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Abstract
We have developed and implemented a novel mathematical model for simulating transients in
surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a
Xenopus oocyte. These transients are important tools for studying gas channels. We assume that
the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected
fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that
represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane
is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can
change because of diffusion and reactions. The reactions are the slow equilibration of the CO2
hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/
bicarbonate ( ) and a multitude of  buffers. Mathematically, the model is
described by a coupled system of reaction-diffusion equations that—assuming spherical radial
symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with
experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that
exposing the cell to extracellular 1.5% CO2/10 mM  (pH 7.50) causes pHi to fall and pHS to
rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition
between diffusion and reaction processes when we change the width of the EUF, membrane
permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the

 (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular
buffers.
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1. Introduction
Extracellular pH (pHo) and intracellular pH (pHi) are of broad interest to biologists because
pH perturbations can alter a wide range of processes. Thus, maintaining pHo and pHi in a
normal range is of fundamental importance for correct cellular and tissue function. Cells
regulate their pH by transporting acids or bases—particularly the hydrogen ion (H+) or the
bicarbonate ion ( )—across the plasma membrane. In addition, the movements of
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dissolved gases such as carbon dioxide (CO2) or ammonia (NH3) also have major effects on
pHo and pHi. In fact, fluxes of the above substances generally will have reciprocal effects on
pH on opposite sides of the membrane.

The oocyte from the African clawed frog Xenopus laevis is a major experimental model
system used extensively in developmental biology, molecular biology, and
electrophysiology. Because of their large size (≈1 mm in diameter), these cells can be easily
handled and manipulated. For example, they can be injected with RNA from other
organisms and then used to study protein expression using biochemical or
electrophysiological approaches. In the laboratory of one of the authors, Xenopus laevis
oocytes are used to study three categories of proteins that can have a substantial impact on
pH: (1) sodium-coupled bicarbonate transporters (NCBTs), which play important roles in
pHi regulation and epithelial acid-base transport (Romero et al., 1997; Choi et al., 2000;
Grichtchenko et al., 2001); (2) aquaporins (AQPs) and Rhesus (Rh) proteins, which can
serve as conduits (i.e., gas channels) for the diffusion of CO2 or NH3 (Nakhoul et al., 1998;
Cooper and Boron, 1998; Endeward et al., 2006; Musa-Aziz et al., 2009; Boron, 2010); and
(3) carbonic anhydrases (CAs), enzymes that catalyze the interconversion of CO2 and 
and play important roles in the transport of CO2 and .

Understanding the transport across the plasma membrane of substances such as H+, ,
or CO2, is not trivial. Cells normally contain and are surrounded by a number of

 buffers. Thus, acid-base transport triggers: (1) a multitude of
interconnected extra- and intracellular buffer reactions that explicitly or implicitly involve
H+ and (2) diffusion events—all of which vary in space and time. The result is changes in
solute concentrations, including pH, that vary in space and time throughout the system.
These changes are likely to be so complex that it would be impossible to understand them in
the absence of an appropriate mathematical model.

Endeward et al and Musa-Aziz et al exploited a novel technique to assess the CO2
permeability of a Xenopus oocyte (Endeward et al., 2006; Musa-Aziz et al., 2009). Figure 1
illustrates the approach, in which one measures surface pH (pHS) by pushing a liquid-
membrane pH-sensitive microelectrode against the oocyte surface, thereby dimpling the
oocyte membrane slightly. Subsequently applying  in the bulk extracellular fluid
(BECF) causes pHS to rise to a peak and then decay (Figure 1 inset, upper record).
Simultaneous measurements with an intracellular electrode reveal the familiar fall in pHi
(Figure 1 inset, lower record). The events underlying these changes in pHS and pHi are
summarized by the diagram in the main part of Figure 1. As CO2 enters the cell, the
concentration of CO2, [CO2], at the cell surface decreases. The lost CO2 can be replenished
by diffusion from the BECF or by reaction at the cell surface from  and H+. The
observed rise in pHS reflects the consumption of H+ via this reaction. Conversely, in the
intracellular space, the influx of CO2 leads to the generation of H+ (and therefore to a
decrease in pHi) via the opposite reaction.

The magnitude of the pHS spike in Figure 1 ought to be an index of CO2 permeability.
Indeed, the expression of AQPs or Rh proteins in oocytes causes the pHS spike to increase
(Endeward et al., 2006; Musa-Aziz et al., 2009)—part of the evidence that these proteins are
gas channels. With the appropriate mathematical model, one might be able to extract—from
the time course of pHS in Figure 1—the permeability of the membrane to CO2. Moreover,
one could gain insight into events not directly accessible by experiments (e.g., the time
course of intracellular solute concentrations). Finally, an appropriate model would help in
the formulation and testing of hypotheses. The requirements of such a model include: (a) a
3-dimensional spherical cell, (b) the transport of CO2 across the plasma membrane, (c) the
reactions of a multitude of extra- and intracellular buffers, (d) diffusion of solutes through
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the extra- and (d′) intracellular spaces, (e) CA activity at specific loci, and (f) temporal and
(f′) spatial variations of solute concentrations.

Several authors have presented mathematical models of acid-base transport that have
assisted in the interpretation of data collected in their respective laboratories.

1. In 1976, Boron and De Weer, using a system of two ordinary differential equations,
predicted for the first time the time course of pHi when CO2 and —or NH3

and —enter or leave the cell (Boron and De Weer, 1976). Although valuable,
this model does not address requirements (a), (c), (d), (d′), (e) or (f′).

2. In 2002, Vaughan-Jones et al recognized the importance of studying the spatio-
temporal behavior of pH and developed a two-dimensional mathematical model to
study the free diffusion of intracellular H+ from a constant source in ventricular
myocytes (Vaughan-Jones et al., 2002). The model leads to estimates of the
apparent intracellular H+ diffusion coefficient. Although it accounts for spatial
variability of solutes, it does not address requirements (a), (b), (c), or (e).

3. More recently, this same group has developed reaction-diffusion models to study
the relationship between extracellular CAIX and the spatio-temporal coordination
of pHo and pHi in a multicellular cluster of tumor cells (Swietach et al., 2008;
Swietach et al., 2009). This model does not consider a single cell but a spherical
cluster of cells and does not address requirements (a), (c), or (d′).

4. Missner et al. developed a one-dimensional reaction-diffusion mathematical model
to study the diffusion of CO2 through planar lipid bilayers at steady state (Missner
et al., 2008b). This model is also not suitable for our purposes because it does not
address requirements (a), (c) or (f).

5. Gros and coworkers developed a time-dependent mathematical model of six
ordinary differential equations to interpret their mass-spectrometric data obtained in
a chemically pre-equilibrated system in which they monitored the diffusion of 18O-
labeled  across the red blood cell (RBC) membrane (Endeward and
Gros, 2005). Their approach yielded estimates of the apparent membrane
permeabilities to CO2 and . This model does not address requirements (a),
(c), (d), (d′), or (f′).

6. More recently, these same authors extended their model to simulate the diffusion of
CO2, , and H2O in one-dimensional space from a stirred bulk solution,
through an extracellular unstirred layer, through the cell membrane, and into the
RBC (Endeward and Gros, 2009). The model can provide insights into the effect of
intra- and extracellular unstirred layers in the estimation of the CO2 permeability of
the RBC membrane. Although this model is a reaction-diffusion model and
accounts for spatial variation, it does not address requirements (a) and (c).

It is clear from the above discussion that none of the available models is well suited to the
interpretation of the aforementioned oocyte data (Figure 1). In the present paper, we develop
a three-dimensional mathematical model under the assumption of spherical symmetry of a
cell (e.g., an oocyte) and of its surrounding environment (requirement (a), above), with the
goal of simulating the observed changes in pHS and pHi caused by the entry of CO2
(requirement (b)). Each species can react with other solutes in both the intra- and
extracellular spaces, including a multitude of buffers (requirement (c)). To our knowledge,
ours is the first model capable of handling an indefinite number of buffers. Each species also
can move via diffusion through the extra- and intracellular spaces (requirements (d) and (d
′)). Finally, the model includes CA-catalysis (requirement (e)) as well as temporal
(requirement (f)) and spatial variations (requirement (f′)).
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Mathematically, the present model consists of a coupled system of reaction-diffusion
equations, describing the diffusion of solutes in the intracellular and extracellular space and
through the cell membrane, as well as local chemical interactions between the species.
Because we use a spherical model of the cell and assume no directional dependency in the
boundary conditions, the symmetry allows us to reduce the model to a radial system.
However, the reaction rates may vary as a function of the radius, so the system has non-
constant coefficients. We use the method of lines, the spatial discretization being based on
finite difference approximation, leading to a stiff system which is solved numerically by
appropriate stiff solvers.

