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Abstract

In the last years, there was an exponential increase in the number of publicly available genomes. Once finished, most
genome projects lack financial support to review annotations. A few of these gene annotations are based on a combination
of bioinformatics evidence, however, in most cases, annotations are based solely on sequence similarity to a previously
known gene, which was most probably annotated in the same way. As a result, a large number of predicted genes remain
unassigned to any functional category despite the fact that there is enough evidence in the literature to predict their
function. We developed a classifier trained with term-frequency vectors automatically disclosed from text corpora of an
ensemble of genes representative of each functional category of the J. Craig Venter Institute Comprehensive Microbial
Resource (JCVI-CMR) ontology. The classifier achieved up to 84% precision with 68% recall (for confidence$0.4), F-measure
0.76 (recall and precision equally weighted) in an independent set of 2,220 genes, from 13 bacterial species, previously
classified by JCVI-CMR into unambiguous categories of its ontology. Finally, the classifier assigned (confidence$0.7) to
functional categories a total of 5,235 out of the ,24 thousand genes previously in categories ‘‘Unknown function’’ or
‘‘Unclassified’’ for which there is literature in MEDLINE. Two biologists reviewed the literature of 100 of these genes,
randomly picket, and assigned them to the same functional categories predicted by the automatic classifier. Our results
confirmed the hypothesis that it is possible to confidently assign genes of a real world repository to functional categories,
based exclusively on the automatic profiling of its associated literature. The LitProf - Gene Classifier web server is accessible
at: www.cebio.org/litprofGC.
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Introduction

In the last years, there was an exponential increase in the

number of publicly available genomes. Once finished, most

genome projects lack financial support to review annotations.

Extracting knowledge from genome sequencing efforts requires the

predicted genes to be functionally annotated. A few of these gene

or genome annotations are based on a combination of computa-

tionally derived evidence, such as metabolic reconstruction,

presence of candidate transcription factor binding sites or even

the fact that functionally related genes tend to cluster on

prokaryotic chromosomes [1]. However, in most cases, annota-

tions are based solely on sequence similarity to a previously known

gene, which was most probably annotated in the same way [2]. In

addition, it is often difficult to find the genes that were

experimentally validated to evaluate the reliability of these original

annotations [3]. In cases where the reference sequence has no

annotation or is annotated as ‘‘Unknown function’’, or even is

incorrectly annotated, then all sequences subsequently annotated

based on their similarity to the references will inherit their

inexactly assigned attributes. Current bioinformatics-based ap-

proaches cannot predict the function of up to one-third of

sequenced genes. For prokaryote genomes deposited in the J.

Craig Venter Institute Comprehensive Microbial Resource (JCVI-

CMR) (http://cmr.jcvi.org/cgi-bin/CMR/shared/RoleList.cgi),

genes classified as ‘‘Unknown function’’ account for ,10%

(26,390) of the total of deposited genes. Those assigned to the

category ‘‘Unclassified’’ account for ,18% (45,870). The

‘‘Unknown Function’’ and ‘‘Unclassified’’ genes represent ,30%

of all unique prokaryotic genes at JCVI-CMR. Furthermore, for

some gene families, at least 60% of the gene predictions are wrong

[4]. For many of these genes there is sufficient evidence in the

literature to identify their function [5]. However, the costs

involved in manually reviewing the literature to improve gene

annotation in a whole genome sequencing project are prohibitive.

Text-mining algorithms can help in this task.

We present, herein, LitProf – Gene classifier, a tool for

automatically assigning prokaryote genes to functional categories

of the JCVI-CMR ontology (File S1) based exclusively on the

literature profiles extracted from their gene-specific collections of

abstracts in MEDLINE database (http://www.pubmed.org).

