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Abstract
Macromolecular assemblies can be intrinsically refractive to classical structural analysis, due to
their size, complexity, plasticity and dynamic nature. One such assembly is the nuclear pore
complex (NPC). The NPC is formed from ~450 copies of 30 different proteins, called
nucleoporins, and is the sole mediator of exchange between the nucleus and the cytoplasm in
eukaryotic cells. Despite significant progress, it has become increasingly clear that new
approaches, integrating different sources of structural and functional data, will be needed to
understand the functional biology of the NPC. Here, we discuss the latest approaches trying to
address this challenge.

Introduction
The building blocks of cells are a vast set of complex molecular machines, which act
coordinately to perform all the processes that define life. These biological machines can be
made of many dozens of macromolecular components (as well as accompanying ligands and
cofactors), and often can dynamically alter their shape, composition and location in order to
perform their functions.

The nuclear pore complex (NPC) is one such intricate and dynamic machine found in all
eukaryotes. Each NPC is made from ~450 copies of 30 different proteins (called
nucleoporins or Nups), and their overall composition and organization seem conserved [1].
NPCs form selective channels across the double nuclear envelope membrane in eukaryotic
cells; as the exclusive gateways connecting the nucleoplasm and the cytoplasm, NPCs
support and regulate a huge flow of cellular components, ranging from single proteins to
other megadalton-sized molecular machines [2,3]. Transport across the NPC is rapid,
regulated, and energy-dependent, involving numerous accessory ‘transport factors’ [4,5].
Many macromolecular cargoes are carried across the NPC by members of a structurally
related family of proteins termed Karyopherins (Kaps), which bind to specific import (NLS)
or export (NES) signals in their cargos. A GTPase called Ran provides the energy and
directionality for Kap-mediated transport. Other, Kap-independent pathways of transport
exist, including perhaps the most prominent, the export of mRNAs from the nucleus to the
cytoplasm (for more details, see the review from Grunwald and Singer in this issue and
[4,5]). The NPC also serves as an anchor for the organization of numerous nuclear
processes, and as such can play important roles in organizing nuclear architecture and even
the control of gene expression.
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As with many of the cell’s biological machines, many different techniques and approaches
have over the last few years driven spectacular advances in our understanding of the
structure and function of the Nups, transport factors, and other macromolecules that
comprise and interact with the NPC. This way, some of the general principles behind
nuclear transport have been determined by committed and detailed studies of its individual
component players. However, there remains a significant challenge in integrating these
insights into an understanding of the nucleocytoplasmic transport mechanism, and in
generating a holistic picture of the intricate relationships between the NPC, its surroundings,
and its multiple functionalities in the cell.

The situation we are currently in could be compared with the parable of the blind men and
the elephant: six blind men were asked to determine what an elephant looked like, just by
examining different parts of the elephant’s body. The blind men asserted that the elephant
was like a pillar (the one who felt the elephants’ leg), a rope (tail), a tree branch (trunk), a
hand fan (ear), a wall (belly) or a pipe (tusk): ‘Each in his own opinion, Exceeding stiff and
strong, Though each was partly in the right, And all were in the wrong.’ (The Blind Men and
the Elephant’; John Godfrey Saxe). The moral of the story, of course, is that while each had
a part of the picture, they needed to come together to agree on a full elephantine structure.
Similarly to the parable, while different techniques give us valuable information about
specific features of the NPC (Figure 1), only the integration of data coming from different
sources, and covering a broad range of resolutions and timescales (to represent the dynamics
of the complex) will be able to address all the questions of what this mammoth complex
looks like and how it works [6].

Exploring the elephant
Electron microscopists first described the presence of a discrete macromolecular complex
residing in pores within the membranous nuclear envelope, and first coined the term
‘nuclear pore complex’. They revealed that the NPC was an octagonally symmetric cylinder,
with eight spokes conjoined by coaxial rings, and a central channel through which all
cargoes were shown to pass [3]. This overall architecture was also shown to be well
conserved in all the eukaryotes analyzed [7,8•,9]. From this ‘core’ structure, eight filaments
project from both the nucleoplasmic and the cytoplasmic faces; the nuclear filaments
conjoin at a distal ring to form the ‘nuclear basket’. Atomic force microscopy is helping to
define the physical and mechanical properties of the NPC, underscoring its extreme
flexibility and structural stability [10], and recent advances are opening the possibility of
time-lapse analysis of single transport events by this technique [11]. Using immunoelectron
microscopy, most Nups were at least roughly localized to portions of the NPC, and
importantly such localizations also showed that a particular class of Nups, termed ‘FG
Nups’ (because all carry long stretches of Phe-Gly repeats) is found in and around the NPCs
central channel [12,13]. Though each FG repeat domain is natively disordered, large
numbers of these domains perhaps form a quasi-ordered structure that functions as a ‘virtual
gate’, whose dense packing and rapid motion push away nonspecific macromolecules while
cargo-carrying transport factors pass across the transporter by jumping from FG docking site
to docking site [14–18].

