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SUMMARY
The Poisson model can be applied to the count of events occurring within a specific time period.
The main feature of the Poisson model is the assumption that the mean and variance of the count
data are equal. However, this equal mean-variance relationship rarely occurs in observational data.
In most cases, the observed variance is larger than the assumed variance, which is called
overdispersion. Further, when the observed data involve excessive zero counts, the problem of
overdispersion results in underestimating the variance of the estimated parameter, and thus
produces a misleading conclusion. We illustrated the use of four models for overdispersed count
data that may be attributed to excessive zeros. These are Poisson, negative binomial, zero-inflated
Poisson and zero-inflated negative binomial models. The example data in this article deal with the
number of incidents involving human papillomavirus infection. The four models resulted in
differing statistical inferences. The Poisson model, which is widely used in epidemiology research,
underestimated the standard errors and overstated the significance of some covariates.
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INTRODUCTION
Count data occur in many fields, including public health, medicine and epidemiology. A few
common examples are the number of deaths, number of cigarettes smoked, and number of
disease cases. For such count data the Poisson model is a commonly applied statistical
model. A key feature of the Poisson model is that the mean and the variance are equal.
However, this equal mean-variance relationship rarely happens with real-life data [1–4]. In
most cases, the observed variance is larger than the assumed variance, which is known as
overdispersion†. If the overdispersion is ignored, statistical inference results in an inaccurate
conclusion by underestimating the variability of the data [1].
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Departures from a Poisson model can occur in a variety of ways; the main reasons are: (1)
some covariates may be omitted and/or may not have a uniform effect on all subjects so that
population heterogeneity has not been accounted for, and (2) an excess number of zero
events occurred compared to the Poisson distribution [6, 7]. For the excessive zeros
situation, it could be assumed that a sample is collected from two different sub-populations ;
one population always produces zero, or no event, while the other behaves like a Poisson
distribution.

This issue of overdispersion with excessive zeros clearly exists in a dataset we recently
analysed. The Human Papillomavirus Infection in Men (HIM) Study established a
prospective cohort of men in three countries to determine the incidence of genital human
papillomavirus (HPV) infections. A HPV incidence rate, along with the exact 95%
confidence interval, was estimated based on a Poisson distribution. However, inspection of
the data revealed severe over-dispersion, as well as a very large proportion of zero counts
for specific HPV-type infections. (For more details about the HIM Study see the papers by
Giuliano et al. [8, 9].)

There are two major approaches to adjust for over-dispersion. First, the simplest adjustment
approach is to scale the variance of the Poisson distribution by introducing a dispersion
parameter and multiplying it to the variance. The other approach is to introduce a new
probability distribution to handle the dispersion, such as the negative binomial [10], zero-
inflated Poisson (ZIP) [10–12], or zero-inflated negative binomial (ZINB) [10, 13, 14].

A considerable amount of statistical methodology has been developed to deal with
overdispersed data arising from excessive zero-count data. Applications for the zero-inflated
models can be found in several papers [2, 11, 14–17]. However, using these alternatives to
the Poisson model seems to be a relatively new approach among many researchers in
applications. This is partly because once a statistical method becomes widely used in
published literature, alterations to its usage are slow. This paper attempts to encourage
researchers to be clearly aware of the issues surrounding Poisson model usages. In addition,
statistical software packages have recently developed a procedure to fit zero-inflated
models, and we believe that a follow-up primer is necessary to increase use of the
appropriate method.

In this paper, we demonstrate four models for count data: Poisson, negative binomial, ZIP,
and ZINB models, all with explanatory factors or confounders. The models were compared
in terms of covariate estimates along with their statistical inferences. Akaike’s Information
Criterion (AIC) values were used to consider the relative model fitting for the models as a
goodness-of-fit statistic. The illustration of the analysis of the example data is mostly
conceptual rather than computational. We avoid undue technicalities so that those with a
broad range of professional backgrounds will be able to follow the material presented.