We hypothesize that the present model will reproduce the essential features of Figure 1, and
serve as the foundation for more advanced models that could provide estimates of
parameters such as CO2 permeability. The model successfully predicts that, when an oocyte
is exposed to extracellular CO2/HCO3

−, the influx of CO2 causes pHi to fall monotonically
and pHS to rise and then decay. Moreover, the model allows one to extract information on
variables (e.g., time and space profiles of solute concentrations) that cannot be measured
directly. For example, in typical electrophysiological experiments, one might measure pHS
and pHi, but not have access to the concentrations of the other solutes involved in the
process. The model also provides reasonable predictions when we change the width of the
extracellular unconvected layer surrounding the oocyte, the CO2 membrane permeability,
and the extra- and intracellular CA-like activities. The model provides insights into the
competition between reaction and diffusion near the outer surface of the cell membrane and
makes valuable predictions when we change the intracellular buffering power, or change the
ratio of mobile to immobile buffers.

2. Model
The key components of the model are summarized in the cartoon of Figure 2. The model
assumes that the oocyte is surrounded by the extracellular unconvected fluid (EUF) which in
turn is surrounded by a volume of bulk extracellular fluid. The EUF is a thin layer adjacent
to the surface of the oocyte where no convection occurs, but reactions and diffusion do
occur. The bulk extracellular fluid is an infinite reservoir for all solutes where convection
(not included in the present model) could occur but not reaction or diffusion. All solutes can
diffuse between the BECF and EUF. The plasma membrane may have different
permeabilities to different solutes. To avoid the need to specify the thickness of the
membrane, in the present implementation, we use a computational model in which we take
the limit where the membrane thickness parameter goes to zero, while the permeability is
kept constant. Moreover, we assume that the plasma membrane is permeable only to CO2—
a reasonable assumption, given the low permeability of the Xenopus oocyte membrane to
H+ (Fei et al., 1994; Gunshin et al., 1997; Steel et al., 1997) and  (Costa et al., 1989;
Toye et al., 2006; Lee et al., 2011). In the EUF and intracellular fluid (ICF), the
concentration of solutes can change because of diffusion and reaction processes; each solute
has a specific, position-dependent mobility. In both EUF and ICF, the model accounts for
the slow equilibration of the CO2 hydration/dehydration reactions, for competing equilibria
among the  buffer and a multitude of  buffers. In Figure 2, the

 buffers are indicated by .

The objective is to simulate numerically the dynamics of the concentrations of the solutes of
interest, and in particular, the pH on both sides of the cell membrane.

Let Ω ⊂ ℝ3 denote the domain occupied by the oocyte and ∂Ω the boundary membrane. The
concentration distribution of the CO2 is denoted by
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(1)

t being the time. Furthermore, the concentration distribution of the H+ is denoted by

(2)

The numbering of the concentrations of carbonic acid (H2CO3), of the L non-H2CO3 weak
acids (HAℓ, 1 ≤ ℓ ≤ L ), and of their corresponding conjugate weak bases (  and ),
respectively, are written as

(3)

and

(4)

respectively. Note that we chose to ignore the dissociation of  to form  plus H+

because the pK of this reaction (≈10.3) is much higher than the pH values in the current
simulations.

The reactions of carbonic acid formation and the corresponding rate constants are denoted
by

(5)

and the reactions of dissociation with the corresponding rate constants are

(6)

and

(7)

Note that the results of recent metadynamic simulations (Stirling and Papai, 2010) are most
consistent with a model in which the reactions involving CO2, H2CO3, , and H+

proceed not as outlined in equations (5) and (6) but in the order

. However, the ordering of these reactions would have
no effect on the results of the present paper.

The reaction fluxes Φℓ, indexed according to their respective rate constants kℓ, ℓ = ±1, ±2, …,
±(L + 2), are modeled using the law of mass action, that is,

(8)
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(9)

and

(10)

As described below, the rate constants for each reaction (i.e., k+ℓ and k−ℓ) respect the
equilibrium constant ( Kℓ) that governs that reaction. Moreover, we can assume that the rate
constants depend on location, kℓ = kℓ(x). This assumption is relevant, for example, when
including a non-homogenous distribution of the enzyme carbonic anhydrase which, when
present, increases the rate constants k+1 and k−1.

Consider now a single solute w, whose concentration we denote by cw = cw (t, x), that is, cw
= uj or cw = vj for some j. The corresponding reaction-diffusion equation is written as

(11)

Here, the first term on the right-hand side of the equation is Fick’s second law of diffusion,
where Dw = Dw (x) is the diffusion coefficient of solute w defining its mobility in the
medium. The second term describes the chemical reactions among the solutes. The
coefficients Sw,ℓ are the stoichiometric coefficients, describing if the ℓth reaction produces
the solute w ( Sw,ℓ =1), consumes it ( Sw,ℓ = −1), or does not change its concentration ( Sw,ℓ =
0 ).

The reaction-diffusion equation (11) is assumed to hold inside and outside the boundary
membrane ∂Ω. At the membrane, a boundary condition needs to be postulated, reflecting the

permeability of the membrane to each one of the solutes. We denote by “ ” the boundary
value from inside (−) and outside (+) of the membrane (i.e. in the aqueous phase adjacent to
the intracellular and extracellular sides of the plasma membrane), respectively. To find a
reasonable boundary condition, assume first that the membrane has a positive thickness h >
0, and assume that the substance moves through the membrane via diffusion. Letting the
thickness of the membrane tend to zero while decreasing proportionally the solute mobility
at the plasma membrane, the diffusion of solute w through the membrane can be
approximated by a transmission boundary condition (see Appendix A). Let D w,+ and D w,−
denote the diffusion coefficients in the aqueous phases adjacent to the extracellular and
intracellular sides of the membrane, respectively. We posit the transmission conditions,
which use Fick’s first law to establish the continuity of fluxes across the membrane for

solute w. Denoting by  the outer normal derivative at the boundary, the conservation of
flux implies that
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(12)

On the other hand, from the analysis in Appendix A, we have

(13)

where P∂Ω,w is the true membrane permeability to solute w.

The boundary condition at the outer boundary ∂Ω∞ of the computational domain is a
Dirichlet boundary condition,

(14)

where cw,∞ is the assumed constant concentration in the BECF. The computational domain
Ω∞ comprises the cell and the surrounding EUF while the outer boundary ∂Ω∞ identifies
the BECF.

Finally, we collect the concentrations of all 2L + 4 solutes into a single vector having 2L + 4
components,

(15)

The initial-boundary value problem that we consider is the reaction-diffusion equation, the
matrix-vector form of equation (11),

(16)

where D = D(x) is a diagonal matrix containing the diffusion coefficients, S is the
stoichiometric matrix and Φ = Φ(U) is the reaction flux vector. The components of U satisfy
the transmission conditions given by equations (12) and (13) at the cell membrane ∂Ω, the
specified initial conditions (i.e., concentrations of all solutes at time zero within the domain
of integration), and the boundary conditions. Thus we write
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(17)

where U0( x) ∈ ℝ2L+4 is a vector containing the initial concentrations in the computational
domain Ω∞ and U∞ specifies the boundary conditions at the outer boundary ∂Ω∞.

Remark: A natural extension of the model would include a convection term in the exterior
domain, i.e., a first order term v(x) · ∇ U(x, t), where v is a velocity field modeling the liquid
flow. This addition is not included in the present model.

The implementation of this model in a spherical geometry is discussed in the following
section.

3. Computational model
In this section, we consider the governing equations in a spherically symmetric case. We
apply the method of lines using a spatial semi-discretization by finite difference
approximation. Although this technique is rather standard (Iserles, 1996), for the
convenience of the reader not familiar with it, we present the method of lines in the
geometry considered.

3.1 Spherically symmetric case
Assume from now on that the oocyte can be modeled as a sphere Ω of radius R concentric
with the larger sphere Ω∞ of radius R∞ defining the computational domain. Furthermore,
we assume that the diffusion coefficients and initial values depend on the distance from the
origin only, and that the boundary condition is direction independent, i.e., U∞ (t, x) = U∞
(t). With these restrictions, the concentration vector is a function of the radial variable r
only, U = U (t, r), and the diffusion equation assumes the form

(18)

which is a matrix-vector form of equation (11). The transmission conditions, from equations
(12) and (13), are

(19)

and

(20)

Here, P is a diagonal matrix containing the membrane permeability coefficients of each
solute in its diagonal. The initial-boundary conditions, analogous to equation (17), are

(21)
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3.2 Semi-discretization
To obtain a numerically feasible form, we use the method of lines and discretize the system
in the spatial direction using an appropriate finite difference scheme.

We start by dividing the space interval [0, R∞] into N subintervals, denoting the grid points
as rj, 0 = r0 < r1 < · · ·< rN = R∞, and defining the grid functions Cℓ, 1 ≤ ℓ ≤ 2L + 4,

(22)

In Appendix B, we develop for each grid function a finite difference approximation of the
diffusion operator, i.e., we write a semi-discretized system,

(23)

where Lℓ ∈ ℝN ×N is a second order finite-difference matrix that takes into account the
sampled values of the diffusion coefficient and transport across the cell membrane, cℓ,∞(t) ∈
ℝ is the boundary (scalar) value of the concentration at r = R∞, and Ẽ∞ is a constant vector
(see Appendix B). Finally, Φℓ′ = Φℓ′ ({Cℓ}) ∈ ℝN is a vector representing the reaction rates
of the ℓ′ th reaction at the grid points, and Sℓ, ℓ′ is the stoichiometric matrix.

