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Summary
Together with peptides, T lymphocytes respond to hydrophobic molecules, mostly lipids,
presented by the non-classical CD1 family (CD1a-e). These molecules have evolved complex and
diverse binding grooves in order to survey different cellular compartments for self and exogenous
antigens, which are then presented for recognition to T-cell receptors (TCRs) on the surface of T
cells. In particular, most CD1d-presented antigens are recognized by a population of lymphocytes
denominated natural killer T (NKT) cells, characterized by a strong immunomodulatory potential.
Among NKT cells, two major subsets (type I and type II NKT cells) have been described, based
on their TCR repertoire and antigen specificity. Here we review recent structural and biochemical
studies that have shed light on the molecular details of CD1d-mediated antigen recognition by
type I and II NKT cells, which are in many aspects distinct from what has been observed for
peptide MHC-reactive TCRs.
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Introduction
The αβ or γδ T-cell receptors (TCRs) expressed on T lymphocytes recognize antigens only
when presented by an appropriate antigen-presenting molecule. While the recognition of
peptides requires presentation by major histocompatibility complex (MHC) class I or II
molecules, T lymphocytes can also recognize lipid antigens presented by the MHC I-like
CD1 family (1–3). Despite the common evolutionary origin of MHC and CD1 protein
families (4), the latter are mostly non-polymorphic, and their antigen-binding grooves have
evolved to present hydrophobic molecules. The T lymphocytes restricted by CD1 molecules
have been involved in pathogen recognition, tumor immunity, and autoimmune disease
pathology (5–7). In particular, the lymphocyte population restricted by the CD1d isotype is
denominated natural killer T (NKT) cells due to the initial finding that these cells express
both markers typical for natural killer cells and a TCR, characteristic of conventional T
cells. While the expression of NK markers does not apply to all NKT cell subsets, NKT cells
represent one of the most well characterized populations of innate-like T cells, with a strong
immunomodulatory potential. Here we review our current understanding of how lipid
antigens are presented by CD1d molecules and recognized by NKT cell TCRs.
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The CD1 antigen-presenting molecules
CD1 molecules are assembled in the endoplasmatic reticulum (ER) as non-covalently linked
heterodimers of an isotype-specific heavy chain (CD1a-e) and β–2-microglobulin (β2m)
(Fig. 1A), although CD1d can also be expressed in a β2m-independent form (8). During its
assembly in the ER, CD1 incorporates endogenous lipids and traffic to the plasma
membrane. While certain lipids can load onto CD1 directly at the cell surface, generally
CD1 has to recycle into endosomal compartments for efficient antigen exchange and
loading. Upon trafficking back to the cell surface, the antigen is then presented by CD1 to
cognate T cells (9, 10). Structurally, CD1 molecules show similarity with MHC class I
molecules (11), as their antigen-binding groove is defined by two α helices (denominated
α1 and α2) that sit above an eight-stranded antiparallel β sheet platform (12, 13). The
relatively conserved α3 domain pairs with β2m, while a single transmembrane domain
connects the extracellular domain to a short cytoplasmic tail that contains an amino acid
motif necessary for receptor mediated endocytosis (except for CD1a which lacks any
internalization motif). Five CD1 isotypes have been identified, divided in two major groups:
Group 1 (CD1a-c) and Group 2 (CD1d) (14, 15). The fifth CD1 molecule, CD1e, is not
involved in antigen presentation but instead enhances processing of CD1b antigens in late
endosomes (16). While studies of the CD1 molecules in birds revealed what could represent
an archetypal lipid-binding groove (17, 18), all mammals studied so far express some
combination of CD1 molecules (19, 20). In humans, where one gene for each isotype is
expressed, differences in size and shape of the antigen-binding groove, as well as different
intracellular trafficking and expression patterns of CD1 result in non-overlapping roles for
these molecules in antigen presentation. The last few years have seen a dramatic
advancement of our understanding of the differences and specificities within the CD1
family, and structural information is now available for each isotype. While CD1a has a
relatively small binding groove and recycle through early endosomes (21, 22), CD1b has the
biggest groove of the family and travels through early and late endosomes (23–25), while
CD1c has an intermediate size groove and travels to early and late endosomes (26). CD1e
has a relatively wide binding groove, suited for rapid lipid exchange (27). The only member
of the Group 2, CD1d, represents the only CD1 molecule found in mice and rats, due to a
deletion of the Group 1 CD1 members (4). Interestingly, two highly similar (95% sequence
identity) copies of CD1d are found in mouse, CD1d1 and CD1d2 (28). While the expression
of CD1d2 appears to be limited and dispensable in mice, it is possible that the two isoforms
plays different roles in antigen presentation as several of the sequence differences could
result in an altered antigen-binding groove shape and therefore specificity (28, 29).