METHODS
Four statistical models for count data

Naive Poisson model—The most widely used regression model for count data is the log
linear or Poisson model [12]. If we denote µ as the mean of the count data Y, then the
variance of the data equals to the mean so that
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which is a key feature of the Poisson model. We designate this the naive Poisson model
hereafter.

Scaled Poisson model—There is a way to account for dispersion with respect to the
Poisson model. That is, a dispersion parameter is introduced into the Poisson variance so
that the Poisson model is scaled. This method simply gives a correction term for testing the
parameter estimates under the Poisson model. Although this approach has been popular, it
only produces an appropriate inference if overdispersion is modest [1]. Further, if the data
are observed from a population that consists of two subpopulations, this simple correction
may not be sufficient to describe the population. The dispersion parameter is estimated by
deviance or Pearson’s χ2 test statistic divided by its degrees of freedom from the fitted
model. If the estimated dispersion is >1, the data may be overdispersed, while a dispersion
<1 indicates that the data may be underdispersed, a phenomenon less common in practice. A
scaled Poisson model assumes that the variance is

The model is fit in the usual way, and the parameter estimates are not affected by the value
of ϕ, but the estimated variance is inflated to adjust for overdispersion.

Negative binomial model—Another popular model for count data is the negative
binomial model. The negative binomial model can be derived from the Poisson distribution
when the mean parameter is not identical for all members of the population, but itself is
distributed with a gamma distribution. This is a way of modelling heterogeneity in a
population, and is thus an alternative method to allow for overdispersion in the Poisson
model. The relationship between mean and variance for negative binomial distribution has
the form

where k is the negative binomial dispersion parameter, which can be estimated by maximum
likelihood.

Zero-inflated models—Count data that have an incidence of zeros greater than that
expected for the underlying probability distribution of counts can be modelled with a zero-
inflated distribution. In this case, the population is considered to consist of two types of
individuals. The first type involves counts of event in a Poisson or Poisson-like process,
which might also contain zeros. The second type always gives a zero count. As a
hypothetical example, we consider the processes that could lead to a response variable value
of zero, such as the number of STD infections in an individual. At baseline survey, a male
subject is likely to be negative for any STDs if he has not had any sexual experiences in the
past year as a given specific time period. Another male subject might have a negative on
STD even though he has had a single or multiple sexual partners. These two men will have
an identical number of STD infections, 0 (the same response), through two different
processes. A naive Poisson model would not distinguish between these two processes, but a
zero-inflated model allows for and accommodates this complication. When analysing a
dataset with an excessive number of outcome zeros, which may have two possible processes
that arrive at a zero response, a zero-inflated model needs to be considered.
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ZIP model—The ZIP model incorporates excessive zeros by including a proportion of
zeros and a proportion from the Poisson distribution, which results in greater variance than
the Poisson model. For the ZIP model, the mean and variance are respectively

where p denotes the probability of being an individual having zero count and λ denotes the
underlying distribution mean. With exploratory covariates, λ is fitted to a log-linear model
(Poisson model) and p can be fitted as a zero probability regression model with a link
function, such as logit or probit. The ZIP model allows common explanatory variables to
appear in both the Poisson model and the zero-probability regression model.

ZINB model—The ZINB model is based on the negative binomial model, but with a
different variance function. As a zero-inflated model like ZIP, the ZINB model generates
two separate models and then combines them. First, a logit or probit model is generated for
the cases that always produce zeros (zero probability model). Then, a negative binomial
model is generated predicting the counts for those subjects who do not always produce
zeros. Finally, the two models are combined. The mean and the variance of ZINB are

where p is the zero probability and λ is the underlying distribution mean. In addition, k is
the negative binomial dispersion parameter.