Recently, multiple studies have also generated a wealth of crystallographic and NMR
spectroscopy data on numerous Nups and transport factors, opening up the prospect of an
atomic-level understanding of nuclear transport. Several fragments from peripheral Nups
have been crystallized, either alone or in complexes with transport factors (see [19–21]). But
the main targets for crystallographic studies have been the Nups forming the architectural
core of the NPC (see below, and the review by Bilokapic and Schwartz published in this
same issue). Further advances in atomic resolution techniques will surely give new and
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exciting insights into the atomic details of Nup arrangements in the near future. However,
issues have arisen when piecing these structures back into the NPC; different interpretations
of the same homodimeric crystal interfaces, orientation of building blocks, and fitting into
the overall NPC structure have led to the proposal of contradictory models for the
arrangement of the Nup84 complex building block (the major component of the outer ring;
see below and Figure 1) [22,23] and the NPC as a whole [24,25]; moreover, the NPCs from
different organisms have species-specific variations in composition and structure that have
yet to be understood. We are therefore still a long way from a full architectural
understanding of the NPC.

Techniques allowing medium resolution mapping of Nup arrangements and orientations are
now adding complementary insights into the NPC structure. Electron microscopy (EM) has
provided information about the shape and dimensions of isolated Nups and Nup complexes
[26–30]. Fluorescence anisotropy has been used to define in vivo the overall orientation of
individual Nups within the NPC [31••]. This way, both yeast Nic96 and human Nup133 were
shown to arrange with their long axes approximately parallel to the nuclear envelope plane.
These orientations agree with previously published ring arrangements for these Nups within
the NPC [28,32,33]. In a classic study, Lutzmann et al. unraveled the overall arrangement of
the Nup84 complex using EM and in vitro reconstitution [26]. The same laboratory has
recently expanded this approach by sequencing the genome of the thermophilic fungus
Chaetomium thermophilum and using the identified fungal Nups for recombinant and ex
vivo expression [34••]. The ther-mostable fungal Nups seem to show improved stability for
both biochemical and structural characterization, as illustrated by in vitro reconstitution of
some core NPC connections and EM analysis of single Nups. By combining these data they
were also able to suggest a model for connectivity of some of these Nups [34••], once again
underscoring the importance of integration of diverse data sources to piecing together the
NPC.

Piecing the elephant together
When considered individually, traditional structural methods, though generating incredibly
valuable data, each have their own particular limitations. Thus, crystallography requires that
a protein be crystallizable; EM can potentially damage and distort delicate biological
structures and often is not high resolution; light microscopy is low resolution on the scale of
such assemblies; proteomic methods require interactions to be preserved upon removal from
the cellular milieu; and so on. Almost all have difficulties when dealing with flexible or
intrinsically disordered regions, which in the NPC represent up to one-third of its mass
[13,35]. All approaches also can be challenged by dynamically associating components.
While each method gives us one perspective on the NPC, they have been honed by
researchers to often provide an exceptional view from that perspective, providing huge
amounts of potentially useful data — rather like the very detailed perceptions each of our
blind men produces of their part of the elephant. So, how can we piece all these perceptions
together into a unified mammoth structure?

Our laboratory is one of a number that is trying to integrate different kinds of experimental
data to generate a holistic view of a macromolecular complex, in our case with a focus on
the NPC (Figure 2 and [32,36]). We began by gathering a large and diverse set of proteomic
and biophysical data about the stoichiometry, connectivity, shape, and position of each Nup
in the NPC. We also determined the dimensions and symmetry of the NPC from our
cryoelectron microscopy map [9]. This wealth of complementary structural information was
translated into thousands of spatial restraints. Using the computer program MODELLER
[37,38] we sought a spatial arrangement of the Nups that optimally fulfilled all these
restraints. Our method is similar to the determination of protein structures by NMR
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spectroscopy, in which a protein’s structure is determined by satisfying distance restraints
between pairs of atoms. In our approach, atoms are replaced by Nups, and the size, shape,
and relative positions of the Nups are restrained based on a variety of biophysical and
biochemical experiments. The resulting best models from tens of thousands of trials were
averaged and represented by the corresponding protein density map, which resembled the
actual structure of the NPC at ~ 6 nm resolution (or ‘precision’).

