Brisbane, Qld., Australia: First IEEE/
ACM International Symposium; 2001, 6-7.

14. Pollock JT, Hodgson R: Adaptive Information: Improving Business Through
Semantic Interoperability, Grid Computing and Enterprise Integration Wiley-
Interscience; 2004.

15. EVS. [https://cabig.nci.nih.gov/concepts/EVS/].
16. ISO/IEC 11179. [http://metadata-stds.org/11179/].
17. FQP. [http://cagrid.org/display/fqp/Home].
18. DCQL. [http://cagrid.org/display/fqp/DCQL].
19. Berners-Lee T, Hendler J, Lassila JA: The Semantic Web. Scientific American

2001, 284:34-43.
20. Giunchiglia F, Farasi F, Tanca L, Virgilio RD: Semantic Web Information

Management, Springer 2010 chap. Chapter 3: The Semantic Web Languages .
21. Heath T, Bizer C: Linked Data - Evolving the Web into a Global Data Space

Morgan & Claypool Publishers; 2011.
22. Calvanese D, Giacomo GD, Lembo D, Lenzerini M, Rosati R, Ruzzi M:

Semantic Web Information Management, Springer 2010 chap. Using OWL in
Data Integration .

23. Model-Driven Architecture. [http://www.omg.org/mda/].
24. Object Management Group. [http://www.omg.org/].
25. Fegaras L, Maier D: Optimizing object queries using an effective calculus.

ACM Trans Database Syst 2000, 25:457-516.
26. CQL XML schema. [http://cagrid.org/display/dataservices/CQL+Schemas].
27. caGrid portal. [http://cagrid-portal.nci.nih.gov].
28. Drummond N, Rector A, Stevens R, Moulton G, Horridge M, Wang H,

Sedenberg J: Putting OWL in order: Patterns for sequences in OWL. OWL
Experiencies and Directions (OWLEd 2006), Volume 216 of CEUR Workshop
Proceedings, Athens, Georgia, USA: CEUR-WS.org 2006.

29. caBIG® Annual Meeting 2008. [http://cagrid.org/display/fqp/CaBIG+Annual
+Meeting+2008+FQP+Demo+-+Live+API+Demo].

30. Horridge M, Drummond N, Goodwin J, Rector AL, Stevens R, Wang H: The
Manchester OWL Syntax. In Proc. of the 2006 OWL Experiences and
Directions Workshop (OWL-ED2006), Volume 216 of CEUR Workshop
Proceedings, Athens, Georgia, USA: CEUR-WS.org; 2006, 10-11.

31. caBIO. [https://wiki.nci.nih.gov/display/caBIO/caBIO+Wiki+Home+Page].
32. PIR. [https://cabig.nci.nih.gov/tools/PIR].
33. caGrid 1.3. [http://wiki.cagrid.org/display/caGrid13/Home].
34. OWLAPI. [http://owlapi.sourceforge.net/].
35. Pellet reasoner. [http://clarkparsia.com/pellet/].
36. HermiT reasoner. [http://hermit-reasoner.com].
37. ConQueST. [http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/conquest/].
38. NCI meta-thesaurus. [http://ncimeta.nci.nih.gov/].
39. [http://cagrid-index.nci.nih.gov:8080/wsrf/services/DefaultIndexService].
40. García J, García-Peñalvo FJ, Therón R: A Survey on Ontology Metrics. In

Knowledge Management, Information Systems, E-Learning, and Sustainability
Research, Volume 111 of Communications in Computer and Information
Science. Springer Berlin Heidelberg;Lytras MD, Ordonez De Pablos P,
Ziderman A, Roulstone A, Maurer H, Imber JB 2010:22-27.

41. Lozano-Tello A, Gómez-Pérez A: ONTOMETRIC: A Method to Choose the
Appropriate Ontology. Journal of Database Management 2004, 15:1-18.

42. Kalyanpur A, Parsia B, Horridge M, Sirin E: Finding All Justifications of OWL
DL Entailments. Proceedings of the 6th international The semantic web and
2nd Asian conference on Asian semantic web conference, ISWC’07/ASWC’07
Berlin, Heidelberg, Germany: Springer-Verlag; 2007, 267-280.

43. González-Beltrán A, Finkelstein A, Wilkinson JM, Kramer J: Domain Concept-
Based Queries for Cancer Research Data Sources. 22nd IEEE International
Symposium on Computer-Based Medical Systems (CBMS’ 09), Volume 0
Albuquerque, New Mexico, USA: IEEE Computer Society; 2009, 1-8.