RESULTS
The motivating example: description of the HIM Study

HPV, a sexually transmitted infection, causes disease in both men and women, and male-to-
female HPV transmission increases the risk of invasive cervical, vaginal, and vulvar cancer
in females. In particular, HPV is known to be responsible for nearly 100% of cervical
cancers. A prospective HPV cohort study was launched in 2004 to develop a fuller
understanding of HPV infection in men. The study was the first international study of the
natural history of anogenital HPV infection, enrolling men from the USA, Brazil, and
Mexico. A cohort of men, aged 18–70 years, who were examined every 6 months for 4
years, was established. Early analysis results of the study have been reported elsewhere; see
Giuliano et al. [8, 9] for a description and report of the study design, the baseline
characteristics of the study participants, and HPV prevalence by country and age among
cohort members at enrolment.

A participant was considered positive for oncogenic HPV if he tested HPV-positive by
polymerase chain reaction or by genotyping. The following 13 HPV types were categorized
as oncogenic : 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 66 (an illustration of the
type of data analysed is shown in Fig. 1). Figure 1 illustrates distributions of the total
number of infections, out of a possible 13 types, through visit 4 (2 years) and visit 8 (4
years) follow-up periods of the study. For a positive infection, at least one visit must be
positive in the given time period. There was a considerable spike of excessive zeros,
representing HPV infection-free men. Particularly, in the first 2-year study period the
proportion of zero counts (no infection) was very high (70%) and up to 4 years 62% of the
cohort had no infection for oncogenic HPV type. The large number of males with zero-value
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counts is typical for HPV distributions. In this case, the Poisson distribution inappropriately
represents the data.

Analysis of HIM Study data
Oncogenic HPV is defined as the total number of oncogenic types detected in a participant
in a given time period. Of the 1159 men at baseline, the 345 who were infected with
oncogenic HPV types were excluded from the analysis. The remaining 814 patients who had
no oncogenic HPV infection at baseline were available for our analysis of oncogenic HPV.
The mean (variance) of the number of oncogenic HPV types was 0·5 (0·7) over 2 years and
0·7 (1·1) over 4 years. The difference between the sample mean and the sample variance
implied a deviation from the Poisson model assumption.

HIM Study—In the HIM Study, the scientific question focused on the association between
demographic and social behaviour variables with the probability of type-specific HPV
infections, as well as the grouped types, such as any HPV types, oncogenic HPV types, and
non-oncogenic HPV types. The outcome variable we chose to focus on was the number of
oncogenic HPV types infected for eight follow-up visits, and was related to the factors :
country (USA=1, Brazil=2, Mexico=3), age (at enrolment in years), number of female
partners in the past 6 months (NP), and circumcision status (CS; 1 if circumcised vs. 0 if not
circumcised). Smoking (heavy, moderate, mild, nonsmoking) and STD status (yes vs. no)
variables were initially tested, but they contributed insignificantly to model, showing that
the two variables did not improve the model, and therefore were excluded from the final
model. Country and age are design effects for the study, and therefore forced into the
multivariable models regardless of significance.

For the Poisson model, a log-linear relationship between the mean (μ) and the covariate
factors was specified as

The unknown parameters for intercept, country, age, NP and CS were estimated by the GENMOD

procedure in SAS v. 9.2 (SAS institute Inc., USA). The logarithm of n (person’s time in
months) was used as an offset (i.e. a regression variable with a constant coefficient of 1 for
each subject).

The scaled Poisson model was fitted using the deviance estimate as a dispersion parameter
by specifying the SCALE=DEVIANCE option in SAS.

Two zero-inflated models, ZIP and ZINB, were fitted. For the Poisson model and the
negative-binomial model components within each of ZIP and ZINB, the intercept and four
covariates, country, age, NP and CS, were estimated. The component of the zero-inflated
model was specified as

where p is the probability of being in the zero population. We implemented the models,
using the ZEROMODEL statement in the GENMOD procedure in SAS, in which the ZIP and the ZINB
model procedures have been most recently updated.

Table 1 summarizes the results of the Poisson (naive and scaled), negative binomial, ZIP,
and ZINB regression models. From the naive Poisson model, there were significant
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associations between oncogenic HPV infection and age, CS, and NP at a 0·05 significance
level. However, the estimated dispersion parameter ϕ in the Poisson model implied
overdispersion with 1·36. The scaled Poisson model showed that the parameter estimates did
not change, but their standard errors were inflated by the value of the scale parameter. The
resulting P values for age and NP were no longer significant, leaving only CS as a
significant factor.