However, most studies on CD1d have insofar involved only CD1d1 (hereafter CD1d). CD1d
has a groove of intermediate size and travels to late endosomes (11, 30, 31). The CD1d
antigen-binding groove is characterized by two pockets, denominated A′ and F′, roughly
corresponding to the position of the terminal A and F pockets in MHC I molecules (11) (Fig.
1A). The deeply buried A′ pocket is located toward the N-terminus of the α1 helix and
adopts a unique donut-like shape, while the F′ pocket is rather straight, less deep, and
located toward the C-terminal end of the α1 helix. Each pocket can bind one alkyl chain
from the antigen and spacer molecules, such as fatty acids, are recruited when the alkyl
chain of the antigen is too short to satisfactorily fill either pocket (32).

Antigen transport and processing
The mechanism of antigen transport and lipid antigen generation have been previously
reviewed extensively (33–35), and here we present only a brief summary focused on CD1d.
The nature of the lipid antigens presented by CD1 molecules requires the presence of
particular mechanisms to induce uptake of these molecules by antigen-presenting cells
(APCs) and their loading onto CD1 molecules. Lipid transfer protein such as apolipoprotein
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E and fatty acid amide hydrolase (FAAH) have been shown to enhance the presentation of
certain antigens by CD1d (36, 37). While antigens can be loaded on the cell surface (38),
specific proteins present in the endosomal and lysosomal compartments can improve loading
efficiency by promoting lipid antigen exchange. Among these, saposins (39–42) and
microsomal triglyceride transfer protein (43) have been reported to increase loading of CD1
antigens with a certain degree of specificity. Similar to MHC antigens, lipid antigens can
also be processed by lysosomal enzymes to yield active compounds, as demonstrated in case
of CD1d for synthetic antigens (44), microbial antigens (16), and self-antigens (39).

Antigen presentation by CD1d
While CD1d traffics through different cellular compartments, it surveys a wide range of
lipid molecules of the secretory pathway (45). Accordingly, the CD1d binding groove can
bind a variety of different chemical moieties, as reported by mass spectrometric
identification of endogenous lipids bound to mouse and human CD1d molecules (45–47).
Among these, sphingolipids and glycerolipids with one, two, or four acyl chains represent
the major ligand classes (Fig. 1B). Moreover, exogenous lipids such as microbial antigens
from Sphingomonas spp. (48–50), Borrelia burgdorferi (51), Streptococcus pneumonia and
Group B Streptococcus (52), Helicobacter pylori (53), and even hydrophobic peptides (54–
56) and small nonlipidic molecules (57) have been reported to bind CD1d and stimulate
NKT cells. While it should be noted that antigen binding to the CD1 groove has not been
structurally characterized for nonlipidic antigens, a wealth of crystal structures of mouse and
human CD1d in complex with a variety of lipids have been determined in the last few years.
Taken together, these structural data allows us to define the molecular rules of CD1d to
present antigens for recognition by T lymphocytes.

Sphingolipid antigens
Sphingolipids are the first class of CD1d ligands that have been identified, based on the
discovery of glycosylceramides as antigens for NKT cells (58). One of the most well-
characterized CD1d ligand is α–galactosyl ceramide (αGalCer), a glycosphingolipid that
consists of a phytosphingosine base (C18) that is N-amide linked to a C26 fatty acid to form
the phytoceramide backbone, which carries an α-anomeric galactose sugar (Fig. 1B).
Structures of αGalCer in complex with human CD1d (30) and of several structurally related
αGalCer analogues [PBS25 (31), OCH (59), and variants carrying a phenyl group on the
sphingosine chain (60)] in complex with the mouse CD1d ortholog have been described.
The orientation of the lipid alkyl chains in the binding groove appeared to be determined by
conserved polar contacts between CD1d residues (Asp80, Asp153, Thr156) and the polar
moieties of the phytoceramide backbone. As a result, the acyl chain always binds inside the
F′ pocket, regardless of the chain length. Accordingly, the size of the F′ pocket has evolved
to bind alkyl chains of 16–18 methylene units, typical of sphingosine or phytosphingosine,
even though slightly longer chains can also be fitted in a tightly compact conformation (61).
In the case of shorter alkyl chains, as found in the αGalCer analog OCH and PBS-25, spacer
lipids can be recruited to both A′ and F′ pocket presumably to avoid collapse of the
hydrophobic groove (31, 59) (Fig. 1C). The rules described for the synthetic antigen
αGalCer and its analogues appear quite conserved among microbial sphingolipid antigens,
such as α-galacturonosyl ceramide (GalAGSL) from Sphingomonas spp. (62) and self-
antigens, such as isoglobotrihexosyl ceramide (iGb3) (58) (Fig. 1D) and sulfatide (63) (Fig.
1E), further suggesting that the ceramide backbone of the ligand dictates its binding
orientation within the CD1d groove.