Finally, by stacking all the vectors Cℓ into a single vector C ∈ ℝN (2L+4), and likewise the
reaction fluxes, and by organizing the matrices into single block matrices, we can write the
system compactly as

(24)

where the boundary condition vector is c∞ (t) ∈ ℝ2L+4. This is a stiff system of differential
equations, whose numerical solution requires a specialized solver.

4. Results and Discussion
4.1 Equilibration of buffers

Before describing the computational experiments in detail in the next section, we address the
issue of competing equilibria among buffers (see Figure 2), and how we implement them in
the model.

A critical reaction—though not strictly a buffer reaction because it does not involve H+—is
the CO2 hydration - dehydration shown in equation (5). In the absence of one of the carbonic
anhydrase enzymes, this reaction is extremely slow. We simulate CA-like activity by
multiplying the rate constants of reaction (5), k+1 and k−;1, by an acceleration factor A (Ao
for extracellular CA-like activity and Ai for intracellular CA-like activity). Note that CA
does not change the equilibrium state, only the rate at which it is achieved.
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In addition to the above reaction, the model contains 1+L buffer reactions, one for the
 pair plus L reactions for the  buffers—all of which compete

for a common pool of H+, and all of which are virtually instantaneous (i.e., limited only by
diffusion) (Roughton, 1941; Harned and Owen, 1958). For the  pair, we
denote the equilibrium constant associated with reaction (6) by

(25)

To ensure instantaneous equilibrium of reaction (6) we write an approximation

(26)

and choose the parameter εb > 0 (Table 1) so small that, in the time scale of the diffusion
and reaction (6), this reaction virtually takes place immediately. This approximation adds to
the stiffness of the system (24). However, because the diffusion equation is already stiff, the
stiffness depending on the discretization, specialized solvers need to be employed anyway.

When we add a  buffer pair , we similarly assume instantaneous
equilibrium of the buffering reaction (7) by expressing the corresponding rate constants in
terms of the equilibrium constant

(27)

with a sufficiently small time constant εℓ > 0 (Table 1).

4.2 Numerical Experiments
All computations are performed in MATLAB. The systems of ODEs arising from the
method of lines (24) are solved using the built-in variable-accuracy stiff solver ODE15S. To
ensure that the system achieves equilibrium—in time and in space—we not only assigned
sufficiently large rate constants as noted above (see Table 1), but also chose a value of 1 ×
10−12 for both the relative tolerance (RelTol) and absolute tolerance (AbsTol). The number
of discretization points was a compromise between ensuring that the system achieves
equilibrium and a reasonable computational time, which was on the order of a couple of
minutes in a standard dual-core PC.

4.2.1 The “standard in-silico experiment”
Setting up the model: We start by describing the computational model used in a “standard
in-silico experiment”. Consider a control oocyte (i.e., not injected with or expressing a
heterologous protein). Before the beginning of the experiment, we assume that the plasma
membrane is impermeable to all solutes. We assume that the EUF has thickness d, d being
the distance between the plasma membrane and the BECF.

Prior to the beginning of the experiment, the BECF and EUF both contain 1.5% CO2/9.9
mM  7.50 plus a single  buffer  with a pK of 7.50 (e.g.,
HEPES) and a total concentration of 5 mM (i.e., [TA1]BECF = [HA1]BECF + [A−

1]BECF = 5
mM). Because the membrane is totally impermeable, all solute concentrations throughout
the EUF are the same as in the BECF, and all reactions are at equilibrium.
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Regarding the intracellular composition before the beginning of the experiment, we assume
an initial intracellular pH of 7.20, and that the concentrations of CO2, H2CO3, and  are
all zero. We also assume that the intracellular fluid contains only a single 
buffer pair, the properties of which we determined as follows. Consistent with experimental
data, we assume that exposing an oocyte to 1.5% CO2 will cause pHi to fall from 7.20 to
7.00. From the Davenport diagram (Davenport, 1958; Boron, 2009)—a plot of [ ] vs.
pH for CO2 values, in this case, of 0% and 1.5%—we can conclude that, over the pHi
interval (pH1, pH2) = (7.00, 7.20), the mean  (or “intrinsic”) intracellular
buffering power is

(28)

We arbitrarily assume that the buffer pK is 7.10 (i.e., halfway between the initial and final
pH values). To determine the total concentration [TA1]i of this single, hypothetical,
intracellular buffer, we used an approach similar to one described previously (Boron, 1977).
By definition, β̄ over the relevant pHi range is

(29)

where [TA1]i·Z is the number of moles per liter of H+ being buffered in the reaction

. Expressing β̄ in the form

(30)

where the integrand function β(pH )i is the buffering power of a  buffer in a
“closed system” (i.e., [HA1]i + [A1

−]i = constant) (Koppel and Spiro, 1914; Roos and Boron,
1980; Van Slyke, 1922),

(31)

where K = 10−pK, we can identify [TA 1]i·Z with the value of the integral.

Integrating the expression for β(pHi) yields

(32)

from which it follows that [TA1]i ≈ 27.3126 mM. We assume that, before the beginning of
the experiment, the pH and the  buffer components are uniformly
distributed throughout the cell and are in equilibrium.
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We assume that the BECF, EUF and ICF have the properties of pure water. Wherever
possible, we choose parameter values from the literature at 22°C. Otherwise, we compute
parameter values from published values at nearby temperatures (see Table 1 and Table 2).

Starting “the standard in-silico experiment”: We begin the experiment—at time zero—
by switching the diffusion constant for CO2 in the membrane (DM,CO2) from zero to the
value that it would have in water (i.e., Dwater,CO2 = 1.71× 10−5 cm2 s−1). Thus, we assume
that the membrane is a film of water of the same thickness hM as the membrane. The true
membrane permeability PM,CO2 would be DM,CO2 divided by hM, which we assume to be 5
nm. Thus, PM,CO2 = 34.20 cm/sec.

During the experiment, all solutes are allowed to move freely between the BECF and EUF,
while the dynamics in the EUF and ICF are governed by the reaction-diffusion equations.
Only CO2 is allowed to diffuse across the membrane. We also assume that all extracellular
and intracellular buffers are mobile, and that the mobilities of solutes are constant over the
entire computational domain. We choose an EUF thickness of d = 100 μm, which
corresponds to a computational domain of radius R∞ = 0.15/2 cm (R∞ = R + d). Further, we
assume that CA-like enzymatic activity is uniformly distributed inside the oocyte and on the
extracellular surface of the membrane.

In summary, in a “standard in-silico experiment” we implement:

A. A mobile  buffer in the extracellular space, and a separate mobile
 buffer in the intracellular space.

B. The mobile  buffer system in both the extracellular and intracellular
spaces. A membrane permeable to only CO2.

C. CA-like activity everywhere inside the oocyte as well as on the extracellular
surface of the plasma membrane.

D. An extracellular unconvected fluid with a thickness d = 100 μm.

Table 1 and Table 2 list the parameters used in a “standard in-silico experiment”. When we
change a parameter from a value reported in Table 1 and Table 2, we will state this
explicitly.

Testing the model: multiple intracellular  buffers: In the standard
experiment, we implement one mobile,  buffer  (see equation (7))
with different total buffer concentrations and pK values in the extra- vs intracellular fluid.
To verify that the model can, as intended, handle multiple buffers , we introduced a
second intracellular  buffer . Knowing that the total buffering
power of a mixture of buffers is the sum of the individual buffering powers (Boron, 2009),
we considered two oocytes, one representing the “standard in-silico experiment” and thus
having a single intracellular buffer ([TA1]i = 27.3126, pK = 7.1), and an otherwise identical
oocyte with two intracellular buffers, each at half the standard concentration ([TA1]i =
[TA2]i = 27.3126/2, pK = 7.1). As expected, the model yielded identical results for the two
oocytes (data not shown).

Simulations of “the standard in-silico experiment”: Figure 3 shows the time profiles of
each extracellular solute (CO2, H2CO3, , H+ as pH, HA1, ) in the EUF at five radial
distances from the center of the oocyte: 651 μm (i.e., 1 μm away from the outer surface of
the membrane), 670 μm, 690μm, 710 μm, and 730 μm as well as in the BECF (i.e., beyond
750 μm). Similarly, Figure 4 shows the time profiles of each intracellular solute at five
radial distances from the oocyte center: ≈ 8 μm (i.e., close to the center), ≈ 160 μm, ≈ 320
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μm, ≈ 480 μm, and ≈ 640 μm as well as at 650 μm (i.e., the inner surface of the plasma
membrane). Figure 5 illustrates how solute concentrations change as a function of the radial
distance from the center of the oocyte at six time instances.