The negative binomial model indicated that the negative binomial dispersion parameter was
significantly large (k=0·79, P<0·001), and the result showed that none of the covariates were
significantly associated with oncogenic HPV infection. The AIC value was lower than the
naive and scaled Poisson models, indicating the negative binomial is a better model.

The ZIP model showed the same results as the negative binomial model regarding the
covariates at a 0·05 significance level. The proportion of zeros predicted by the ZIP model
was 0·34 for oncogenic HPV (P<0·001, data not shown), which indicates that the ZIP is
preferred to the Poisson model and the AIC was smaller than Poisson and negative binomial
models. The ZINB model resulted in the same conclusion as the ZIP model, with the
negative binomial dispersion parameter k=0·79. However, AIC was not smaller than the ZIP
model. In addition, we found computational difficulties with a zero-inflated model fitting in
the ZINB model: the model did not always converge or a model diagnostic indicated that the
estimated model was not reliable. This may be due to the sample size, skewed data, and the
mixed model fitting. Currently, the PROC GENMOD procedure does not estimate the standard error
or the P value for the dispersion parameter, k, in the ZINB. They can be estimated using a
more complex procedure, such as NLMIXED in SAS, which would be difficult for many non-
statisticians. In addition, the extremely large standard error for the zero-inflation model’s
intercept is clear evidence that this parameter is not well estimated by the SAS procedure.

DISCUSSION
In this paper, we used several models to deal with count data when the Poisson model
assumption is not met because of an excessive incidence of zero counts. In addition to the
Poisson model, we applied the negative binomial and zero-inflated models to the data from a
HPV study. We compared the results from the models with several explanatory variables
and high-lighted how the statistical inferences drawn from the models are different : the
naive Poisson model yielded the smallest standard errors and over-stated the significance of
some covariates compared to the negative binomial and zero-inflated models. When the
Poisson model was scaled with the dispersion parameter, the model seemed slightly closer to
the other alternative models, yet still showed a discrepancy.

Prior to considering which statistical model should be used for data analysis, the researcher
must examine the distribution of the data. The first step should be the visual inspection of
the data to ascertain whether they approximately follow a certain probability distribution.
The histogram is a common tool to visually inspect data. Summary statistics can be studied
(e.g. the sample mean and variance of the observed data) to try to gauge if the data are
overdispersed along with a histogram of the response variable.

The Poisson distribution can be applied in counting the number of rare events. However, the
Poisson model should only be used in cases where there is evidence that the distribution is
correctly specified. This is the case only if the mean and the variance of the data are
assumed to be equal.

As we illustrated with the scaled Poisson model in this paper, the estimate of the dispersion
parameter (deviance or Pearson’s χ2 statistic divided by the degrees of freedom) is often
used to indicate overdispersion or underdispersion for Poisson models, and scaling by
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dispersion is simply a way to account for overdispersion. Most Poisson computational
programs estimate these dispersion parameters so that the validation of the assumed
distribution can be checked. However, this dispersion estimate might also indicate other
problems such as an incorrectly specified model or outliers in the data. It should be carefully
assessed whether this type of model is appropriate for the data.

A way of interpretation for the zero-inflated models for the HIM Study is to consider a
population that consists of two groups: one of people who are not at risk of developing a
certain disease, and one of people who are at risk and may develop the disease several times.
However, it is our experience that the zero-inflated models should also be applied with
caution, as small sample size cases and variable selection of covariates in the zero model
components have not yet been well studied in the literature.