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Glycerolipids
The second major class of antigens presented by CD1d molecules includes
diacylglycerolipids formed by a glycerol that is esterified at position sn-1 and sn-2 with fatty
acids, while carrying a polar group at position sn-3. Diacylglycerolipids represent the
dominant lipids in the ER and are incorporated into CD1d during folding (45–47).
Consistent with their increased flexibility, diacylglycerol ligands can adopt different binding
orientations in the groove, with the sn-1 or sn-2 linked acyl chains being bound in either
pocket. The binding mode is likely dictated by the preference of each pocket for a particular
combination of chain length and/or unsaturation degree, as demonstrated in the case of the
closely related Borrelia burgdorferi lipids BbGL2c and BbGL2f, which bind in opposite
orientations in the mouse CD1d binding groove (64). In particular, the presence of limited
(1–2) unsaturations appears to promote binding to CD1d (46, 65), as it introduces a kink in
the acyl chain that helps binding in the curved A’ pocket (Fig. 1F). Cardiolipin is a tetra-acyl
chain containing phosphoglycerolipid and a major lipid of mitochondrial membranes, as
well as bacterial cell walls. This lipid can bind to mouse CD1d using two of the four acyl
chains, thereby exposing the charged phosphate groups and the additional two acyl chains
for recognition by γδ TCRs (66).

Headgroup positioning by CD1d
While the hydrophobic portion of the antigen is generally buried deep within the CD1d
binding groove, the polar portion of the molecule is exposed at the entrance of the groove
for recognition by the TCR. The stabilization and orientation of the polar moiety is achieved
via several polar residues located at the center of the α1 and α2 helices and has been
extensively characterized for glycolipid antigens. In particular, structures of CD1d in
complex with sphingolipids carrying an α-linked sugar moiety showed that the sugar is
oriented so that the plane of the hexose ring is parallel to the β-sheet defining the bottom of
the binding groove (31, 62). Polar contacts with Asp153 and Thr156 in mouse CD1d orient
the 2’, 3’ of the galactose (α-GalCer) or galacturonic acid (GalAGSL) and the oxygen of the
glycosidic bond, consistent with previous mutagenesis data (67, 68), and resulting in a
generally well ordered conformation. Diacylglycerol lipids carrying an α-linked sugar such
as the microbial antigens from Borrelia spp. (64) and Streptococcus spp. (52) generally show
a more extended conformation that lacks interaction with Asp153 while contacting residues
on the α1 helix, especially Arg79 and Asp80 (Fig. 1F). Interestingly, one of the most
striking differences between mouse and human CD1d molecules is found at position 155
(equivalent to position 153 in human) of the α2 helix, where a glycine residue is substituted
with a tryptophan residue. The presence of this bulky sidechain in human CD1d results in a
shift of the hexose residue of approximately 1Å when αGalCer ligands are compared (30,
31). In the case of glycolipids carrying a β-linked sugar, the hexose moiety is generally
adopting a highly extended conformation, projecting away from the binding groove and
interacting with both α1 and α2 residues, often through water-mediated hydrogen bonds
(63, 69–71) (Fig. 1D,E).

CD1d-restricted T cells
Several different T-lymphocyte populations respond to antigens presented by CD1d. Despite
their relatively small number compared to MHC class I-, class II-, and even Group I CD1-
reactive T cells, they have been found to play important roles in several different aspects of
the immune response. Among CD1d-restricted T cells, subsets expressing either αβ or γδ
TCRs have been reported. In particular, subsets of γδ T cells responding to phospholipids
such as phosphoatidylethanolamine, phosphatidylcholine, and cardiolipin have been
described (66, 72–74), but, as our current understanding of how γδ TCRs recognize CD1d-
presented antigens is minimal, they will be not discussed further here.
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NKT cells
The best characterized population of CD1d-restricted T cells is formed by NKT cells. While
initially defined by the expression of both natural killer receptors such as NK1.1/CD161 and
αβ TCRs, a substantial proportion of NKT cells do not express NK1.1 (75). Here we define
NKT cells as T cell lymphocytes expressing an αβ TCR restricted to the antigen-presenting
molecule CD1d. Among NKT cells, two major subsets have been described, denominated
type I and type II NKT cells (75). Despite sharing many features typical of innate-like
immune cells, the two subsets differ in the repertoire employed by their TCR receptors and
therefore in their antigen specificity (7). Type I NKT cells are characterized by expressing a
conserved TCR α chain with an invariant germline-encoded rearrangement (Vα14Jα18 in
mice, Vα24Jα18 in humans) that pairs with a limited repertoire of β chains (Vβ8.2, Vβ7,
Vβ2 in mice, Vβ11 in humans) and by their reactivity to αGalCer. Because of the invariant
α chain, type I NKT cells are also known as invariant (iNKT) or Vα14i NKT cells.