The simulation shows that, after the plasma membrane becomes permeable to CO2 at time t
= 0, the CO2 concentration difference across the membrane (i.e., 0.4720 mM – 0 mM =
0.4720 mM; see Table 1) causes the diffusion of CO2 into the cell. This influx perturbs the
pre-existing equilibria in the regions on opposite sides of the membrane for the 
buffer system and for the  buffers. Moreover, this perturbation propagates
in time away from the membrane in both directions, causing the following events to occur:

1. In the bulk extracellular fluid, the influx of CO2 from the EUF to the intracellular
space produces an initial decrease in [CO2] (see Figure 3A)—largest and most
rapidly in the extracellular fluid closest to the oocyte surface. This decrease in
[CO2] promotes the diffusion of CO2 from the BECF toward the membrane,
thereby in part replenishing the depleted CO2. The decreases in [CO2] throughout
the EUF also perturb the  equilibria, causing the reactions

 to replenish the depleted CO2, in the process,
consuming first H2CO3 (Figure 3B) and then  (Figure 3C) and H+, thereby
causing pHo to rise (Figure 3D). The resulting decrease of [H+] throughout the EUF
simultaneously perturbs the  equilibria, causing the reactions

 to replenish the depleted H+, consuming [HA1] (Figure 3E) and
producing  (Figure 3F). Notice that the diffusion of CO2 to the outer surface of
the cell membrane and the reaction forming CO2 from  at the outer surface
compete to replenish surface CO2. That is, to the extent that diffusion replenishes
CO2, the contribution of the reaction falls. We quantify this competition by
introducing the diffusion/reaction (DRR) ratio. The DRR is calculated in the
volume of extracellular fluid that extends out to 1 μm from the plasma membrane,
and is defined as the ratio of the rate of CO2 replenishment (μmoles/sec) by
diffusion divided by the rate of CO2 produced by reaction (5). In the “standard in-
silico experiment”, DRR spikes to a value of ≈ 2800 right at t = 0 sec and then
rapidly falls to a value of ≈ 35 in approximately 10 sec as the slow reaction catches
up. The changes in all solute concentrations become smaller and slower (e.g., the
time to maximal change becomes greater) as we move away from the oocyte
surface. Moreover, these changes dissipate in time—approaching their respective
values in the BECF—as the CO2 equilibrates across the cell membrane and thus
throughout the EUF and ICF (Figure 5A, gold line).

2. In the intracellular fluid, initially no CO2 is present. As CO2 enters the cell and
diffuses towards its center, the increase in [CO2] throughout the ICF (Figure 4A)

shifts the equilibria of the  buffer ( )
towards the right, producing first H2CO3 (Figure 4B) and then  (Figure 4C)
and H+, thereby causing pHi to decrease (Figure 4D). The resulting increase of [H+]
throughout the intracellular domain simultaneously perturbs the  equilibria,

causing the reactions  to buffer the newly produced H+, consuming
 (Figure 4F) and producing [HA1] (Figure 4E). As we move from the surface

towards the center of the oocyte, the changes in solute concentrations begin later
and proceed more slowly, reflecting in part the time that the CO2 takes to diffuse
towards the center of the cell. For example, pH requires only 0.12 sec to reach its
maximal rate of decline just beneath the membrane, but requires about 46 sec to
reach its maximum rate near the cell center. Note that at time t = 0+, the [CO2] at
the inner side of the plasma membrane (Figure 4A, gold line) exhibits an overshoot
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because of the sudden, large influx of CO2. As the CO2 equilibrates across the cell
membrane, all solute concentrations approach the same respective values
throughout the cell. Note that CO2 and H2CO3 are the only solutes whose
concentrations—at equilibrium— are the same from the BECF to the cell center
(Figure 5A, gold line).

Remark: Our model, simulating a “standard in-silico experiment”, does a reasonably good
job predicting the observed shape of the pH profile on the surface of the oocyte (see Figure
3D, r = 651 μm). However, the maximum height of the pH spike at that location is less than
20% as large as the value measured by a surface-pH electrode (Endeward et al., 2006; Musa-
Aziz et al., 2009). This difference probably has at least two major causes: (a) The “vitelline
membrane” that surrounds the entire oocyte creates an additional unconvected space, in
series with the cell membrane. (b) The blunt surface-pH electrode—pushed up against the
vitelline membrane—creates yet another unconvected space that, although it represents an
extremely small fraction of the surface area of the oocyte, could have a major impact on
what the electrode senses. Each of these effects reduces the contribution of diffusion from
the BECF and therefore emphasizes the contribution of the reaction

 in replenishing the depleted CO2 at the cell surface. The
result is an unusually small DRR.

Remark: Our model, simulating a “standard in-silico experiment”, also does a reasonably
good job predicting the shape and magnitude of the observed pHi trajectory (Figure 4D).

4.2.2 Effect of changing d, the width of the EUF—Unstirred layers (ULs) are thin,
diffuse layers of fluid, always present near the surface of solid bodies immersed in fluid,
where—because of the slow laminar flow of liquid parallel to the surface of the solid—
molecules move predominantly via diffusion (Dainty and House, 1966; Korjamo et al.,
2009). The presence of unstirred layers on the outer cellular surface as well as within the
intracellular space represents a resistance to diffusion that is in series with the resistance of
the membrane. As the unstirred layers become thicker, the fractional contribution of the
membrane to overall resistance becomes smaller, and may eventually become insignificant
(Gutknecht and Tosteson, 1973; Gutknecht et al., 1977; Missner et al., 2008b; Endeward and
Gros, 2009; Boron, 2010; Boron et al., 2011).

The width of the unstirred layer (δ) is generally regarded as a steady-state concept. For a
particular solute, the thickness of the effective unstirred layer around the membrane is
defined as

(33)

where D is the diffusion constant and P is the empirically measured permeability. Note that
δ is solute-dependent (Levich, 1962). Finally, the definition of δ does not take into account
the effects of chemical reactions—particularly important when working with weak acids and
bases—on the size of the UL (Endeward and Gros, 2009). Because (a) our system is
dynamic—approaching a steady state (i.e., an equilibrium) only near the end of a simulation,
(b) involves multiple solutes, and (c) these solutes react in the “unstirred layer”, it would be
virtually impossible to build our model around δ values. Therefore, we chose to focus on the
width (d) of the EUF (see Figure 2). Note that EUF has the advantage of being readily
applicable to a dynamic system, has the same thickness for all solutes, and is amenable to
complex reactions occurring within the layer. Thus, EUF is a generalization of the concept
of UL.
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The motivation for the studies in this section is two-fold. First, because in real experiments it
is difficult to estimate d (Korjamo et al., 2009) or to alter d with precision in order to explore
how d influences pHS and pHi trajectories, which, in turn, are important tools for studying
gas channels. Therefore, we use the model to investigate how changes in d affect the
computed profiles of pHS and pHi. Second, changing d should give insights into the
competition between diffusion and reaction in replenishing the lost CO2 at the cell surface.

In addition to the standard d = 100 μm, we examine six other cases (Table 3) differing only
in the size of the computational domain (i.e., R∞). Figure 6 displays the results of the
simulations for pHS and pHi, the two parameters for which experimental data exist.

We define pHS as the value just outside the cell membrane. ΔpHS (the difference between
the actual and initial values of pHS) mainly reflects the velocity of H+ consumption at the
cell surface, which in turn depends on the CO2 influx as part of a complex cascade of
reactions and diffusion events indicated in Figure 2. Figure 6A and B show that, as the
thickness of the EUF decreases from 150 μm to 1 μm, the maximum height of the pHS
spike, (ΔpHS)max, decreases markedly. The height of the pHs spike declines because—as d
falls, thereby reducing the overall resistance to the diffusion of CO2—the diffusive flux of
CO2 from the BECF to the external surface of cell membrane becomes increasingly more

dominant than the reactions  in replenishing CO2 near
the outer surface of the plasma membrane. Thus, DRR rises.

In Figure 6C and D, the intracellular pH corresponds to a depth of 50 μm into the oocyte,
which is not unreasonable for the depth of penetration of a microelectrode into an oocyte.
The maximal rate of pHi change, (dpHi/dt)max, mainly reflects the velocity of H+ production
at this intracellular depth, which in turn depends on the CO2 influx and the complex events
outlined in Figure 2. Figure 6C and D show that, as the thickness of the EUF decreases from
150 μm to 1 μm, pHi declines more rapidly. The magnitude of (dpHi/dt)max rises because,
as d decreases, the diffusive flux of CO2 from the BECF increases, causing a rise in [CO2]
on the outer surface of the cell membrane, thereby increasing the CO2 influx.

4.2.3 Effects of decreasing CO2 membrane permeability, PM,CO2—The
motivation for the studies in this section is that—in electrophysiology experiments on
Xenopus oocytes—both (ΔpHS)max (Endeward et al., 2006; Musa-Aziz et al., 2009) and
(−dpHi/dt)max (Cooper and Boron, 1997; Nakhoul et al., 1998) have provided semi-
quantitative indices of the CO2 permeability of the cell membrane, leading to the initial
description of AQP1 as a gas channel. Moreover, pHS trajectories remain a valuable
experimental tool for studying gas channels. Although the present model is not sufficiently
sophisticated to permit the extraction of meaningful PM,CO2 estimates from experimental
data, it ought to provide valuable insights into the sensitivity of (ΔpHS)max and (−dpHi/
dt)max to changes in PM,CO2, and thus the likelihood of eventually being able to extract
PM,CO2 values.