Using LitProf – Gene classifier we were able to propose functional

categories to 5,235 out of the 69,088 genes previously assigned to

categories ‘‘Unknown function’’ or ‘‘Unclassified’’ of the JCVI-

CMR ontology.
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Results

Disclosing the informative vocabulary required to
describe each functional category

Starting from 2,201,517 loci from JCVI-CMR repository we

filtered out genes that do not have a name (80%), and genes

assigned to more than one functional category of JCVI-CMR

ontology (12%). Were also genes assigned to the categories

‘‘unknown function’’, ‘‘unclassified’’ and ‘‘disrupted reading

frame’’, which combined accounts for approximately 16% of all

loci. For each group of homonymous genes we kept only one

randomly chosen representative. The final dataset consisted of

59,830 unique canonical gene names from 117 genomes

representing all prokaryote phylogenetic branches in JCVI-CMR

(Table 1). After the redundancy reduction steps, the resultant gene

set comprised 3,542 genes preserving the proportional contribu-

tion of each functional categories in JCVI-CMR (Table 2). LitProf

retrieved 126,990 MEDLINE abstracts for the selected 3,542

genes (average = 35.8 abstracts per gene). From this text corpus

LitProf disclosed the minimum informative vocabulary of 889

stemmed terms, and represented each gene as a term-frequency

vector.

SVM training
Genes represented by their term-frequency vectors together

with the information about their respective functional categories,

previously assigned to each gene by JCVI-CMR team, were used

to train the SVM classifier. The ‘‘Signal transduction’’ category

was underrepresented in our gene set, most probably because

these genes are often assigned to more than one category in the

JCVI-CMR. As a consequence, there were not enough genes

assigned by JCVI-CMR only to the category ‘‘Signal transduc-

tion’’ making it impossible to train the SVM to recognize this

category. For that reason this category was removed from the

training dataset. During the cross-validation of the classifier we

observed that the subcategories ‘‘Other’’ from categories ‘‘Cell

envelope’’ and ‘‘Central intermediary metabolism’’ were frequent-

ly misclassified. For that reason, these subcategories were

excluded. The subcategories ‘‘Biosynthesis and degradation of

surface polysaccharides and lipopolysaccharides’’ and ‘‘Biosynthe-

sis of murein sacculus and peptidoglycan’’ from the category ‘‘Cell

envelope’’, ‘‘Biosynthesis and degradation of polysaccharides’’

from the category ‘‘Energy metabolism’’ and ‘‘Sugar-nucleotide

biosynthesis and conversions’’ from category ‘‘Purines, pyrimi-

dines, nucleosides, and nucleotides’’, all related to polysaccharide

biosynthesis added noise to the classifier and thus were merged

into a new ‘‘Mix category’’. In any case subcategories were

exchanged between established JCVI-CMR categories. Thus, the

category-subcategory hierarchy of the original JCVI-CMR ontol-

ogy was not violated. After these adjustments, the rearranged

ontology had 16 categories comprising 115 sub-categories.

After the ontology rearrangement, the SVM classifier was

retrained and cross-validation was performed again. The estimat-

ed average precision of the resultant classifier was 8063%, and the

average recall was 6063% (confidence$0.4); for equally weighted

recall and precision, the F-measure was 0.7. Furthermore, for the

independent gene set the classifier achieved 84% precision with

68% recall (F-measure = 0.76) for confidence$0.4, and 90%

precision with 55% recall (F-measure = 0.68) for confidence$0.7,

as shown in Figure 1.

It is important to highlight that the SVM classifier predicts

categories, not subcategories. At present, there are not enough

genes in JCVI-CMR assigned to only one functional subcategory

so that we could have used them to compose a robust example

gene set required to train the SVM with enough statistical support.