Interestingly, the limited repertoire of Vβ genes used by this population does not appear to
be derived from a preferential pairing with the invariant chain, but it is likely the result of
the positive selection by a growing list of self-antigens (76, 77). Type II NKT cells, instead,
express a more variable TCR repertoire, with enrichment of certain V genes such as Vα3
and Vβ8 (78–80) and do not respond to stimulation with αGalCer. Both populations are
conserved in mice and humans, although the relative frequency appears to be different, with
type I NKT cells more abundant in mice and type II in humans. In mouse, type I NKT cells
represent ~0.5% of the T lymphocytes in blood and peripheral lymph nodes, ~2.5% of the T
cells in the spleen, mesenteric, and pancreatic lymph nodes, and comprise ~30% of the T
cells in the liver (7). In humans, type I NKT cells appear to be approximately 10 times less
abundant than in mice, although there is marked variability among individuals (7). The
distribution of type II NKT cells is generally less understood, although comparison of MHC
II−/− and CD1d1−/− mice suggests they represent a fraction of the number of type I NKT
cells (~1/10 in spleen) (78, 79). In humans, type II NKT cells appear to constitute a
significant proportion of the T cells in bone marrow, liver, and gut (81–84). Both subsets
can express either CD4 or CD8 or be double negative (DN), with the exception of murine
type I NKT cells that are never CD8+ (85). This is consistent with the hypothesis that CD1d
cannot bind CD4 or CD8 (85), likely due to a single residue deletion on its α3 domain (11).
Moreover, both populations exhibit features that suggest an innate-like nature, such as
constitutive expression of activation markers like CD69 and rapid secretion of both Th1 and
Th2 cytokine upon activation (75). In particular, the availability of CD1d tetramers loaded
with the potent type I NKT antigen αGalCer (86) allows to readily identify this population
in vivo, while Jα18−/−, Cd1d1−/−, Cd1d1−/−Cd1d2−/− and conditional Cd1d1−/− mice
allowed to dissect the role of pathological and normal conditions. Despite their relatively
low numbers, type I NKT cells appear to be implicated in an astonishing range of
physiological processes, including pathogen recognition, tumor immunity, allergy,
atherosclerosis, and autoimmune diseases (reviewed in 5–7). Because of the lack of a
prototypical antigen equivalent to the type I NKT cell antigen αGalCer, our understanding
of the physiological role of type II NKT cells is currently limited. Studies performed using
Jα18−/− mice (lacking type I NKT cells) and CD1d1−/− mice (lacking both type I and type II
NKT cells) showed that this population has a protective role in EAE (a mouse model of
multiple sclerosis) (87), Con-A induced hepatitis (88), ischemic riperfusion (89, 90),
diabetes (91, 92), and during hepatitis B infections (93). Interestingly, type II NKT cells
appear to have an immunosuppressive role in tumor immunity, in contrast to type I NKT
cells (94). Following this observation, it has been suggested that these two populations
constitute an immunoregulatory axis influencing tumor immunity development and outcome
(95, 96).
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Antigen recognition by Type I NKT cells
A conserved binding footprint

Structural analysis of uncomplexed human and mouse type I NKT TCRs showed that they
tend to be relatively rigid structures, with well-ordered complementarity determining region
(CDR) loops (70, 97, 98). This in turn raised the question of how such a rigid sequence and
structure could bind the wide range of different lipid moieties recognized by type I NKT
cells. Mutational studies provided the first insights, suggesting that the TCR uses the same
conserved, germline contacts to recognize a variety of antigens, with the CDR1α and
CDR3α loops playing critical roles (99, 100). These findings were confirmed by the crystal
structures of several ternary complexes between CD1d, lipid antigens, and the TCR (71,
101–111) (Fig. 2A). The type I NKT TCR binds above the CD1d with a conserved footprint
dominated by the invariant α chain, while the β chain docks toward the C-terminal part of
the α1 helix (Fig. 2B). Because of this docking mode, the TCR adopts a unique parallel
docking mode above the antigen-binding groove, radically different from what has been
observed for MHC-reactive TCRs, which generally bind diagonally above the antigen
presenting molecule (112). Human and mouse type I NKT TCRs docks with the same
footprint (101, 102), consistent with their observed cross-reactivity (113). Moreover, the
binding mode is generally conserved between mouse TCRs containing Vβ8.2, Vβ7, or Vβ2
chains, suggesting that the overall docking orientation is dictated by the invariant α chain
(102, 103). In particular, residues on the CDR1α (Asn30α in mouse, Phe29α in human) and
CDR3α (Gly96α) loops contact the 2′, 3′, and 4′ hydroxyl groups of the glycolipids via H
bonds, therefore explaining why mannose- and glucose-containing glycolipids are generally
weaker antigens (58, 114) (Fig. 2C) and why deoxy αGalCer analogs have weaker affinities
for the iNKT TCR (115). Comparison of the structure of the type I NKT TCR before and
after complex formation did not highlight major conformational changes, confirming the
rigid nature of this TCR (101). Therefore, to achieve its conserved footprint on CD1d, the
TCR must induce conformational changes in both the antigen and/or CD1d. While α-linked
sphingolipids such αGalCer and the antigens isolated from Sphingomonas spp. are already
positioned in an orientation ideal for TCR binding, diacylglycerol ligands such as BbGL2c
and GlcDAG-s2 require a rearrangement of their polar group to allow for complex formation
(104, 107) (Fig. 1C). This re-orientating ability has been previously described for MHC-
reactive TCRs (116); however, the extent of antigen repositioning exerted by the type I NKT
TCR is unprecedented, as exemplified in the case of the self-antigen iGb3 (Fig 1D, Fig 2C).
