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Abstract
Methods for estimating the fractal dimension, D, or the related Hurst coefficient, H, for a one-
dimensional fractal series include Hurst’s method of rescaled range analysis, spectral analysis,
dispersional analysis, and scaled windowed variance analysis (which is related to detrended
fluctuation analysis). Dispersional analysis estimates H by using the variance of the grouped
means of discrete fractional Gaussian noise series (DfGn). Scaled windowed variance analysis
estimates H using the mean of grouped variances of discrete fractional Brownian motion (DfBm)
series. Both dispersional analysis and scaled windowed variance analysis have small bias and
variance in their estimates of the Hurst coefficient. This study demonstrates that both methods
derive their accuracy from their strict mathematical relationship to the expected value of the
correlation function of DfGn. The expected values of the variance of the grouped means for
dispersional analysis on DfGn and the mean of the grouped variance for scaled windowed
variance analysis on DfBm are calculated. An improved formulation for scaled windowed
variance analysis is given. The expected values using these analyses on the wrong kind of series
(dispersional analysis on DfBm and scaled windowed variance analysis on DfGn) are also
calculated.
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1. Introduction
Davies and Harte [1] presented a method (DHM) for generating one-dimensional discrete
fractional Gaussian noise (DfGn) series which preserve the desired correlation structure
among the elements of the series. DfGn series are completely specified by two parameters,
σ2, the variance of the series, and H, the Hurst coefficient, which is related to the fractal
dimension, D, by H = 2 − D. DHM extended to higher dimensions by [2] gives the expected
value of the correlation function, r(τ), between elements with separation τ as r(τ) = (σ2/2)(|τ
− 1|2H − 2|τ|2H + |τ + 1|2H) [3–5]. Other generating methods, which were developed earlier,
such as spectral synthesis and successive random addition [6], do not preserve the expected
value of the correlation function. DHM generated series have been used as a reference
standard for DfGn signals in subsequent research. Caccia et al. [7] showed that a method
developed by [8], dispersional analysis, was preferable to the classic method of analysis
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presented by [9], having less bias and variance in the estimate of H for any given series
length.

The values of a discrete fractional Brownian motion (DfBm) are the cumulative sums of a
DfGn. The Hurst coefficient characterizes the increments, differences between adjacent
elements, of a DfBm. Cannon et al. [10] tested three variants of scaled windowed variance
methods, one of which is basically the same as the detrended fluctuation analysis of [11] and
found the simple, undetrended method to have the least bias and variance in estimates of the
Hurst coefficient. The evaluation studies of [7] and [10] suggested that these methods gave
better estimates of the Hurst coefficient than did standard Fourier spectral analysis. The
Fourier analysis is based on the idea of self-similarity of the power spectral density function,
which varies as 1/fβ, where f is the frequency. In general, for DfGn, the relationship between
the power-law exponent β and the Hurst coefficient H is β = 2H − 1. Signals with β <0 or H
<1/2 are “blue” noises with increasing power at high frequencies and negative correlation
between neighboring series elements. Signals with β = 0 or H = 0.5 are “white” noise with
uncorrelated elements. Signals with 0 <β <1 or H >0.5 are “red” noises with positive
correlation between neighboring elements. For 1 <β <3, β = 2H + 1 in accordance with the
generality for continuous systems, that is, that the power slope increases by two when the
signal is integrated. However, these power law perspectives are only approximate and hold
only for low frequencies [5]. The reality is that continuous systems which exhibit power-law
behavior are different from their discretely sampled realizations. The only discretely
sampled fractional series which exhibits power law behavior over all sampled frequencies is
white noise. The high-frequency behavior of discrete fractional time series deviates
markedly from simple power-law behavior.

The messages derived from these ideas are: (1) if an exact fractional series (either a DfGn or
dfBm) is an appropriate model for a given time series, then power spectral analysis is
inappropriate, and (2) methods specifically suited to exact fractals should be used to
estimate the Hurst coefficient. Having found that dispersional analysis is particularly suited
for DfGn and scaled windowed variance is likewise suitable for DfBm, we demonstrate that
the strength of both is their basic relationship to the correlation structure of exact fractal
signals. Thus this is not merely an academic point, but one of practical importance.

2. Deriving dispersional analysis using the correlation function for DfGn
Define the DfGn series X = {Xi, i = 1, …, N}. Let N be exactly divisible by m and E[X] = 0
(series has zero mean) and E[XjXk] = (σ2/2)(|k − j − 1|2H − 2|k − j|2H + |k − j + 1|2H) is the
expected value of the correlation function for DfGn [6], where σ2 = var[X], and H is the
Hurst coefficient. We also define the expected value alternatively as r(τ) = (σ2/2)(|τ − 1|2H −
2|τ|2H + |τ + 1|2H) where τ = k − j.

Define the estimated sample variance of the noise series as

(1a)

where the subscript 1 on SD1 indicates a window of length m = 1.