In our “standard in-silico experiment”, we assume that the permeability of the cell
membrane corresponds to a film of water (i.e., DM,CO2 = Dwater,CO2 = 1.71× 10−5 cm2/sec)
with the thickness (i.e., hM = 5 nm) of a typical cell membrane. Thus, in the “standard in-
silico experiment” PM,CO2 is 34.20 cm/sec. In Figure 7, we show the effects of decreasing
PM,CO2 on pHS and pHi. The blue curves replicate the “standard in-silico experiment”.
Virtually identical curves ensue when we reduce PM,CO2 by factors of 101, 102, and 103,
whereas reducing PM,CO2 by factors of 104, 2.5·104, 5.0·104, 7.5·104 and 105 has visible and
increasingly large effects.
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Focusing first on the extracellular cell surface (Figure 7A), we see that, for the PM,CO2
values examined, the first visible effect on the pHS trajectory appears when we reduce
PM,CO2 by a factor of 104 (magenta curve): (ΔpHS)max is smaller and the decay from the
peak to the equilibrium state is slower. Further reductions in PM,CO2 cause further decreases
in both (ΔpHS)max and the speed of pHS equilibration (Figure 7A). Note that the maximal
sensitivity of (ΔpHS)max to changes in PM,CO2 occurs near fractional PM,CO2 decreases of
2.5·104 (Figure 7B).

As is the case for pHS, the first substantial effects on pHi trajectories (Figure 7C) occur
when we reduce PM,CO2 by a factor of 104 (magenta curve): (dpHi/dt)max is smaller and the
decay to the equilibrium state is slower. As PM,CO2 is decreased further, so do both (dpHi/
dt)max and the speed of pHi decline. As for (ΔpHS)max, the maximal sensitivity of (−dpHi/
dt)max to changes in PM,CO2 occurs near fractional PM,CO2 decreases of 2.5·104 (Figure 7D).

An explanation for the effects in Figure 7A is that as PM,CO2 falls, the velocities of both the
diffusion and reaction processes also fall, the latter effect reducing the height of the pHS
spike. As the system approaches equilibrium, the total amount of CO2 that enters the cell is
the same, regardless of the speed of CO2 entry. Thus, decreases in PM,CO2, which lengthen
the time required for a fixed amount of CO2 to enter the cell, necessarily broaden the
descending phase of the pHS trajectory (Figure 7A) and the entire pHi (Figure 7C)
trajectory. The plots of (ΔpHS)max vs PM,CO2 (Figure 7B) and of (−dpHi/dt)max vs PM,CO2
(Figure 7D) are similar because both (ΔpHS)max and (−dpHi/dt)max reflect the same
fundamental process: the influx of CO2. The simulations in Figure 7 imply that, for PM,CO2
values below a certain threshold, one could in principle use either (ΔpHS)max or (−dpHi/
dt)max to estimate PM,CO2. For this set of simulations, the PM,CO2 threshold is ≈10−2 cm/sec,
above which the EUF layer becomes rate limiting.

Figure 8 shows how [CO2] varies with radial distance from the center of the cell at seven
time instances, including the initial time t0 = 0 sec (brown line) and the final time t6 = 1,200
sec (black line). To the right of the cell membrane (i.e., r > R = 0.065 cm), the figure shows
the profiles of [CO2] in the EUF (d = 100 μm), up to the border with the BECF (i.e., r = R∞
= 0.075 cm). To the left of the cell membrane (i.e., r < R = 0.065 cm), the figure shows the
profiles of [CO2] inside the oocyte up to a depth of 100 μm. Figure 8A corresponds to the
“standard in-silico experiment” (PM,CO2 = 34.2 cm/sec) and Figure 8B corresponds to the
simulation where PM,CO2 is decreased by a factor of 104. The colors of the curves in Figure
8A correspond to the same time instances as those in Figure 8B (see figure legend).
Comparing Figure 8A and Figure 8B, we observe that, at any radial distance, reducing
PM,CO2 increases the time required for [CO2] to fall or rise to a particular value. Moreover,
reducing PM,CO2 increases, at any given time instance, the discontinuity between the extra-
and intracellular [CO2] trajectories. This discontinuity reflects a smaller CO2 influx, due to a
larger barrier to CO2 diffusion exerted by the plasma membrane. See Supplementary data
for the seven other plots, comparable to those in Figure 8A and Figure 8B, for the PM,CO2
values introduced in Figure 7.

4.2.4 Effects of changing Ao and Ai, the extra- and intracellular CA-like
activities, to mimic native oocytes—The motivation for the studies in this section is
that we hypothesized that carbonic-anhydrase activities both at the outer surface of the cell
membrane and in the cytosol are important for shaping pHS and pHi trajectories. Because
the only published oocyte experiments on CO2 permeability deal with cells having relatively
low, native CA activities, our goal is to investigate Ao and Ai values in the native range for
the purpose of gaining insight into PM,CO2.
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In our “standard in-silico experiment”, we assume that a CA-like activity amplifies the
reaction rates k1 and k−1 by a factor Ai everywhere inside the cell and by a factor Ao
outside. The CA-like activity on the outside, however, is limited to the immediate vicinity of
the oocyte surface. In our “standard in-silico experiment” we use Ao = Ai = 20. For
comparison, Ai in a human erythrocyte is typically 10–25,000 (Geers and Gros, 2000;
Endeward et al., 2008). The blue curves in Figure 9A and B replicate the “standard in-silico
experiment” for pHS and pHi, respectively. The figure also illustrates the results of
additional simulations in which we reduced the CA-like activity to Ao = 1, or Ai = 1, or Ao =
Ai = 1, that is, no enzymatic activity on the oocyte surface, or throughout the cytoplasm, or
both.

Focusing first on the extracellular cell surface, we see that with Ao = Ai = 1 (Figure 9A,
green curve), pHS has an unnaturally sharp spike. Raising Ao to 20 while leaving Ai = 1
increases the spike height, making the pHS spike even sharper (gold curve). On the other
hand, raising Ai to 20 while leaving Ao = 1 produces a naturally shaped pHS trajectory,
though (ΔpHS)max is still small (red curve). Comparing the blue curve (Ao = Ai = 20) with
the red curve (Ao = 1, Ai = 20), we see that implementing modest CA activity on the oocyte
surface increases (ΔpHS)max and retains a natural trajectory. An explanation for the sharp
spikes predicted for the two simulations in which Ai = 1 is that the production of CO2 on the
outer surface of the membrane initially promotes a large CO2 influx that quickly wanes
because of the inability of the cell to dispose of the incoming CO2. Raising Ai to 20
overcomes this problem.

Turning our attention to pHi, we see that lowering both Ao and Ai to 1 (Figure 9B, green
curve) produces an unnaturally slow fall in pHi, though to the proper equilibrium level.
Raising Ao to 20 while leaving Ai = 1 has virtually no effect, yielding an unnaturally slow
pHi decline (gold curve). Raising Ai to 20 while leaving Ao = 1 produces a reasonably
natural pHi trajectory (red curve), which is nearly indistinguishable from the “standard in-
silico experiment” (blue curve). An explanation for these results is that, from the perspective
of pHi and considering only modest levels of CA activity (i.e., Ao = 20 or Ai = 20), the only
important factor is the ability of intracellular CA to generate the H+ that the intracellular pH
microelectrode detects. In the process, the intracellular CA also disposes of incoming CO2,
thereby magnifying the out-to-in CO2 gradient and also promoting CO2 influx per se (Musa-
Aziz et al., 2005).

4.2.5 Effect of altering intracellular, , closed-system buffers—
The motivation for the studies in this section is that the magnitude of intracellular buffering
power ought to have a major influence on the trajectory of pHi and, by extension, pHS—
both of which are used to assess PM,CO2 and thus the properties of gas channels. Moreover,
before the development of the present model—with its ability to handle multiple buffers—it
has been impractical to ask whether reciprocal changes in mobile vs. immobile intracellular
buffers (at fixed buffering power) influence pHS or pHi trajectories. This question is
important because the mobility profile of intracellular buffers is not known with any
precision, and because the pHS and pHi trajectories are critical for assessing PM,CO2 in the
study of gas channels.

Effect of changing the buffering power: In our “standard in-silico experiment”, we chose
the buffering power of the single intracellular, , closed-system buffer to be
β = βstd = 15.6533mM/pH, so that an exposure to 1.5% CO2 would cause pH to fall from
7.20 to 7.00. In the simulations summarized in Figure 10, we explored β values of 1000βstd
(magenta) as an approximation of ∞, 5βstd (cyan), 2βstd (red), βstd (blue), βstd/2 (green),
and 0 (black). We achieved these values in the simulation by altering the concentration of
total buffer [TA1]i = [HA1]i + [A1

−]i.
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Figure 10A shows that (ΔpHS)max is little affected as we lower β from 1000βstd to βstd/2,
but falls off at a β of 0. The rate of pHS relaxation from the peak pHS progressively rises as
β falls.