This antigen is characterized by the presence of an extended trisaccharide headgoup β-
linked to the ceramide backbone (Galα1–3–Galβ1–4–Glcβ1–1Cer), with the terminal sugar
being important for antigenicity (117). Previous studies suggested that iGb3 is recognized
with a conserved TCR footprint (99), and this was confirmed by crystal structures of the
ternary complex (106, 108). Comparison of the mCD1d-iGb3 structures in the presence or
absence of the iNKT TCR (70, 106, 108) showed how the TCR squashes the β-linked
trisaccharide so that the proximal sugar adopts the conformation previously observed for α-
linked antigens (Fig. 2C). Interestingly, the terminal α-linked sugar is not directly contacted
by the TCR but instead is locked in position by a small pocket on the α2 helix of CD1d,
next to Met162, therefore explaining the requirement of this particular terminal linkage for
this lipid to be antigenic. The conserved footprint used by the type I NKT TCR extends to
phospholipids antigens such as phosphatidylinositol (PI) (71) and lysophosphatidylcholine
(LPC) (111), the latter showing slight differences in the conformation of CDR loops that do
not contact the antigen. Intriguingly, in addition to the canonical contacts formed with
CDR1α and CDR3α, both PI and iGb3 are also in contact with CDR2α (Val 50α, Lys68α)
of the iNKT TCR, possibly constituting a second layer of antigen specificity involving
complex self-antigens.
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Flexibility of CD1d upon TCR binding has also been reported. The antigen-binding groove
of CD1d can readjust to accommodate particular lipid moieties, as in the case of α-linked
glycolipids carrying bulky modifications at the 6′ position of the hexose sugar (105). In the
case of the ligand naphtyl urea (NU)-αGalCer, a urea linker connects the 6′ hydroxyl group
of galactose to a naphtyl group. In the crystal structure of the ternary complex, the NU
moiety serves as a third anchor, in addition to the two alkyl chains and binds in a small
pocket within the A′ roof that is formed by repositioning of the Met69 side chain, as well as
a widening of the groove through an increase of the distance between both α-helices by over
1 Å. Moreover, rearrangement of the side chains in the area above the F′ pocket have been
observed upon TCR binding (104). In particular the sidechains of Leu84, Val149 and
Leu150 undergo a conformational change to bind the TCR CDR3α loop, especially the side
chain of Leu99. These movements results in the formation of an hydrophobic roof above the
F′ pocket that appears to play a critical role for the stability of the ternary complex (108,
116).

Binding affinity/kinetics of type I NKT TCRs and implication for binding mechanism and
signaling potency

Type I NKT TCR affinity and binding kinetics for CD1d-antigen complexes have been
measured by several different techniques, including surface plasmon resonance (SPR)
(reviewed in 32), single molecule force spectroscopy (119) and equilibrium tetramer binding
(120, 121), the latter giving information of the avidity of the binding. In mouse, the type I
NKT TCR binds CD1d-αGalCer complexes with high affinity characterized by a slow
dissociation rate (32). Antigens requiring a rearrangement of CD1d or their polar head
generally exhibit slower association rates and faster dissociation kinetics, resulting in
equilibrium affinities in the micromolar range (64, 104). These results are consistent with a
model of complex formation where the rigid TCR CDR loops contact the antigen first,
rearranging the position of its polar head, followed by contacts with the CD1d α1 and α2
helices that rearrange the area above the F′ pocket (104). This binding mode is radically
different from what is thought to happen with MHC-reactive TCRs (122), although
exceptions have been reported (116). Human type I NKT TCRs appear to have a weaker
affinity (10–50 times) for antigens presented by human CD1d (32). HuCD1d-αGalCer
complexes bind the type I NKT TCR with micromolar affinity (32, 97, 98) and a fast
dissociation rate. Interestingly, the TCR affinity generally correlates well with the potency
of the NKT cell antigens, as measured in an cell-free antigen presentation assay using type I
NKT cell hybridoma lines (52, 64, 108). An important role in modulating the affinity and
the potency of type I NKT cell antigens appear to be played by the CDR3β loop of the TCR.