Classification of ‘‘Unknown function’’ and ‘‘Unclassified’’
genes

We used the classifier to tentatively classify the 69,088 genes

previously assigned by JCVI-CMR to the categories ‘‘Unknown

function’’ or ‘‘Unclassified’’. However, only 34,033 genes had a

name, and 23,973 of these genes had at least five abstracts in

MEDLINE. Their text corpora retrieved by LitProf – Gene

Classifier with the thresholds established in this experiment

(min = 5 abstracts; max = 50) summed up 247,442 abstracts

(average = 10.3 abstracts/gene). For a minimum confidence

threshold of 0.7, LitProf – Gene Classifier unambiguously assigned

5,235 out of the ,24 K genes with literature in MEDLINE to a

functional category. Table 3 summarizes these results. For details

on the classified genes see Table S3.

The classified genes span over all functional categories present

in the training dataset. One-hundred randomly picked genes of

this set were manually classified by two Biologists who reviewed

their literature. Their manual classifications completely agreed

with those of LitProf – Gene Classifier (see Table 4 for a sample of

these results). No significant difference was found in the gene

distribution in functional categories when comparing the classified

gene set, the training gene set, and the original JCVI-CMR

(Table 3).

Discussion

The current scenario of gene functional annotation (annotations

based solely on sequence similarity to a previously known gene,

Table 1. Taxonomy distribution of genes in the training
dataset.

Phylum # ofspecies

Acidobacteria 1

Actinobacteria 5

Aquificae 1

Bacteroidetes 3

Chlamydiae 1

Chlorobi 1

Chloroflexi 4

Crenarchaeota 3

Cyanobacteria 9

Deinococcus-Thermus 2

Euryarchaeota 10

Fibrobacteres 1

Firmicutes 15

Fusobacteria 1

Nanoarchaeota 1

Planctomycetes 1

Proteobacteria 49

Spirochaetes 2

Tenericutes 3

Thermotogae 1

Virus 3

doi:10.1371/journal.pone.0047436.t001

Gene Functional Assignment by Literature Profiling
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which was most probably annotated in the same way [2])

condemns ‘‘Unknown function’’ and ‘‘Unclassified’’ genes to

remain in this situation. Under this perspective this work brings

significant contribution by being able to automatically capture

reliable gene function categories to unknown genes. In practical

terms it means that precision is a more important characteristic for

a gene functional classifier than recall. Another important aspect

that has to be considered is the classifier’s ability to deal with real

world datasets. In other words, the classifier has to present a good

performance when any misclassified gene is submitted for

functional assignment.

Other gene classifiers with good performance have already been

proposed, but attention should be paid to the possible bias

Table 2. Gene distribution in the functional categories of the JCVI-CMR ontology.

Functional category Dataset

Original (%) Training (%) Classified (%)

Amino acid biosynthesis 4102 (2.53) 90 (2.54) 115 (2.20)

Biosynthesis of cofactors, prosthetic groups, and carriers 5482 (3,39) 148 (4.18) 179 (3.42)

Cell envelope 227 (1.40) 47 (1.33) 41 (0.78)

Cellular processes 17778 (10.99) 353 (9.97) 283 (5.41)

Central intermediar metabolism 2517 (1.56) 78 (2.20) 92 (1.76)

DNA metabolism 9238 (5.71) 287 (8.10) 344 (6.57)

Energy metabolism 27132 (16.77) 744 (21.01) 1363 (26.04)

Fatty acid and phospholipid metabolism 4823 (2.98) 118 (3.33) 253 (4.83)

Mobile and extrachromosomal element functions 7716 (4.77) 123 (3.47) 119 (2.27)

Protein fate 11611 (7.17) 359 (10.14) 550 (10.51)

Protein synthesis 9044 (5.59) 140 (3.95) 149 (2.85)

Purines, pyrimidines, nucleosides, and nucleotides 2678 (1.65) 62 (1.75) 77 (1.47)

Regulatory functions 18817 (11.63) 247 (6.97) 327 (6.25)

Transcription 2816 (1.74) 86 (2.43) 50 (0.96)

Transport and binding proteins 25368 (15.68) 363 (10.25) 757 (14.46)

Mix category 8297 (5.13) 297 (8.39) 536 (10.24)