Figure 10B shows that, as expected, pHi does not fall visibly at a β of 1000βstd. At lower
values of β, the (−dpHi/dt)max progressively increases and the time to reach equilibrium
progressively decreases. At the same time, the equilibrium pH progressively falls, reaching,
for β = 0, a value of ≈ 4.75 (i.e., the pH that we would achieve if we equilibrated a beaker of
pure water with 1.5% CO2).

The reason that the pHS relaxation and the pHi decline are most rapid for β = 0 is that all the

H+ produced by the intracellular reaction  remains free, so that the
flux through the reaction is limited by the equal buildup of the two products,  and H+.
In fact, the reaction causes [ ] and [H+] to increase by very little:

. In other words, the consumption of
CO2—equivalent to  or Δ[H+]—is extremely low (i.e., ≈ 0.016 mM). Thus, free
intracellular CO2 builds up very quickly, and the CO2 equilibrates rapidly throughout the
system. Conversely, at β = ∞, where [H+] cannot change from its initial value of 10−7.2 M,

the reaction  is limited only by the build-up of . Our
simulation (and the Henderson-Hasselbalch equation) show that [ ] rises from 0 before
the CO2 exposure to ≈ 5 mM at equilibrium. In other words, for β = ∞, the consumption of
CO2, equivalent to , is extremely high (i.e., ≈ 5 mM). In fact, the consumption of
CO2 for β = ∞ is 5/0.016 mM ≈ 300-fold greater than the consumption of CO2 for β = 0.
Because ≈ 300-fold more CO2 must enter the cell, the equilibration requires a much longer
time.

Effect of switching to immobile intracellular buffers: So far, we have implemented a
single intracellular, , closed-system buffer that is mobile. However, real
cells have a multitude of , closed-system buffers that differ in pK,
concentration, and mobility. Here we investigate the importance of buffer mobility by
splitting our original buffer, , with [TA1]i equal to a constant (i.e., ≈ 27.3126 mM)
that we will now define as [TA]i, into two buffers  and . These two buffers
have the same pK, and their concentrations sum to [TA]i (i.e., [TA1]i + [TA2]i = [TA]i). We
assign  the same mobilities as in our “standard in-silico experiment”, and assign

 mobilities of zero. For the seven simulations summarized in Figure 11, we allow
[TA2]i to range from 0% of [TA]i, that is, the “standard in-silico experiment” with all-
mobile buffer (blue curves) to 100% of [TA]i, that is, all-immobile buffer (magenta curves),
as summarized in the legends. For example, if 70% of the buffer is immobile, [TA2]i = 70%·
[TA]i, then the remaining 30% is mobile, [TA1]i = 30%·[TA]i.

Figure 11A shows that, as the percentage of immobile buffer increases from 0% (i.e.,
“standard in-silico experiment”) to 100%, the pHS profiles have approximately the same
(ΔpHS)max, but the initial phase of decay becomes progressively faster as the later phase
becomes progressively slower.

Figure 11B shows that, as the percentage of immobile buffer increases from 0% to 100%,
(−dpHi/dt)max becomes progressively greater, the pHi values achieved at 200–300 sec
become progressively lower (producing a minimum or undershoot at 95% and 100%
immobile buffer), and the time to achieve true equilibrium gradually increases.

The reason why 0% immobile buffer corresponds to the smallest (−dpHi/dt)max—or the
slowest decline in pHi—is that, as CO2 enters the cell and leads to the formation of H+,
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which is buffered in the reaction H+ + A− → HA, the fully mobile buffer can maximally
replenish the consumed A− and dispose via diffusion of the newly formed HA. This counter-
diffusion of A− and HA effectively raises the local buffering power, slowing the descent of
pHi. On the other hand, with 100% immobile buffer, the above reaction is limited by the
availability of A− and the buildup of HA. Thus, the local buffering power is relatively low,
speeding the descent of pHi. In fact, the local build-up of H+ causes pHi to fall substantially
below the equilibrium value reached at infinite time. The slow diffusion of H+ away from
the membrane, which is the rate-limiting factor for attaining equilibrium, produces the slow
increase of pHi at times greater than ≈ 250 sec.

The “pHi” in Figure 11B is at a depth of ≈ 50 μm below the membrane. Figure 12A is a
family of pHi trajectories from the 100% immobile simulation in Figure 11B, but in Figure
12A we examine a wide range of depths below the membrane. Note that as we move deeper
into the cell, the minimum pH value becomes larger and occurs later in time. Eventually, the
minimum disappears entirely, and pH falls monotonically, more slowly as we approach the
center of the cell. Note also that the delay between the start of the simulation and the time of
steepest pH descent increases as we approach the center of the cell.

Of particular interest in Figure 12A is the slow pH increase (i.e., “pH recovery” in the
physiological literature) at the positions closest to the membrane, and at times after the pH
undershoot. This recovery could be mistaken for the “active”, energy-requiring extrusion of
acid equivalents that was first described in experiments on squid giant axons, and which
provided the first direct evidence for pHi regulation (Boron and De Weer, 1976; Roos and
Boron, 1981). However, the pHi recoveries in Figure 11B and Figure 12A reflect a purely
passive process, the diffusion of H+ away from the membrane. Note that in the squid-axon
experiments (Boron and De Weer, 1976; Roos and Boron, 1981), the pH electrode was
positioned along the axis of the cylindrical axon, analogous to the center of the spherical cell
in our simulation in Figure 12A. The pH trajectory at the center of our sphere decreases
monotonically, confirming the interpretation in squid-axon study that the pHi recovery is a
reflection of active transport (Boron and De Weer, 1976; Roos and Boron, 1981).

Our last observation begins with the gold curve in Figure 11B. In Figure 11B, all
simulations correspond to a depth of ≈ 50 μm. The gold curve represents 90% immobile
buffer, the condition in which pHi appears to reach the equilibrium value of 7.00 most
rapidly without an undershoot. However, this apparent rapid equilibration is an illusion. In
Figure 12B, the gold curve reproduces the one in Figure 11B. The other curves in Figure
12B (90% immobile buffer) represent the same range of depths presented in Figure 12A
(100% immobile buffer). We see in Figure 12B that, even though pH at a depth of ≈ 50 μm
appears to be approaching its equilibrium value of 7.00 at a time of ≈ 400 sec (vertical line),
pH at greater depths has not yet reached its equilibrium value. The greater the depth, the
more distant is pHi from its equilibrium value at t = 400 sec. Thus, although data obtained at
a depth of 50 μm makes it appear as if the system has reached equilibrium within 400 sec, in
fact, the system remains far out of equilibrium at this time instance.

4.2.6 Conclusions—We have developed and implemented a three-dimensional reaction-
diffusion model for CO2 influx into a spherical cell with radial symmetry (e.g., a Xenopus
oocyte). As hypothesized, this model reproduces the essential features of Figure 1. Namely,
the application of CO2 causes pHS to rise rapidly to a peak and then decay, and
simultaneously causes pHi to fall monotonically with approximately the same time constant
as the decay in pHS.
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The model is flexible because, when we alter parameters as discussed above in Sections
4.2.2 through 4.2.5, the model yields results that either qualitatively match physiological
data, or that make intuitive sense to a physiologist:

a. Geometric parameters, including the thickness of the extracellular unconvected
fluid. Simulations in which we change d give insight into how altering the width of
the EUF impacts both the height of the pHS spike (Figure 6B) and the maximal rate
of intracellular acidification (Figure 6D). The importance of d for the empirically
measured membrane permeability to CO2 is the object of continuing discussion
(Boron et al., 2011). Pohl and colleagues argued that the combination of a large d
(e.g., 100 μm) and a large true membrane permeability (i.e., the permeability of the
lipid phase of a membrane) makes gas channels irrelevant (Missner et al., 2008a;
Missner et al., 2008b; Missner and Pohl, 2009). However, the Pohl, Gros, and
Boron groups later agreed that, given a sufficiently small PM,CO2, gas channels
could measurably contribute to CO2 permeability, even with a large d (Boron et al.,
2011). Indeed, our simulations show that, even with the relatively large d
characteristic of our “standard in-silico experiment” (i.e, 100 μm), both (ΔpHS)max
and (−dpHi/dt)max rise more or less linearly with log(PM,CO2)—provided PM,CO2 is
below ~10−2 cm/sec (see Figure 7B and D, respectively). Thus, our model provides
an important new physiological insight.

b. Mobilities of solutes in space, including the permeability of the membrane to CO2.
Based on the discussion in (a), as well as the observation that expressing AQPs or
Rh proteins in oocytes cause a substantial increase in (ΔpHS)max (Endeward et al.,
2006; Musa-Aziz et al., 2009), we can conclude that d and PM,CO2 must be low
enough for gas channels to make a significant contribution in oocytes. Moreover, in
principle it would be possible to extract, from experimental data, estimates of the
CO2 permeability of gas channels.

c. Activity and localization of carbonic-anhydrase activity. Our simulations lead to
the novel conclusion that native Xenopus oocytes must have a small amount of
cytosolic CA activity (Figure 9A) in order to account for the general shape of pHS
vs. time in actual recordings from oocytes.

d. Number, concentration, mobility, and pK value of each  closed-
system buffer. A novel insight from our simulations is that at least a small fraction
of intracellular buffers must be mobile in order to account for the observed
monotonic fall in pHi that is induced by CO2 (Figure 11B).