Normally, the sum of the squares is normalized by N − 1, but this would be incorrect if the
expected value of the series is zero and the estimated mean is not subtracted from each
element of the series before it is squared. Explicitly, we have the expected variance of the
original series,
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(1b)

The estimated sample variance over windows of size m is given as

(1c)

This can be rearranged as

(1d)

and expanded to yield

(1e)

which separates into a sum of squares term and cross terms:

(1f)

The sum of squares terms can be simplified as can the cross terms:

(1g)

Taking the expected value of each side yields

(1h)

This can be rewritten as

(1i)

Substituting for r(s) yields

Raymond and Bassingthwaighte Page 3

Physica A. Author manuscript; available in PMC 2012 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1j)

which simplifies to

(1k)

This in turn becomes by summing and rearranging

(1l)

Dividing by the expected value of the variance computed over windows of size n gives

(1m)

Usually, the expected values are left off the formula and the square root is taken on both
sides to give the dispersional relationship in the form used by [8]

(1n)

where D is the fractal dimension for the one-dimensional series.

Thus, the dispersional relationship is a statement about the ratio of expected values of
variances rather than the ratio of estimated values of standard deviations, as is commonly
assumed.

In Eq. (1c), not all the terms of the estimated correlation calculation are present. For
example, in the case m=2, the first lag of the calculated correlation function represents the
sum of half the terms in the usually estimated correlation function, i.e., X1X2 +X3X4 +X5X6
+··· instead of X1X2 +X2X3 +X3X4 +···. Caccia et al. (1997) showed that using all possible
overlapping windows instead of non-overlapping windows improves the calculation of H
using dispersional analysis. Rederiving dispersional analysis using all possible overlapping
windows shows that the estimated correlation function contains all of the possible cross
terms of the m− 1 lags, but with linearly tapering weights for the calculations over the first
and last windows.

3. Deriving scaled windowed variance analysis for DfBm using the
correlation function for DfGm

The scaled windowed variance methods explored by [10] are variants of detrended
fluctuation analysis developed by [11]. Here we relate the basic method without any trend
corrections to the expected fractal correlation value. We add an additional definition to those
given in the first paragraph of Section 2 for deriving dispersional analysis. Define the

motion series B = {Bk, k = 1,…, N where }.
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Next, we derive the scaled windowed variance relationship expressed in terms of the
expected value of the correlation function. Define the estimated averaged variance of the
motion series over windows of size m as

(2a)

where the average value of the motion series inside the window from m(k − 1) + 1 to mk is
given by

(2b)

or by compressing the double summation into two single summations, as

(2c)

Substituting the sums of noise terms for the motion terms yields

(2d)

and simplifies to

(2e)

(see Appendix A), where δi, j = 1 if i = j, and δi, j = 0 otherwise. We note that the variance in
each window (k = 1, k = 2, etc.) is dependent on only the associated noise values for the
same window even though the variance is calculated on the cumulative sum of the noise
values because of the subtraction of the mean in each window. We now take the expected
value of this expression to yield

(2f)

Substituting

(2g)

Eq. (2f) simplifies to
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(2h)

This expression can be simplified by writing the elements of the summation as a lower
triangular matrix where j indexes the rows and i indexes the columns and then summing
each diagonal separately from upper left to lower right. Designating the main diagonal s = 0,
and each subsequent off diagonal as s = 1, s = 2,…,s = m − 2, there is a common closed
expression for each diagonal, and summing over the common closed expression for each
diagonal, we are able to write

(2i)

where δs = 1 when s = 0 and δs = 0 otherwise.

This reduces to

(2j)

This can be approximated by the integral,

(2k)

where Ê is used for the approximated expected value. For large m, this simplifies to

(2l)

The scaled windowed variance relationship for motion series is seen to hold,

(2m)

Like dispersional analysis, the scaled windowed variance relationship is written usually with
the expected value notations (or in this case, the approximate expected value notations)
removed, and the square root is taken on both sides and expressed as

(2n)

It should be kept in mind that the scaled windowed variance relationship is a statement about
the ratio of approximated expected values of the averaged variances rather than the ratio of
estimated values of averaged standard deviations. It would be interesting to explore the
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possibility of using Eq. (2j) as a model for scaled windowed variance analysis instead of Eq.
(2m), especially for short series of length less than 1024 points.

Finally, we determine over what range of m and H the approximate expected value, ,

in Eq. (2l) represents the formal expected value, , in Eq. (2j). We compute the
percent difference between the expected averaged variance (Eq. (2j)) and the approximated
expected averaged variance (Eq. (2k)) as a function of the window size, m. The values are
plotted in Fig. 1 for H = 0.1 (solid diamonds) and H = 0.9 (open circles) to cover a range of
values. For that range of Hurst coefficients, a window size greater than 16 gives
approximations to within 3% of the correct expected values. Clearly, the approximate values
are quite good when the window size is greater than 16. This supports the conclusion of
[10], that in calculating the Hurst coefficient using Eq. (2n), the values from the smallest
windows should be excluded.

4. Results of misapplying dispersional analysis to DfBm
When dispersional analysis is mistakenly applied to DfBm, it yields highly biased estimates
for the Hurst coefficient. The estimates of H are all near 1.0 for DfBm of all H’s. To show
why this happens we derive the expected value of the sample variance over windows of size
m when the series is a DfBm.