Only categories used to train the classifier are shown. Mix category regroups the noisy subcategories. The original column refers to the complete J. Craig Venter Institute
Comprehensive Microbial Resource (JCVI-CMR). The training column refers to the dataset used to train the classifier. The classified column refers to the ‘‘Unknown
function’’ and ‘‘Unclassified’’ genes that were classified by LitProf- Gene Classifier with confidence$0.7. There is no significant difference between the original and
training datasets (p.0.05 in paired t-test; confidence level of 95%).
doi:10.1371/journal.pone.0047436.t002

Figure 1. Recall vs. precision of the classifier. The red line
represents the average performance of the initial classifier trained with
the original categories of the JCVI-CMR ontology. The blue line,
represents the average performance of the final classifier trained with a
rearranged version of the ontology where noisy subcategories were
merged together to create the Mix Category. For red and blue lines, the
average was calculated from 100 replicates of 10-fold cross validation.
The green line represents the performance of the final classifier in an
independent gene set. Horizontal bars represent the standard
deviations of recall. The dashed lines represent the standard deviation
of precision for the blue curve.
doi:10.1371/journal.pone.0047436.g001

Table 3. Summary of the classification of genes previously
assigned to categories ‘‘Unknown function’’ and
‘‘Unclassified’’ of the JCVI-CMR ontology.

Filters # of genes

Total number of ‘‘Unknown function’’ and
‘‘Unclassified’’ genes

69,088

Genes that have a name 34,033

Genes with at least five abstracts in MEDLINE 23,973

Classified genes (confidence threshold$0.7) 5,235

From the total number of ‘‘Unknown function’’ and ‘‘Unclassified’’ genes, nearly
50% have a name, with is crucial for text corpora retrieval. From those, ,70%
have enough literature (min = five abstracts; max = 50) for classification, and in
this group, ,22% could be assigned by LitProf - Gene Classifier to a functional
category with high confidence.
JCVI-CMR = J. Craig Venter Institute Comprehensive Microbial Resource.
doi:10.1371/journal.pone.0047436.t003
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Table 4. Examples of genes classified by LitProf- Gene Classifier and further validated by manually reviewing their literature.

Name
JCVI-CMR
Accession Species Predicted category Confidence PubmedIDs

GO Biological process
(species with GO
annotated ortholog) *

ArsR protein NT01MC4786 Magnetococcus sp. MC-1 Regulatory functions 0.98 20724137;
20586430

GO:0006355: regulation
of transcription, DNA-
dependent
(Pseudomonas
aeruginosa PAO1)

Phosphatidylserine
decarboxylase, putative

GSU_1908 Geobacter sulfurreducens PCA Fatty acid and
phospholipids metabolism

0.96 14651609;
16667073

GO:0006660:
phosphatidylserine
catabolic process;
GO:0004609:
phosphatidylserine
decarboxylase
(Geobactersulfurreducens
PCA)

UmuD protein [Contains:
UmuD protein]

NT03PS1033 Candidatus Protochlamydia
amoebophila UWE25

DNA metabolism 0.97 14651609;
16667073

GO:0009432: SOS
response; GO:0009650:
UV protection;
GO:0008236: serine-type
peptidase activity
(Colwellia
psychrerythraea 34H)

phage portal protein NT03SP0558 Streptococcus pyogenes
MGAS8232

Mobile and
extrachromosomal
element functions

0.95 20467052;
19947526

GO:0019068: virion
assembly; GO:0019012:
virion; GO:0005198:
structural molecule
activity (Clostridium
perfringens ATCC13124)

Putative metalloprotease pc0037 Candidatus Protochlamydia
amoebophila UWE25

Protein fate 0.94 20838651;
20812964

GO:0006508: proteolysis;
GO:0008233: peptidase
activity (Methylococcus
capsulatus str. Bath)