In addition, the model provides interesting new insights into the competition between
diffusion and reaction processes near the outer surface of the plasma membrane. First, the
DRR changes dynamically during the CO2 exposure, with diffusion dominating early.
Second, (ΔpHS)max—a measure of the reaction rate—increases in response to raising d
(which reduces the contribution of diffusion, so that the reaction makes a greater
contribution by default) or raising Ao (which speeds the reaction).

The model is capable of reproducing qualitatively the shape of the pHS and pHi transients in
Figure 1. Quantitative agreement with experimental data will require refinements to make
the model more realistic. Enhancements might include (a) a vitelline membrane, (b) a
surface amplification factor to account for microvilli, (c) a more realistic (i.e., lower) value
for DM,CO2, (d) a reduction of intracellular mobility to reflect the presence of cytoplasm and
intracellular vesicles, (e) recognition that an oocyte is not entirely aqueous, as well as the
introduction of (f) a discrete surface-pH electrode and (g) convection of the extracellular
fluid.
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Finally, the model is easily expandable. For example, it would be straightforward to

implement additional solutes (e.g., NH3 and ), allow solutes other than CO2 to diffuse
across the membrane (e.g., NH3), examine the effects of gas channels (e.g., AQPs and Rh
proteins), and to introduce transporter proteins (e.g., a Na/HCO3 cotransporter) into the
plasma membrane.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Membrane crossing and boundary conditions
We derive the membrane boundary conditions through a limiting process. Consider a
substance w with concentration cw,+ and denote by cw,+ and cw,− its concentrations outside
and inside the membrane, respectively. Similarly, let D w,+ and D w,− denote the diffusion
coefficients outside and inside the membrane. To find a reasonable boundary condition,
assume first that the membrane has a positive thickness hM > 0, and assume that the
substance traffic through the membrane happens via diffusion. Let Dw,* denote the diffusion
coefficient of the membrane, and denote by cw,* the concentration within the membrane.
Without limiting the generality, let us assume that the membrane is locally a spherical
surface, the inner and outer boundaries being at r = R and r = R + hM, respectively. To have
the diffusion equation hold in the weak sense, we impose first the boundary condition at the
inner membrane boundary, requiring that

(A.1)

Similarly, at the outer boundary, we require that

(A.2)

From the Taylor expansion at r = R,

(A.3)
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and upon substituting (A.1), we have that

(A.4)

By letting the thickness of the membrane go to zero simultaneously with the diffusion
constant in such a way that

(A.5)

we arrive at the mixed transmission boundary condition,

(A.6)

We observe that the limit (A.5) is not a physiological limit but rather a computational
approximation. The idea is that we take the the computational membrane thickness to zero in
such a way that the permeability of the membrane is not changed.

Similarly, by using the Taylor expansion at the outer surface and the boundary conditions
(A.2), we find through the similar limiting process that

(A.7)

which amount to the effective transmission conditions.

Observing that α = 1/Pw, with Pw the true membrane permeability to solute w, we can
rewrite equations (A.6) and (A.7) in the forms

(A.8)

and

(A.9)

Appendix B: Details of the finite difference approximation
In this appendix, we give details concerning the finite difference approximation of the
diffusion operator for a single solute w with concentration cw = cw (t, r) and diffusion
coefficient Dw(r).

Consider first the interior of the cell, r < R. We divide it in nin spherical shells by the grid
points
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(B.1)

Introduce the notation cw (t, rj ) = cw,j (t) and rj±1/2 = rj±h/2, where h = R/nin, and Dw(rj±1/2)
= Dw, j± 1/2, 1 ≤ j ≤ nin − 1. We use the finite difference approximation

(B.

2)

By introducing the notation

(B.3)

the formula (B.2) can be written more concisely as

(B.4)

For r < r1, we assume that Dw (r) = Dw,0 is constant. The solution must be smooth and
symmetric through the origin, so we can write for r < r1,

(B.5)

where the second term must vanish due to symmetry, and by using symmetric finite
differences,

(B.6)

To find a discretization at the outer boundary of the cell, we use the transmission condition
(13)

(B.7)

and write an approximation

(B.8)

We collect the elements of the grid function cw, j to a vector,
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(B.9)

and define a vector

(B.10)

which will provide coupling of the solutions in the interior domain to the exterior.
Furthermore, define

(B.

11)

With these notations, the diffusion equation inside can be approximated as

(B.12)

We treat in a similar way the exterior domain, dividing the interval [R, R∞] in nout equal
intervals. The interior boundary r = R is treated analogously to the exterior boundary of the
inner domain. The outer boundary needs to be treated separately. At j = nout − 1, we
approximate

(B.

13)

which, after organizing the terms appropriately in arrays, leads to a matrix equation

(B.14)

where the arrays are given by
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(B.

15)

Here, the elements  are defined analogously to the interior domain, and

(B.16)

Finally, we put the single substance equations together by stacking the vectors as

(B.17)

and, after assembling the matrices,

(B.18)

(B.19)

we arrive at the system

(B.20)
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Highlights

• Mathematical model of CO2 influx into a spherical cell

• The model accounts for competing equilibria among multiple buffers

• We simulate the transients in surface and intracellular pH caused by CO2 influx
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Figure 1.
Model of an oocyte exposed to . As CO2 enters the cell, the concentration of
CO2 near the outer surface of the oocyte falls. The lost CO2 can be replenished by 1)
diffusion from the bulk extracellular fluid (BECF) and 2) the reaction(s)

 at the cell surface. This reaction, which consumes H+, causes pHS
to rise. Conversely, the entry of CO2 into the cell leads to the generation of intracellular H+

via the reaction(s) , therefore causing a fall in pHi. (Cell model
adapted from ref (Boron, 2010). The inset at the bottom right shows experimental pHS and
pHi records for a H2O-injected oocyte exposed to 1.5% CO2/10mM . Data kindly
provided by Dr. Musa-Aziz).
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Figure 2.
Key components of the mathematical model. The oocyte is surrounded by the extracellular
unconvected fluid (EUF), which in turn is surrounded by the bulk extracellular fluid
(BECF). The BECF is an infinite reservoir for all solutes, where convection (not included in
the present model) could occur but no reaction or diffusion. All solutes can diffuse between
the BECF and EUF. The EUF is a thin layer of thickness d adjacent to the oocyte surface
where no convection occurs, but reaction and diffusion do occur. The plasma membrane is
permeable only to CO2. In the intracellular fluid (ICF), both reaction and diffusion occur. In
both the EUF and ICF the model accounts for the slow equilibration of the CO2 hydration/
dehydration reactions, competing equilibria among the  buffers and a multitude
of  buffers (indicated as ).
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Figure 3.
Extracellular concentration-time profiles for solutes (CO2, H2CO3, HCO3

−, H+ as pH, HA1,
) in a “standard in-silico experiment” at five exterior radial distances (r) from the center

of an oocyte of radius R = 650 μm: 651 μm (i.e., 1 μm away from the outer surface of the
membrane), 670 μm, 690 μm, 710 μm, and 730 μm in the extracellular unconvected fluid as
well as 750 μm at the border with the bulk extracellular fluid. These data are the
extracellular counterpart of the data in Figure 4. See Table 1 and Table 2 for parameter
values.
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Figure 4.
Intracellular concentration-time profiles for solutes (CO2, H2CO3, HCO3

−, H+ as pH, HA1,
) in a “standard in-silico experiment” for five interior radial distances (r) from the center

of an oocyte of radius R = 650 μm: ≈ 8 μm (i.e., close to the center), ≈ 160 μm, ≈ 320 μm,
≈ 480 μm, ≈ 640 μm and at 650 μm (i.e., the cytosolic surface of the plasma membrane).
Note that the green curve for r ≈160 μm almost completely overlies the brown curve for r ≈
8 μm. See Table 1 and Table 2 for parameter values.
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Figure 5.
Extra- and intracellular concentration-distance profiles for solutes (CO2, H2CO3, HCO3