The resulting NPC map allowed us to assign particular proteins to previously described NPC
structural elements and survey the NPC’s overall design (Figure 1). Several coaxial rings
coat the curved surface of the pore membrane in a narrow layer and form the central channel
through which macromolecular exchange occurs. The rings are formed by the connection of
eight symmetry units called spokes. Each spoke can also be divided into two parallel
columns. A history of evolutionary duplication seems reflected in this NPC architecture;
every Nup in one column contains a similarly positioned homolog in the adjacent column.
There is also evidence for such ancient duplications between the inner and outer rings,
suggesting that the bulk of its structure has evolved through extensive gene duplication from
a simple precursor set of only a few proteins [1,32].

The NPC structural scaffold, formed by the inner and outer rings, comprises conserved
proteins formed almost entirely from either a β-propeller fold, an α-solenoid fold, or a
distinctive N-terminal β-propeller/C-terminal α-solenoid (β–α) arrangement [1,39]. Such a
β-propeller/ α-solenoid architecture has also been found in the clathrin/adaptin, COPI and
COPII vesicle coating complexes, and in membrane tethering and flagellar membrane
transport complexes [40–42]. The discovery in NPCs of a membrane-coating scaffold
resembling vesicle coating complexes thus allowed us to hypothesize a common
evolutionary origin for NPCs and coated vesicles in an early membrane-curving module (the
‘protocoatomer’) that led to the formation of the internal membrane systems in modern
eukaryotes [1,32,40,41,43]. Recent studies have highlighted how it appears that upon its
innovation, this protocoatomer radiated explosively to generate most of the membrane
coating, tethering, and even transporting systems in modern eukaryotes [41]. Atomic
structures of exemplar linker [28,44], outer ring [22,23,25,33,45,46,47,48], and inner ring
Nups [49] (Figure 1) have upheld these ideas, confirming that indeed β-propellers and
topologically variable α-helical solenoid domains are the main structural features of an NPC
core with clear similarities to vesicle coating complexes; heterodimeric interaction surfaces
unveiled by these studies, as β-propeller invading blades [33,45] and Sec31-like α-solenoid
connections [22,23], have further underscored the evolutionary relationship between the
NPC and these complexes.

Our first pass demonstrates that a combination of approaches such as the ones described
above should be able to generate enough information, from different levels of resolution, to
allow their integration into a consensus NPC structure. Moreover, though we used our own
data for this, there is nothing preventing the inclusion of many other verified sources of data.
But, to avoid inaccuracy, several factors should be carefully considered when trying to apply
an integrative approach. First, the initial experimental data should ideally meet the criteria of
being ‘correct’ (i.e. free of inaccuracies and false positive inputs), being as comprehensive
as possible, originating from multiple sources and describing a single state of the complex
[50•]. Second, a very careful — and sometimes conservative — interpretation of the
experimental data is required to adequately translate them into spatial restraints. Third, the
integration strategy should include checkpoints and assessment steps that ensure the
accuracy of the final output; our approach was designed and demonstrated to fail should data
be incorrect [32,36]. Finally, one should always consider that machines are only as
intelligent as the individual that handles them, so the ultimate checkpoint should always be
the scientific insight of the researchers.
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What does the elephant do?
A tusk, a tooth, a trunk — individually, each tells only a little of an elephant’s life history.
Similarly, structural studies on isolated Nups or small pieces of the NPC can provide only so
much insight into the functional roles of the analyzed features. A complementary view,
showing how the different structural features support the function of an active NPC, would
be needed to address the question of ‘how does an NPC work?’ Conceptual and technical
advances are broadening the functional roles of the NPC and opening new ways of gathering
such information.