Although currently there is no solid built-in test from the commercial software to test
whether or not the underlying data are Poisson, a score test for the ZIP model over the
Poisson model is available in the literature [18]. If the P value for the score test is <0·05, a
zero-inflated model may be more appropriate to fit the data. However, we conducted
simulation studies for the score test and found a considerably inflated Type I error (detailed
simulation results are not shown). Therefore, at this moment we are uncomfortable to use it
ourselves or to recommend it to others. Consequently we decided not to present the score
test result, even though the test showed our data involves significantly excessive zero counts
and it may be a useful test if validated. Currently we are working on this subject.

The SAS code for the four models used in this article is given in the Appendix, using
generic dataset and variable names.
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APPENDIX. Generic SAS code for the four models used to analyse the
example data

*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*
SAS Data File Name:=TEMP.sas7badat
Outcome variable:=Y (e.g., # of infection)
Covariates :=X1, X2, X3, X4, X5 (e.g., age, country, education,…)
Offset:=logt [e.g., (log (time)]
(*<- account for varying length of observation time per subject)
*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*;
Title1 ‘Model 1-1. Naive Poisson Model’;
proc genmod data=TEMP;
model Y=X1 X2 X3 X4 X5/ offset=logt dist=p link=log;
run;
Title1 ‘Model 1-2. Scaled Poisson Model’;
proc genmod data=TEMP;
model Y=X1 X2 X3 X4 X5 /offset=logt dist=p link=log scale=d;
run;
Title1 ‘Model 2. Negative Binomial Model’;
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proc genmod data=TEMP;
model Y=X1 X2 X3 X4 X5/ offset=logt dist=nb link=log;
run;
Title1 ‘Model 3. Zero Inflated Poisson (ZIP) Model’;
proc genmod data=TEMP;
model Y=X1 X2 X3 X4 X5 /offset=logt dist=zip link=log;
zeromodel/link=logit ; output out=temp1 pzero=p;
run;
proc print data=temp1 (obs=1);
Title2 ‘p=zero inflation probability for logistic transform of the linear 
predictor’;
var p;
run;
Title1 ‘Model 4. Zero Inflated Negative Binomial (ZINB) Model’;
proc genmod data=TEMP;
class country;
model Y=X1 X2 X3 X4 X5
/offset=logt dist=zinb link=log;
zeromodel /link=logit ;
output out=temp2 pzero=p;
run;
proc print data=temp2 (obs=1);
Title2 ‘p=inflation probability for zeros logistic transform of the linear 
predictor’;
var p;
run;
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Fig. 1.
Distribution of oncogenic infections for the HIM study through 2 years (four visits) and 4
years (eight visits). HPV, Human papillomavirus.

Lee et al. Page 10

Epidemiol Infect. Author manuscript; available in PMC 2012 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 11

Ta
bl

e 
1

A
na

ly
si

s 
re

su
lts

 f
ro

m
 f

ou
r 

di
ff

er
en

t m
ul

tiv
ar

ia
bl

e 
m

od
el

s:
 N

ai
ve

 P
oi

ss
on

 m
od

el
, S

ca
le

d 
Po

is
so

n,
 N

eg
at

iv
e 

bi
no

m
ia

l, 
Z

er
o-

in
fl

at
ed

 P
oi

ss
on

 (
Z

IP
),

 a
nd

Z
er

o-
in

fl
at

ed
 n

eg
at

iv
e 

bi
no

m
ia

l (
Z

IN
B

) 
m

od
el

s 
fo

r 
on

co
ge

ni
c 

H
PV

 in
fe

ct
io

n

N
ai

ve
 P

oi
ss

on
Sc

al
ed

 P
oi

ss
on

N
eg

at
iv

e 
bi

no
m

ia
l

Z
IP

Z
IN

B

E
st

im
at

ed
pa

ra
m

et
er

S.
E

.
P

 v
al

ue
S.

E
.

P
 v

al
ue

E
st

im
at

ed
pa

ra
m

et
er

S.
E

.
P

 v
al

ue
E

st
im

at
ed

pa
ra

m
et

er
S.

E
.