44. Cuenca-Grau B, Horrocks I, Motik B, Parsia B, Patel-Schneider PF, Sattler U:
OWL 2: The next step for OWL. J of Web Semantics 2008, 6:309-322,
[download/2008/CHMP+08.pdf].

45. Sattler U, Schneider T, Zakharyaschev M: Which kind of module should I
extract? In Description Logics. Volume 477. Oxford, UK: DL Home 22nd
International Workshop on Description Logics; 2009.

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 23 of 24

http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/conquest/
http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/conquest/
http://www.w3.org/TR/owl2-profiles/
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S1
http://www.cancerinformatics.org.uk/
https://cabig.nci.nih.gov/
http://www.ncri-onix.org.uk/
http://www.ncbi.nlm.nih.gov/pubmed/16766552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16766552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16766552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787533?dopt=Abstract
http://www.uml.org
http://www.ncbi.nlm.nih.gov/pubmed/15797001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15797001?dopt=Abstract
http://www.w3.org/TR/owl2-overview/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-698/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-698/
http://www.ncbi.nlm.nih.gov/pubmed/22145036?dopt=Abstract
https://cabig.nci.nih.gov/concepts/EVS/
http://metadata-stds.org/11179/
http://cagrid.org/display/fqp/Home
http://cagrid.org/display/fqp/DCQL
http://www.ncbi.nlm.nih.gov/pubmed/11396337?dopt=Abstract
http://www.omg.org/mda/
http://www.omg.org/
http://cagrid.org/display/dataservices/CQL+Schemas
http://cagrid-portal.nci.nih.gov
http://cagrid.org/display/fqp/CaBIG+Annual+Meeting+2008+FQP+Demo+-+Live+API+Demo
http://cagrid.org/display/fqp/CaBIG+Annual+Meeting+2008+FQP+Demo+-+Live+API+Demo
https://wiki.nci.nih.gov/display/caBIO/caBIO+Wiki+Home+Page
https://cabig.nci.nih.gov/tools/PIR
http://wiki.cagrid.org/display/caGrid13/Home
http://owlapi.sourceforge.net/
http://clarkparsia.com/pellet/
http://hermit-reasoner.com
http://www.cs.ucl.ac.uk/staff/a.gonzalezbeltran/conquest/
http://ncimeta.nci.nih.gov/
http://cagrid-index.nci.nih.gov:8080/wsrf/services/DefaultIndexService

46. McCusker JP, Phillips JA, González Beltrán A, Finkelstein A, Krauthammer M:
Semantic web data warehousing for caGrid. BMC Bioinformatics 2009,
10(Suppl 10):S2.

47. Peim M, Franconi E, Paton NW, Goble CA: Query Processing with
Description Logic Ontologies Over Object-Wrapped Databases. SSDBM
‘02: Proceedings of the 14th International Conference on Scientific and
Statistical Database Management Washington, DC, USA: IEEE Computer
Society; 2002, 27-36.

doi:10.1186/1471-2105-13-S1-S9
Cite this article as: González-Beltrán et al.: Federated ontology-based
queries over cancer data. BMC Bioinformatics 2012 13(Suppl 1):S9.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

González-Beltrán et al. BMC Bioinformatics 2012, 13(Suppl 1):S9
http://www.biomedcentral.com/1471-2105/13/S1/S9

Page 24 of 24

http://www.ncbi.nlm.nih.gov/pubmed/19958512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20502534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20502534?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction and background
	Data integration systems
	caBIG® semantic infrastructure
	Semantic web/linked data approach for querying and data integration
	Object-based queries

	Results and discussion
	CQL and DCQL analysis
	Ontology-based queries
	Use cases
	Software architecture

	Implementation
	OWLGen caGrid analytical service
	COnQueSt graphical user interface

	Performance evaluation
	Analysis of the OWL representation of the information models
	Ontology generation, module extraction and classification
	Query rewriting evaluation

	Conclusions
	Methods
	OWL generation
	OWL model of UML class diagrams
	OWL representation of the semantic annotations
	Module extraction from NCI thesaurus ontology

	Query reformulation
	Parsing
	UML extraction
	Data values extraction
	Semantic validation
	Path finder
	Data values addition
	OWL expression to MCC translation
	MMC to D/CQL translation

	Foot Note
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