Lambda Kil ECH74115_3562 Escherichia coli O157:H7 str.
EC4115

Mobile and
extrachromosomal
element functions

0.98 12441108;
11470529

-

bacteriophage tail fiber
assembly protein

NT06EC2684 Erwinia carotovora atroseptica
SCRI1043

Mobile and
extrachromosomal
element functions

0.95 20531477;
10051617

-

staphylococcal respiratory
response protein, SrrB

SAUSA300_1441 Staphylococcus aureus subsp.
aureus USA300-FPR3757

Regulatory functions 0.92 17697253;
17198402

-

Clp amino terminal
domain protein

NT01NFA0344 Nocardia farcinica IFM10152 Protein fate 0.99 20014030;
19843523

-

Putative malate
dehydrogenase

nfa36620 NocardiafarcinicaIFM10152 Energy metabolism 0.94 20127467;
19405028

GO:0006108: malate
metabolic process;
GO:0016615: malate
dehydrogenase activity
(Bacillus anthracis)

(R)-2-hydroxyglutaryl-CoA
dehydratase activator

NT01CA2639 Clostridium
acetobutylicumATCC824

Regulatory functions 0.76 11106419;
15374661

GO:0006520: cellular
amino acid metabolic
process; GO:0008047:
enzyme activator activity
(Geobacter sulfurreducens
PCA)

putative beta-lactamase II NT05LB0990 Leptospira biflexa serovar
Patoc strain Patoc1

Cellular processes 0.58 19407375;
16452624

GO:0017001: antibiotic
catabolic process;
GO:0008800: beta-
lactamase activity
(Bacillus anthracis)

Carbohydrate binding
protein, cbp35C

CJA_0494 Cellvibriojaponicus Ueda107 Transport and binding
proteins

0.80 20816499;
20713592

-

Serine acetyltransferase,
putative

GFRORF1528 Prevotella ruminicola 23 Cellular processes 0.58 20830571;
20189106

GO:0006535: cysteine
biosynthetic process
from serine;
GO:0009001:serine O-
acetyltransferase
(Campylobacter jejuni
RM1221)

Gene Functional Assignment by Literature Profiling
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introduced in their models by the training and test datasets used.

Artificial highly informative training datasets composed only of

selected true positive examples (i.e., abstracts previously known to

describe the gene function) will improve the performance of the

classifier since the training process will not be disturbed by noise in

the data. Classifiers created under such conditions tend to

underperform in real-world situations when the text corpora

associated to the test dataset contain informative and non-

informative documents in unpredictable proportions.

In a previous work, Theodosiou and co-workers [6] developed a

SVM classifier for assigning one of 12 selected GO categories [7]

to a gene product by searching abstracts retrieved from

MEDLINE for MeSH terms, previously associated to GO

categories by the authors. That classifier achieved an average

recall of 0.70 and precision of 0.68. For equally weighted recall

and precision the F-measure was 0.69. However, both training and

test datasets used in that study were composed of highly

informative selected text corpora, retrieved based on MeSH terms

used as proxy for GO categories. MeSH terms contribute to

compose a highly informative training dataset that can bias the

classifier.

Another work, that competed in BioCreAtIvE II [8], also

presented a good performance achieving recall of 0.82 and

precision of 0.67. With equally weighted recall and precision the

F-measure was 0.74. The BioCreAtIvE II training dataset was

mostly (64.3%) composed of true positive documents and the

remaining 35.7% are known true negatives [8]. The classifier was

trained with a percentage of noise documents that is unlikely to be

observed in the text corpora of the ‘‘Unknown function’’ and

‘‘Unclassified’’ genes of any gene repository.