This loop has been found to present high diversity in sequence and length in both mouse
(123–125) and human (126, 127) type I NKT TCRs, consistent with the lack of conserved
contacts required for the formation of the ternary complex. However, differences in the
sequence of this loop have been shown to affect the affinity of the TCR for CD1d (128).
Finally, binding of the type I NKT TCR to CD1d-αGalCer multimers has been reported to
show cooperativity, allowing this TCR to recognize small amount of antigenic complexes on
the cell surface (121, 129).

Interplay between lipid and sugars in determining the potency of type I NKT antigens
While initial studies focused on the effect of modifications of the polar portion of αGalCer
and its analogs on the potency of these lipids, recent studies showed how the antigenicity is
influenced directly by the composition of its hydrophobic moieties. This is exemplified by
the previously mentioned Borrelia burgorferi antigens BbGL2c and BbGL2f (51). The first
antigen carries a C18:1 oleic acid on position sn-1 and a palmitic acid (C16:0) in the sn-2
position while the latter has the oleic acid in position sn-2 and a linoleic acid (C18:2) chain
on sn-1. Importantly, only BbGL2c is able to activate mouse type I NKT cells, while
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BbGL2f exclusively activate human type I NKT cells. Structural analysis of the binding of
these two compounds to mouse CD1d showed how the lipids are bound in opposite
orientations in the binding groove, resulting in a different presentation of the galactosyl
moiety to the TCR and therefore explaining the potency difference observed between these
two highly related lipids (64). However, how both borrelial lipids are presented by human
CD1d and also recognized differently by human NKT cells has not been established yet.

Perhaps even more striking, antigenicity can be the result of a very specific combination of a
generally weak sugar moiety and a uncommon lipid chain, as in the case of the
Streptococcus antigen α-glucosyl diacylglycerol (Glc-DAG-s2) (52, 107). This
diacylglycerol antigen carries a palmitic acid in position sn-1, a cis-vaccenic acid (C18:1,
n-7) in position sn-2, and an α-anomeric glucose sugar in sn-3 (Fig. 1B). Positional isomers
of this antigen with the vaccenic acid in position sn-1, or versions carrying a galactose sugar
(which differ from glucose for the orientation of its 4′-OH group) were not active (52, 107).
As glycosphingolipids carrying a glucose sugar are generally weaker than their galactose-
containing counterparts, it is surprising that GlcDAG-s2 is at least as antigenic as BbGL2c,
both in terms of NKT cell activation and affinity for the TCR (64, 107). The structure of the
corresponding ternary complex showed how, in presence of the sn-2 vaccenic acid, the
equatorial 4′-OH group of the glucose allows the ligand to make a new contact with Gly155
on CD1d, therefore stabilizing the bound conformation of the antigen (107). This novel
contact depends on the correct orientation of the glucose sugar, which in turn is influenced
by the lipid moieties of the antigen, therefore providing a clear example of the interplay
between the different portions of the molecule in determining antigenicity.

Type I NKT cell agonists with immunomodulatory properties
The ability of type I NKT cells to rapidly release both Th1 and Th2 cytokines make them
particularly interesting targets for the development of immunomodulatory therapies. The
prototypical antigen αGalCer was identified during a screen for compounds with anti-
tumoral activity (130, 131). αGalCer induces NKT cell-dependent suppression of tumor
growth, mainly through IFN-γ-mediated mechanisms (132–134), and these effects are
enhanced by using αGalCer-pulsed DCs (135). NKT cells can also respond to cytokines
such as IL-12 and IL-18 and mediate anti-tumor effects in a TCR-independent way (136,
137). However, due to the contrasting effects of the Th1 and Th2 cytokines released by
αGalCer-activated type I NKT cells and the induction of post-activation cell anergy (138),
phase I clinical trials of αGalCer showed only weak antitumor effects (139–141). Therefore,
several attempts have been made to generate αGalCer analogs able to induce preferential
expression of T-helper 1 (Th1) or Th2 cytokines. Two of the earliest candidates identified
were OCH (142), a Th2 inducer, and C-glycoside (143), a Th1 cytokine inducer. OCH
differs from αGalCer by having a truncated sphingosine chain (C8), which results in the
recruitment of spacer lipids that fill the F’ pocket of CD1d (59). C-glycoside has its
glycosidic O replaced by a methylene group, and as a consequence is resistant to
degradation by lysosomal α-galactosidases. Interestingly, the binding mode of the two lipids
to CD1d in the type I NKT ternary complex is essentially identical to that of αGalCer (59,
105, 109, 115), suggesting that factors other than their binding mode by the iNKT TCR are
responsible for the cytokine profile they induce. Among these, the stability of the ligand-
CD1d complex (105), the site of lipid loading (144, 145), their localization in the membrane,
and the particular APC presenting the lipid (146) have all been implicated in determining the
cytokine profile induced by the ligand. Following the discovery of OCH and C-glycoside, a
number of ligands with promising properties have been developed (reviewed in 147).