P
 v

al
ue

E
st

im
at

ed
pa

ra
m

et
er

S.
E

.
P

 v
al

ue

In
te

rc
ep

t
−

3·
58

4
0·

20
4

0·
00

1
0·

23
8

<
0·

00
1

−
3·

54
2

0·
25

3
<

0·
00

1
−

3·
16

3
0·

24
4

<
0·

00
1

−
3·

54
2

0·
21

5
<

0·
00

1

M
ex

ic
o

0·
05

6
0·

16
6

0·
73

7
0·

19
4

0·
77

4
−

0·
02

1
0·

20
9

0·
91

9
−

0·
04

3
0·

19
0

0·
82

2
−

0·
02

1
0·

20
9

0·
91

9

B
ra

zi
l

−
0·

17
6

0·
16

8
0·

94
8

0·
19

6
0·

36
9

−
0·

19
8

0·
20

6
0·

33
5

−
0·

23
8

0·
19

1
0·

21
2

−
0·

19
8

0·
20

6
0·

33
5

A
ge

−
0·

01
0

0·
00

6
0·

04
7

0·
00

7
0·

13
7

−
0·

00
9

0·
00

7
0·

19
4

−
0·

00
8

0·
00

6
0·

22
2

−
0·

00
9

0·
00

7
0·

19
4

C
ir

cu
m

ci
se

d
0·

33
4

0·
14

1
0·

00
8

0·
16

5
0·

04
3

0·
29

9
0·

17
6

0·
09

0
0·

23
0

0·
16

8
0·

17
0

0·
29

9
0·

17
6

0·
09

0

N
P

0·
00

6
0·

00
3

0·
00

03
0·

00
3

0·
06

9
0·

00
6

0·
00

4
0·

12
2

0·
00

7
0·

00
6

0·
17

8
0·

00
8

0·
00

4
0·

12
2

D
is

pe
rs

io
n

1·
36

0·
79

0·
19

3
<

0·
00

1
0·

79
*

n.
a.

n.
a.

A
IC

 v
al

ue
12

17
12

17
11

83
11

81
11

85

In
fl

at
ed

 in
te

rc
ep

t
−

0·
73

9
0·

22
3

0·
00

1
−

20
·0

†
44

80
6†

0·
99

9†

S.
E

., 
St

an
da

rd
 e

rr
or

 ; 
N

P,
 n

um
be

r 
of

 f
em

al
e 

pa
rt

ne
rs

 a
t v

is
it 

1;
 A

IC
, A

ka
ik

e’
s 

In
fo

rm
at

io
n 

C
ri

te
ri

on
 (

sm
al

le
r 

is
 b

et
te

r)
 ; 

n.
a.

, n
ot

 a
va

ila
bl

e.

* T
he

 P
R

O
C

 G
E

N
M

O
D
 (

v.
 9

·2
, S

A
S 

In
st

itu
te

 I
nc

.)
 p

ro
ce

du
re

 d
oe

s 
no

t e
st

im
at

e 
th

e 
S.

E
. o

r 
th

e 
P 

va
lu

e 
fo

r 
th

e 
di

sp
er

si
on

 p
ar

am
et

er
 in

 Z
IN

B
. T

he
y 

ca
n 

be
 e

st
im

at
ed

 u
si

ng
 a

 m
or

e 
co

m
pl

ex
 p

ro
ce

du
re

, s
uc

h 
as

N
L

M
IX

E
D
 in

 S
A

S,
 w

hi
ch

 w
ou

ld
 b

e 
di

ff
ic

ul
t f

or
 m

an
y 

no
n-

st
at

is
tic

ia
ns

.

† T
he

 e
xt

re
m

el
y 

la
rg

e 
S.

E
. f

or
 th

e 
ze

ro
-i

nf
la

tio
n 

m
od

el
’s

 in
te

rc
ep

t i
s 

cl
ea

r 
ev

id
en

ce
 th

at
 th

is
 p

ar
am

et
er

 is
 n

ot
 w

el
l e

st
im

at
ed

 b
y 

th
e 

SA
S 

pr
oc

ed
ur

e.

Epidemiol Infect. Author manuscript; available in PMC 2012 December 01.