In the present work, the abstracts were retrieved solely by

querying PubMed with the gene names. No strategy was used to

enrich the text corpus with highly informative documents. The two

datasets we used (one for training and cross-validation and one

independent test dataset) were composed of text corpora from

previously classified genes randomly picked from JCVI-CMR,

covering 117 species. The informative vocabulary was then

automatically disclosed by analyzing the frequency of terms in

the text corpus of all genes. Importantly, the model was trained,

tested and evaluated with datasets with a distribution of functional

categories similar to that of the source (real life) repository of

genes. Because we dramatically reduced the redundancy in the

training dataset, when applied to an independent test dataset

(2,220 previously classified genes randomly picked from JCVI-

CMR), that represents the real world genes ensemble which

contains a certain level of redundancy (orthologs, etc), the classifier

performed even better than in the cross-validation step (Figure 1).

LitProf-Gene Classifier is species blind since we assumed that

orthologs sharing the same name may also share similar functions.

This assumption may be true in the majority of the cases and is

also behind the popular strategy of gene annotation transfer based

on sequence similarity. Our rationale in this work was that once a

given gene ‘‘X’’ is named based on its sequence similarity to

another gene ‘‘Y’’ which, at that time, was not yet assigned to any

functional category, it will inherit this ‘‘misclassification’’. Later

on, new experimental studies can clarify the function of the

ortholog ‘‘Y’’, but its reviewed functional annotation will not be

automatically transferred to gene ‘‘X’’ in the main public

databases (we took JCVI-CMR as a case study). It is important

to remark that the aim of the present work was to review gene

functional annotation, not gene name assignment. Nevertheless,

Litprof-Gene Classifier’s performance depends on how informa-

tive is the text corpus of the gene to be classified. Incorrectly

selecting documents due to gene name ambiguity has low impact

in the training step of the SVM since the training gene set contains

many examples of each functional category, the majority of them

with unambiguous text corpora. However, individual genes with

ambiguous text corpora will be classified by LitProf – Gene

Classifier with low confidence. For example, querying PubMed

Table 5. Number of genes assigned to functional categories
with different confidence thresholds.

confidence genes

$0.9 1804

$0.8 3479

$0.7 5235

$0.6 7085

$0.5 9055

$0.4 11797

$0.3 15584

$0.2 23397

$0.1 23973

doi:10.1371/journal.pone.0047436.t005

Table 4. Cont.

Name
JCVI-CMR
Accession Species Predicted category Confidence PubmedIDs

GO Biological process
(species with GO
annotated ortholog) *

CoA ligase Family
protein

NT01BT3039 Bacteroides
thetaiotaomicronVPI-5482

Fatty acid and
phospholipid
metabolism

0.81 20545743;
20534558

GO:0008150: biological
process; GO:00165878:
acid-thiol ligase activity;
GO:0016208: AMP
binding (Colwellia
psychrerythraea 34H)

Modification methylase
SalI

NT09RC1177 Roseiflexus castenholzii DSM
13941

DNA metabolism 0.81 9628360;
9130589

-

*The GO terms from Biological Process, Molecular Function and Cellular Component ontologies associated with each gene in table 4 (or, in most cases, their prokaryotic
orthologs) were retrieved from AmiGO (http://amigo.geneontology.org) by querying the database with their canonical gene names. In most cases the GO terms
retrieved supported the functional categorization predicted by LitProf – Gene Classifier, although there is not an exact correspondence between GO and JCVI-CMR
ontologies. Six gene names out 16 tested had no match in AmiGO.
doi:10.1371/journal.pone.0047436.t004
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with gene symbols mgtA and mgtB resulted in 69 and 39 abstracts

respectively. Both genes are involved in magnesium transport in

prokaryotes, but some abstracts indexed for gene symbol mgtB

were clearly not related to this function (e.g. PMID: 21604018 –

‘‘male genital tuberculosis’’). As a consequence, Litprof- Gene

Classifier unambiguously assigned mgtA to functional category

‘‘Regulatory Functions’’ (confidence = 0.82), whereas mgtB could

only be categorized with very low confidence (0.39), which is

below the cutoff of 0.7 assumed to be sufficient for reliable

classifications.