Modifications of either the sphingosine chain, the acyl chain and the sugar moiety [as in the
case of NU-αGalCer (105)] have been reported. Interestingly, the moiety contacting the
TCR does not need to be an hexose sugar, as threitol (148) and aminocyclitol (110) groups
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can also activate NKT cells. Moreover, αGalCer and its analogs have also shown potential
as a new vaccine adjuvants (149). In particular, a variant of αGalCer carrying a short acid
chain terminating in with a p-phenyl group is currently undergoing clinical studies and
showed promising results (150, 151).

Antigen recognition by type II NKT cells
In comparison to type I NKT cells, our understanding of how type II NKT cells recognize
antigens is rather limited. However, the recently solved crystal structures of the TCR from
the type II NKT hybridoma line XV19/Hy19.3 (38, 78, 87, 152) and of the ternary
complexes between mouse CD1d, sulfatide antigens and the same TCR (153, Patel et al.,
manuscript in preparation) offer the first insight into how the variable repertoire of this
population recognizes CD1d-bound antigens (Fig. 3A). Comparison of the unbound and
complexed TCR structures shows that the CDR loops undergo conformational changes for
the complex to be formed, in contrast to what has been observed for the type I NKT TCR
(101). The type II NKT TCR binds diagonally at one end of the CD1d molecule, right above
the A′ pocket (Fig. 3B), similar to the diagonal footprint observed for MHC-reactive TCRs
(112) but drastically different from the F′ pocket-centered and parallel binding mode of the
type I NKT TCR (101) (Fig. 2B). TCR α and β chains contribute equally to the CD1d-TCR
interface, with all CDR loops contacting CD1d. In particular, while both CDR3 loops are
critical for the complex formation, as demonstrated by mutagenesis studies (153), the two
loops appear to have different roles in binding to the CD1d-lysosulfatide complex. The
CDR3β loop contacts both CD1d and the antigen through a combination of hydrophobic and
polar residues. Interestingly, the lysosulfatide/sulfatide antigen is recognized in a rather
unspecific way, pinned between Phe96 and Trp97 on the CDR3β loop, His29 on CDR1β,
and Asp153 on the α2 helix of CD1d (Fig. 3C). Importantly, this recognition mode explains
why the type II NKT TCR is not compatible with the α-anomeric conformation of type I
NKT cell antigens, as the flat and relatively wide α-anomeric carbohydrate would incur in
steric clashes with the TCR that would not be tolerated. Interestingly, and in contrast to type
I NKT cells, the CDR3α loop does not contact the antigen but instead forms several polar
contacts with CD1d residues that form the roof above the A′ pocket (Fig. 3B), involving in
particular two Asn residues on CDR3α. It is likely, therefore, that CDR3α of type II NKT
cells is positively selected to bind exclusively CD1d and not the antigen. While the available
structural information is still limited at this time, the observation that several of the critical
residues important for the formation of the mCD1d-sulfatide-Hy19.3 TCR complex are
conserved in the oligoclonal repertoire of sulfatide-reactive type II NKT cells, suggests that
the recognition mode observed in the complex could extend to a significant proportion of
type II NKT TCRs (153). Moreover, the restricted length of CDR3α loops reported for type
II NKT cells (79, 80), together with the conservation of the Asn-Asn motif, suggests that
most of TCRs from sulfatide-reactive type II NKT cells use CDR3α to bind to CD1d in a
conserved orientation, rather than the antigen. This contrasts with MHC-reactive TCRs,
where both CDR3α and CDR3β are crucial for peptide antigen discrimination, and the type
I NKT cell TCR, which recognizes the antigen exclusively with CDR1α and CDR3α.
Instead, unlike any of the previous binding modes, the type II NKT TCR employs CDR1β
and CDR3β for antigen recognition and discrimination (Figs 3C, 4).

Conclusions
The extensive structural and biochemical data on the recognition of CD1d-presented
antigens by NKT TCRs that has recently been accumulated offers an unprecedented,
detailed view on how the immune system responds to lipid antigens presented by a non-
classical MHC I-like molecule. Based on these studies, we now understand the general rules
that control how lipid antigens bind to the CD1d-binding groove, determining how the polar
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portion of the antigen is exposed to the solvent for recognition. Moreover, the work of our
and other groups on the type I NKT TCR provides the basis to understand how a semi-
invariant TCR can recognize a range of chemically diverse ligands. This is the result of the
ability of the rigid type I NKT TCR to ‘mold’ the exposed headgroup of the ligand and the
antigen-presenting molecule in a conserved conformation. Interestingly, this binding mode
still imposes stringent requirements on the structure of the antigens, as demonstrated by the
interplay between different parts of the antigen molecule in determining potency.