Arguably, the main role of the NPC is to establish this selective barrier between the
nucleoplasm and cytoplasm. Kaps bind to their cargos and interact directly with the FG
Nups to travel through the NPC. Single molecule imaging techniques are allowing the
tracking of these transport events with spatiotemporal resolutions on the order of nanometers
and microseconds [51], revealing fascinating features about the biophysical environments
within the NPC. High-pressure freezing, combined with low-temperature fixation and
immunoelectron microscopy allowed researchers to potentially reveal spatially separated
transport routes through the NPC in budding yeast [52], suggesting that import was
performed in the radial periphery of the NPC channel, while mRNA export factors travel
across the central axis region. Interestingly, deletion of specific FG domains affected certain
import pathways but not others, suggesting an even more complex regionalization of the
NPC channel. Single-point edge-excitation subdiffraction (SPEED) microscopy analysis
performed in permeabilized mammalian cells also suggested separated transport routes
through the NPC central channel [53•], indicating that this compartmentalization may be a
conserved feature of NPCs. The existence of functionally differentiated environments in the
NPC is strengthened by new approaches allowing single molecule detection of in vivo
mRNP export kinetics in mammalian cells [54••,55]. Using super registration fluorescence
microscopy techniques Grunwald and Singer [54••] were able to define three individual
transient steps for mRNPs traveling across the NPC, with a quick translocation event
through the central channel and two longer steps spent at both nucleoplasmic and
cytoplasmic sides of the NPC. Other studies suggest that import of large size quantum dots-
linked cargos in mammalian cells works by reversible substeps through a functionally
asymmetric central channel [56•].

Different kinds of functional channels within the NPC have also been revealed by the study
of integral membrane protein transport. These proteins could traverse the NPC either by
diffusion through adjacent lateral channels or by active transport mediated by Kaps [57]. In
both cases, their transmembrane domains have to pass through the pore membrane and,
consequently, their soluble domains must move across the NPC core scaffold. Indeed,
mutations affecting inner ring Nups show strong integral membrane protein transport defects
[58]. In a recent groundbreaking study, Meinema et al. [59••] show that a long intrinsically
disordered linker, connecting the transmembrane domain and the soluble Kap-bound domain
of the protein, slides through the NPC core scaffold, allowing the transport of the protein
into the inner nuclear membrane. This model would imply either the presence of channels
across the NPC core scaffold or the transient rearrangement of several core NPC interactions
during this transport process.

These different functional environments within the NPC channel and core scaffold must be
the result of specific biochemical and structural features, perspectives that lead to questions
of how the NPC architecture is defining those functional regions, and how the underlying
NPC ‘design’ principles relate to the functional roles of the different regions. Similar
questions can be applied to other emerging NPC physiological roles: chromatin association/
regulation [60•,61–63], aging [64–67] and transcriptional regulation [68•,69•,70,71]. The
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challenge remains to, first, tailor functional and structural approaches into sources of data
that could be easily integrated into functionally informative maps of the NPC, and second,
include a timescale into the integration to show the dynamic behavior of the NPC through its
lifespan. Apart from the obvious intellectual challenge of understanding the basics of NPC
biology, such integrated structure/function maps would be extremely useful for two key
goals of the nuclear transport field: the possibility of designing synthetic devices mimicking
key properties of the NPC [72,73] and understanding the role of NPC defects in human
aging and disease [74–77].

Conclusions
Cellular life arises from the concerted action of dynamic macromolecular complexes.
Understanding the biology of such mammoth assemblies could be made possible by the
development of new integrative approaches that, firstly, would elucidate the structure of the
assembly, and secondly, would incorporate functional data into the same integrative
strategy. The output of these strategies would be functionally informative structures;
macromolecular ‘assembly and operation manuals’ that help to understand the functional
roles of their different structural features. Ambitious as it sounds, this kind of strategy still
does not fully consider a key component of biological systems: dynamics. The incorporation
of the temporal dimension remains an additional major challenge for future development of
integrative approaches.
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Figure 1.
The NPC, and the traffic through it, has been visualized by many different techniques,
representatives of which are shown here: fluorescence microscopy including single molecule
techniques, atomic force microscopy, scanning electron microscopy, transmission electron
microscopy, molecular modeling, and crystallography and NMR.
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Figure 2.
Determining the architecture of the NPC by integrating various types of data. Data from
various experiments are translated into ‘spatial restraints’, encoding the information each
experiment reveals about the relative position of each component in the NPC. An ensemble
of structural solutions that satisfy the data is then obtained by minimizing the violations of
the spatial restraints, starting from many different random configurations. This ensemble is
analyzed in terms of protein positions, contacts, and configuration [32,36].
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