Differently from some of previous works, the main contribution

of our initiative is that using the developed SVM model we could

assign more than five thousand genes to functional categories,

defined in a complete and well structured ontology. This

represents more than 20% of the genes previously assigned to

‘‘Unknown function’’ or ‘‘Unclassified’’ categories despite having

literature in MEDLINE. This number accounts for approximately

two bacterial genomes completely annotated. These genes would

probably never have their misannotation reviewed otherwise.

From the total number of genes initially selected, only 49.3% have

a name which is pre-requisite for text corpora retrieval. For genes

with a name, 70% had enough abstracts in MEDLINE to be

processed by LitProf. Table 5 shows the total number of genes

classified by LitProf – Gene Classifier when no restrictions were set

to confidence values. These numbers make evident the consider-

able amount of genes currently lacking functional annotation.

Another relevant issue is the multiple category annotation of some

genes. At present, only 12% of the genes in the JCVI-CMR are

classified in more than one functional category. However, it is not

surprising that some categories, such as the ‘‘Signal transduction’’,

are enriched in genes classified in more than one category. To

better accommodate these cases, future work to improve LitProf –

Gene Classifier will focus on predicting multiple classes instead of

only the most probable class.

As exemplified in table 4, the information granularity of the

main categories of JCVI-CMR is similar to that of the upper levels

of the GO ‘‘Biological Process’’ ontology, which is the only

annotation available for many prokaryotic genes. As far as more

genes classified in only one subcategory will be available in the

JCVI-CMR database, it is conceivable that LitProf – Gene

Classifier could be trained with these examples to also predict

subcategories of the JCVI-CMR ontology. In principle, the same

strategy could be used to train the classifier to predict functional

categories of other complimentary ontologies, such as GO.

According to Blaby-Haas[2], the experimental characterization

of the millions of genes sequenced is, to date, an impossible task.

For that reason, automated methodologies for gene function

annotation are essential in the post genomic era. Our results

confirmed the hypothesis that it is possible to confidently assign

genes of a real world repository to functional categories, based

exclusively on the automatic profiling of its associated literature.

The LitProf- Gene Classifier web server may be a valuable

complimentary tool for the community involved in prokaryote

gene annotation. A web server version of LitProf – Gene classifier

is accessible at: www.cebio.org/litprofGC.

Methods

Disclosing the informative vocabulary required to
describe each functional category

To compose the initial data set required to train the Support

Vector Machine (SVM), canonical prokaryote gene names

distributed in the 20 functional categories of the JCVI-CMR

ontology (downloaded in 8th June 2010), were randomly selected

from the genomes of 117 prokaryote taxa represented in the JCVI-

CMR database. Each of these genes had been assigned by JCVI-

CMR to only one functional category. We used as gene name, the

content of the field ‘‘Putative identification’’ from JCVI-CMR.

The initial gene set was then screened to eliminate homonymous

genes and genes assigned to more than one functional category

that could bias the gene set. Genes assigned to categories

‘‘Disrupted reading frame’’, ‘‘Hypothetical proteins’’, ‘‘Unclassi-

fied’’ or ‘‘Unknown function’’ of the JCVI-CMR ontology were

also excluded. For details on the rearranged ontology, see File S2.

We used the software LitProf, a homemade customized

implementation of the Chaussabel & Sher algorithm [9], to

identify the minimum vocabulary required to describe the function

of a given gene from a collection of its gene-specific abstracts in

MEDLINE. LitProf was first used by Coimbra et al to cluster genes

differentially expressed in infant rat brain in the course of

experimental meningitis [10] and later, to estimate the ambiguity

level of individual aliases in large gene terminologies based

exclusively in their name-specific vocabulary fingerprints auto-

matically extracted from abstracts in MEDLINE [11].