Finally, the recent structures of a type II NKT TCR ternary complex helps us to complete
the picture of how NKT cells recognize CD1d-presented antigens and provides us with an
opportunity to compare their binding modes with MHC-reactive TCRs, raising novel
interrogatives. Surprisingly, the NKT TCRs bind on opposite sides of the antigen-presenting
molecule and not in the center as the vast majority of MHC-reactive TCRs (112) (Figs 2B,
3B, 4). As a consequence, only one NKT TCR chain contacts the antigen (α chain for the
type I, β chain for the type II), while the second chain contacts CD1d with limited (type I) or
extensive (type II) surfaces. Moreover, the two NKT TCRs adopt docking angles that mark
the extremes of the range (20–70°) observed for MHC-reactive TCRs, with the type I TCR
adopting a parallel docking mode (Fig. 4A), while the type II TCR binds almost
perpendicularly (Fig. 4B) on the antigen-binding groove. It is tempting to speculate that this
could be the result of the lack of constraints imposed by CD4 and CD8 coreceptors (which
do not appear to ligate CD1d), as opposed to MHC-reactive TCRs for which only a limited
range of angles result in productive signaling (154). Further studies are therefore required to
determine the nature of correlation between the TCR docking mode and the signaling
processes occurring in NKT cells. The study of the recognition mechanisms used by NKT
cells provided unexpected insight into the variety of strategies that the immune system, and
T cells in particular can adopt to respond to internal and external triggers. However, several
additional questions remain unanswered, including whether the recognition mode observed
for mouse type II NKT TCRs also applies in humans, how the recognition mode observed
for NKT cells extends to non-lipidic molecules and how CD1-antigen complexes are
recognized by γδ TCRs and Group 1 CD1-reactive T cells. Future work should therefore
aim to shed light on these topics, to further expand our understanding of this relatively new
field and exploit the therapeutic potential of NKT and lipid-reactive T cells.
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Fig. 1. Antigen presentation by CD1d
(A). Cartoon representation of the CD1d-β2m heterodimer (PDB ID 1Z5L) with CD1d in
grey, β2m in blue, the αGalCer analog PBS25 in yellow and a lipid spacer in green. The
antigen-binding groove is shown as a transparent dark grey surface. (B). Several lipid
antigens recognized by CD1d-restricted T cells. Glucosyl moieties are shown in blue. (C–F).
Detailed view of the antigen binding groove with the α2 helix removed for clarity. Ligands
(C: PBS25, PDB ID 1Z5L; D: iGb3, PDB ID 2Q7Y; E: sulfatide, PDB ID 2AKR; F:
BbGL2c, PDB ID 3ILQ) are shown in yellow, spacers in green.
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Fig. 2. Antigen recognition by the type I NKT TCR
(A). Ternary complex (PDB ID 3HE6) between CD1d/b2m (grey and blue), αGalCer
(yellow), and the type I NKT TCR (α chain in cyan, β chain in orange). (B). Footprint of the
type I NKT TCR on CD1d. Residues on the CD1d surface contacting the α chain are shown
in cyan, residues contacting the β chain are shown in orange, shared residues in green. (C).
Details of the antigen-binding groove showing the superposition of the bound conformations
of αGalCer (yellow), BbGL2c (green, PDB ID 3O9W), and iGb3 (blue, PDB ID 3RZC),
after being flattened by the TCR. The CDR loops (cyan) contact the antigens exclusively
through Asn30α and Gly96α. Polar contacts are shown as dashed lines.
Note how all the bound ligands adopt similar conformation for their first sugar upon TCR
binding.
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Fig. 3. Antigen recognition by the type II NKT TCR
(A). Ternary complex (PDB ID 3ELM) between CD1d/b2m (grey and blue), lysosulfatide
(yellow), and the type II NKT TCR (α chain in dark cyan, β chain in purple). (B). Footprint
of the type II NKT TCR on CD1d. The shared residue Met162 is shown in blue. (C). Detail
of the antigen-binding groove showing the bound lysosulfatide in yellow and a spacer in
green. The CDR loops and residues contacting the antigen are shown in purple. Polar
contacts are shown as dashed lines.
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Fig. 4. Docking modes of NKT and MHC-reactive TCRs
Role of CDR3α (blue) and CDR3β (red) in binding to CD1 (grey), MHC I (light blue), and
antigen (yellow). (A). Type I NKT TCR docking to CD1d presenting αGalCer (PDB ID
3HE6). (B). Type II NKT TCR docking to CD1d presenting lysosulfatide (PDB ID 3ELM).
(C). MHC-reactive TCR docking to H-2Kb –peptide (PDB ID 2CKB). The lines show the
direction of the vector connecting the centroids of the conserved V domain disulfide bonds.
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