We use the same definitions given at the beginning of Sections 2 and 3. The estimated
sample variance over windows of size m is now defined as

(3a)

where Bm(i−1)+j, the elements of a motion series, have replaced Xm(i−1)+j, the elements of a
noise series, in Eq. (1c).

This can be expanded to

(3b)

Taking the expected value of both sides and substituting E[Xi1Xi2] = r(i1 − i2), we have,
without going into the tedious details,

(3c)

This can be approximated by substituting integrals for the summations, and yields

(3d)
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The dominant term is (2H + 2) · N2H, which always exceeds m2H. On a plot of the logarithm
of the approximated expected value of the variance versus the logarithm of m, the slope is
almost flat. Assuming incorrectly that the signal is a DfGn, using dispersional analysis
forces the estimated Hurst coefficient to be near 1 for all H’s. Given the almost total lack of
dependence of the expected value of the variance on the window size, even having the
correct expression for the expected value of the variance of the grouped means for DfBm
does not make it feasible to estimate H using dispersional analysis on DfBm series.

5. Results of misapplying scaled windowed variance analysis to DfGn
Like applying dispersional analysis to DfBm, applying scaled windowed variance analysis
to DfGn series gives biased estimates for the Hurst coefficient. The estimates of H are all
close to zero no matter the actual value of H. The derivation of the expected value of the
averaged variance from scaled windowed variance analysis of a DfGn series follows. The
result contrasts with Section 3.

We use the same definitions given at the beginning of Sections 2 and 3. Define the estimated
averaged variance of the noise series over windows of size m as

(4a)

where Xm(i−1)+j, the elements of a noise series, have replaced Bm(i−1)+j, the elements of a
motion series, in Eq. (2a).

This expands to the following three terms,

(4b)

Taking the expected value of both sides, this reduces to

(4c)

This simplifies to

(4d)

and since
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(4e)

finally reduces to

(4f)

The expected value of the averaged variance for a noise series depends weakly on H being
<σ2 for  and >σ2 for . For increasing m, it asymptotically approaches the value of
σ2 very quickly. For white noise, it is exactly the variance. If we wrongly assume the form
for the expected value of the averaged variance for DfBm from scaled windowed variance
analysis, we would get a zero slope and would estimate H to be zero. Given the weak
dependence of Eq. (4f) on H, it does not appear feasible to estimate H using scaled
windowed variance on a DfGn even if one uses the correct form of the expected value of the
averaged variance.

6. Summary and discussion
We have shown that dispersional analysis and scaled windowed variance analysis can be
derived by using the expected value of the correlation function for DfGn. These methods of
analysis have been shown by others [10,7] to do exceptionally well when applied to series
generated using the Davies–Harte method which is based on the same correlation function.
These methods of analysis are correct for DfGn and DfBm because the “model” analysis is
based on the same model as the signal generator, a point which cannot be emphasized too
strongly.

Eq. (2j) suggests a new model for scaled windowed variance analysis that makes use of
smaller windows and may be suitable and more successful for short series than the
approximate result, Eq. (2m), now in general use [11,10].

The failure of estimating the Hurst coefficient by using dispersional analysis on DfBm and
scaled windowed variance analysis on DfGn derives from assuming incorrect relationships
between the Hurst coefficients and the estimated variances from those analyses. The correct
forms of those relationships are weak functions of the Hurst coefficient, H, and window size,
m, and most likely are unsuitable for obtaining estimates of the Hurst coefficient.

Finally, for processes which depend on H but are not DfGn and DfBm, it would be useful to
calculate the expected value of the values generated by the models used to estimate their
Hurst coefficients.
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Appendix A. Proof of simplifying Eqs. (2d)–(2e) in Section 2

Prove

(A.1)

where δi, j = 1 if i = j, and δi, j = 0 otherwise. The left-hand side of Eq. (A.1) is the right-
hand side of Eq. (2d) and the right-hand side of Eq. (A.1) is the left-hand side of Eq. (2e)
with (2 − δi, j) replacing 2/(1 + δi, j), the signs inside the squared term reversed for
convenience and extraneous coefficients removed, i.e. ((m/N)/(m − 1)). Without loss of
generality, let k = 1. Then

(A.2)

which expands to the following four terms:

(A.3a)

(A.3b)

(A.3c)
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(A.3d)

Consider the term (A.3a). The outer summation is over j which occurs nowhere else in the
term. Hence the outer summation may be replaced by multiplying by m. Substitute j for the
index i, and i for the index s to rewrite the terms as

(A.4)

Consider the terms (A.3b) and (A.3c) which are the same after the s and i indices are
interchanged, and can be combined to yield

(A.5a)

The two leftmost summations can be condensed to yield

(A.5b)

and by substitution of indices become

(A.5c)

Term (A.3d) becomes

(A.6)

Combining terms (A.4), (A.5c), and (A.6) completes the proof.
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Fig. 1.
Accuracy of the standard approximate scaled windowed variance relationship for DfBm.
The percent difference between the expected value of the averaged variance (Eq. (2j)) and
the approximate expected value of the averaged variance (Eq. (2k)), is plotted as a function
of window size, m, and H.
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