LitProf works in three fundamental steps. In the first step, it

retrieves the abstracts from MEDLINE by sequentially querying

the online version of PubMed with gene names in a list provided

by the user. LitProf communicates with PubMed using the Entrez

Programming Utilities (E-utilities), the structured interface to the

Entrez system [http://eutils.ncbi.nlm.nih.gov/]. Searches are case

insensitive and approximate matches are allowed. In this study we

only included genes which had at least five abstracts in

MEDLINE. For these genes, up to the 50 most recent abstracts

were retrieved by LitProf. In the second step, for each gene a

vector of stemmed terms, suffix stripped with the Porter stemming

algorithm, and their relative frequencies is constructed. The term

frequency is defined as the fraction of abstracts containing the

term in the text corpus of a given gene. In the last step LitProf

reduces the dimensionality of the vectors removing all the

promiscuous or gene-specific terms. To this purpose, LitProf first

determines the baseline frequencies of each term occurring in a set

of 7,465 MEDLINE abstracts retrieved for a set of 230 human

official gene symbols randomly picked. Terms with frequencies

higher than a user-defined cut-off in the baseline (five percent in

this study) are eliminated from the vectors of the experimental set

of genes. Then, terms for which the difference between their

frequencies in the text corpora of the experimental gene set and in

baseline exceeds an optimized cut-off are excluded. The optimized

cut-off is defined applying the equation: opt_cut-off = t+(k/n)

where t is the minimum threshold (in this study t = 0.15), k is a

constant (in this study k = 1.5) and n is the number of abstracts

retrieved for a given gene. The optimized cut-off compensates for

the differences in the number of abstracts retrieved for each gene.

To further decrease redundancy in the gene set, genes were

grouped by Hierarchical Clustering algorithm implemented in

GenePattern[12] (Pearson correlation as distance metric and

average linkage as clustering method) using as input the term-

frequency vectors produced by LitProf. For each cluster of highly

correlated genes ($0.99 correlation), one representative gene was

randomly chosen. The resultant gene list was resubmitted to

LitProf and the minimum informative vocabulary, now adjusted to

avoid the bias of genes too closely related, was recreated. For

details on the training dataset, see Table S1.

SVM training and evaluation
The term-frequency vectors together with the respective

functional categories previously assigned to each gene by JCVI-

CMR were used to train a gene classifier using the SVM
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implemented in GenePattern, designed to use a Radial Basis

Function kernel function. We first assessed the classifier’s

performance using a 10-fold cross validation with 100 replicates.

A homemade Perl script shuffled the original training dataset and

divided it in training and test sets containing 90% and 10% of the

genes, respectively. The SVM classifier from GenePattern was

then automatically launched for each of the 100 replicas. After all

the iterations, the standard deviations are calculated for recall and

precision at each confidence level. We also assessed the recall and

precision of classifier trained with the full training set against an

independent set of 2,220 randomly picked genes, from 13 species

not used in the training step, previously classified into unambig-

uous categories of the JCVI-CMR ontology. For details on the

independent test dataset see Table S2.

LitProf - Gene Classifier
We developed LitProf - Gene Classifier, a web-based tool

composed of a set of Perl scripts that integrate the validated SVM

model and all the required steps for assign a gene to a functional

category based solely on its available literature.

Given a list of genes names provided by the user, the tool

retrieves a minimum of five and a maximum of 50 abstracts for

each gene from MEDLINE repository. These abstracts compose

the text corpora for each gene. From these text corpora LitProf –

Gene Classifier calculates the frequency for each term of the

minimum informative vocabulary used in the previous step to

training the SVM. These term-frequency vectors for each gene to

be classified are automatically loaded to the SVM (implemented in

GenePattern) together with the predictive model produced in the

training step. The output is a web page showing the gene name,

the predicted category, and the confidence.

Statistical analysis
Gene distribution over functional categories in the classified

gene set, the training gene set, and the original JCVI genome

resource, were compared using a paired t-test, with a confidence

level of 95%, using GraphPad Prism version 5.02 (GraphPad

Software, Inc. CA, USA).
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