−,
H+ as pH, HA1, ) in a “standard in-silico experiment” at six time instances: t0 = 0 sec, t1
≈ 0.0004 sec, t2 ≈ 0.034 sec, t3 ≈ 3.051 sec, t4 ≈ 150.98 sec, and t5 ≈ 1,200 sec. The dashed
black vertical line indicates the oocyte membrane.
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Figure 6.
Effect of changing the width d of the extracellular unconvected fluid on the surface (pHS)
and intracellular pH (pHi) time profiles. (A) pHS transients for seven simulations
corresponding to seven values of d (see legend and Table 3 for parameter values). (B)
Maximum height of the pHS spike—(ΔpHS)max—as a function of d for the seven
simulations reported in (A). (C) Corresponding pHi transients at a depth of ≈ 50 μm for the
simulations in (A). (D) Maximal rate of pHi change—(dpHi/dt)max—as a function of d for
the seven simulations reported in (C).
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Figure 7.
Effect of changing CO2 membrane permeability (PM,CO2) on the surface (pHS) and
intracellular pH (pHi) time profiles. We show results of nine simulations for PM,CO2 = 34.20
cm/sec (blue, “standard in-silico experiment”, which corresponds to the mobility of CO2 in
H2O) and for PM,CO2 reduced by factors of 101, 102, 103, 104, 2.5·104, 5.0·104, 7.5·104 and
105. (A) pHS transients for the nine simulations. Note that virtually superimposable on the
blue curve are the ones for which PM,CO2 is reduced by factors of 101, 102, and 103. (B)
Maximum height of the pHS spike—(ΔpHS)max—as a function of PM,CO2 for the nine
simulations reported in (A). (C) pHi transients at a depth of ≈ 50 μm for the simulations in
(A). Note that virtually superimposable on the blue curve are the ones for which PM,CO2 is
reduced by factors of 101, 102, and 103. (D) Maximal rate of pHi change—(dpHi/dt)max—as
a function of PM,CO2 for the nine simulations reported in (C).

Somersalo et al. Page 35

J Theor Biol. Author manuscript; available in PMC 2013 September 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Effects of reducing the CO2 membrane permeability (PM,CO2) on [CO2]-distance profiles at
seven time instances: t0 = 0 sec, t1 ≈ 0.01 sec, t2 ≈ 0.25 sec, t3 ≈ 5 sec, t4 ≈ 35 sec, t5 ≈ 200
sec and t6 ≈ 1,200 sec. (A) Simulation corresponding to the “standard in-silico experiment”
(PM,CO2 = 34.2 cm/sec). (B) Simulation corresponding to the experiment in which PM,CO2 is
reduced by a factor of 104.
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Figure 9.
Effects of changing the extracellular CA-like activity (Ao) and intracellular CA-like activity
(Ai) on the surface (pHS) and intracellular pH (pHi) time profiles. (A) pHS transients for
four simulations corresponding to all combinations of Ao and Ai acceleration factors of 1 or
20. (B) Corresponding pHi-time profiles at a depth of ≈ 50 μm. Note that, in this panel, the
green and gold curves overlap, as do the blue and red curves. The blue curves reproduce the
“standard in-silico experiment”.
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Figure 10.
Effect of changing the closed-system intracellular buffering power β on the surface (pHS)
and intracellular pH (pHi) time profiles. We show the results of six simulations
corresponding to β values of 1000·βstd, 5·βstd, 2·βstd, βstd, βstd/2, and 0.·βstd is the buffering
power used for the “standard in-silico experiment” (i.e., the β for a single buffer with pK =
7.1 and concentration ≈ 27.3126 mM). The curve for β = 1000·βstd is an approximation of
an infinite β. (A) Time course of simulated surface pH. (B) Time course of simulated
intracellular pH at a depth of ≈ 50 μm. Note the break in the ordinate, in this panel, which is
necessary for showing the large pHi decrease that would occur with a β of 0.
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Figure 11.
Mobile versus immobile intracellular buffers. We show the results of simulations in which
we split our original intracellular  buffer HA/A− into two distinct

 intracellular buffers:  (assumed mobile) and  (assumed
immobile). (A) pHS time profiles for different ratios of immobile to mobile 
buffers, expressed as the fractions (%) of total  buffer ([TA2]i) that are
immobile. The blue curve reproduces the “standard in-silico experiment.” (B)
Corresponding pHi time profiles calculated at a depth of ≈ 50 μm. The directions of the
arrows in panels A and B show the effects of graded increases in the % of immobile buffer.
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Figure 12.
Exploring the effects of 100% or 90% immobile  buffer on the pHi time
profile at eight depths into the cell. (A) Family of pH time profiles based on the simulation
in Figure 11B for 100% immobile buffer. The black curve represents a depth of ≈ 10 μm.
The magenta curve is the same as in Figure 11B, and represents a depth of ≈ 50 μm. The
gray curves, in the direction of the arrow, represent increasing depths beneath the membrane
of ≈ 150 μm, ≈ 250 μm, ≈ 350 μm, ≈ 450 μm, ≈ 550 μm and ≈ 650 μm (i.e., near the
center of the cell). (B) Family of pH time profiles based on the simulation in Figure 11B for
90% immobile buffer. The gold curve is the same as in Figure 11B, and represents a depth
of ≈ 50 μm. The other colors and the arrow have the same meaning as in panel A.
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Table 1

Parameter values used in the “standard in-silico experiment”.

Bulk ECF Bulk ICF Reference

Sphere diameter 0.15 cm (d = 100 μm) 0.13 cm

# of subintervals 100 80

Mobility CO2 1.71× 10−5 cm2/sec 1.71× 10−5 cm2/sec (Gros and Moll, 1971)

H2CO3 1.11× 10−5 cm2/sec 1.11× 10−5 cm2/sec computed* using data from refs.
(Vanysek, 2011) and (Swietach et al.,
2003)

HCO3
− 1.11× 10−5 cm2/sec 1.11× 10−5 cm2/sec computed* using data from refs.

(Vanysek, 2011) and (Swietach et al.,
2003)

H+ 8.69× 10−5 cm2/sec 8.69× 10−5 cm2/sec computed* using data from refs.
(Vanysek, 2011) and (Swietach et al.,
2003)

HA1 1.56× 10−5 cm2/sec 1.56× 10−5 cm2/sec (Gutknecht and Tosteson, 1973)

1.56× 10−5 cm2/sec 1.56× 10−5 cm2/sec calculated** from (Gutknecht and
Tosteson, 1973)

Concentration CO2 0.4720 mM 0 mM

H2CO3 0.0013 mM 0 mM

HCO3
− 9.9 mM 0 mM

H+ 3.1623× 10−5 mM 6.3096 × 10−5 mM

HA 2.5 mM 12.0910 mM

A− 2.5 mM 15.2216 mM

Total CO2 10.3733 mM 0 mM

pH 7.50 7.20

pKHA 7.50 7.10

H2CO3 acid formation:

Rate constants k1 0.0302 sec−1 0.0302 sec−1 computed* using data from refs.
(Gibbons and Edsall, 1963) and (Zhao
et al., 2003)

k−1 10.9631 sec−1 10.9631 sec−1 computed* using data from refs.
(Gibbons and Edsall, 1963) and (Zhao
et al., 2003)

Equilibrium constants K1 (pK1) 0.0028 (2.5599) 0.0028 (2.5599) calculated as k1/k−1

H2CO3 dissociation:

Rate constants k2 1 × 1016 sec−1 1 × 1016 sec−1 chosen to achieve equilibrium

k−2 4.1530 × 1016 mM −1sec−1 4.1530 × 1016 mM−1sec−1 (calculated as k−2= k2/K2)

Equilibrium constants K2 (pK2) 0.2408 (3.6184) mM 0.2408 (3.6184) mM calculated

 reactions:
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Bulk ECF Bulk ICF Reference

Rate constants k3 1 × 1010 sec−1 1 × 1010 sec−1 chosen to achieve equilibrium

k−3 3.1623 × 1014 mM−1sec−1 1.2589 × 1014 mM−1sec−1 (calculated as k−3= k3/KHA)

Equilibrium constants KHA (pKHA) 3.1623 × 10−5 (7.5) mM 7.9433 × 10−5 (7.1) mM assumed

CA-like activity A-factor 20 20 chosen

*
See supplementary data for how we used the Arrhenius equation to compute this value.

**
See supplementary data for an explanation on how we calculated this value.
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Table 2

More Parameters*

Membrane permeability CO2 34.20 cm/sec calculated, assuming that the diffusion coefficient in the membrane is the same
as an equivalent thickness of water.

H2CO3 0 assumed

HCO3
− 0 assumed

H+ 0 assumed

HA1 0 assumed

0 assumed

Temperature 22°C (room temperature)

Solubility CO2 0.0434 mM/mmHg calculated**

*
In the computer code, we represent zero as 1 × 10−20 cm/sec

**
See supplementary data for an explanation on how we calculated this value.
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Table 3

Values for d and corresponding number of subintervals used in the simulations where we explore the role of
the width of the EUF*

Extracellular Unconvected fluid (EUF)Width d (μm) Number of Subintervals nout

150 150

100** 100

50 50

25 25

10 10

5 5

1 5

*
The intracellular discretizations are the same as for the “standard in-silico experiment”, 80 subintervals.

**
Standard in-silico experiment.
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