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ABSTRACT: Traditional proteomics analysis is plagued by
the use of arbitrary thresholds resulting in large loss of
information. We propose here a novel method in proteomics
that utilizes all detected proteins. We demonstrate its efficacy
in a proteomics screen of 5 and 7 liver cancer patients in the
moderate and late stage, respectively. Utilizing biological com-
plexes as a cluster vector, and augmenting it with submodules
obtained from partitioning an integrated and cleaned protein−
protein interaction network, we calculate a Proteomics Signa-
ture Profile (PSP) for each patient based on the hit rates of
their reported proteins, in the absence of fold change thres-
holds, against the cluster vector. Using this, we demonstrated
that moderate- and late-stage patients segregate with high
confidence. We also discovered a moderate-stage patient who displayed a proteomics profile similar to other poor-stage patients.
We identified significant clusters using a modified version of the SNet approach. Comparing our results against the Proteomics
Expansion Pipeline (PEP) on which the same patient data was analyzed, we found good correlation. Building on this finding, we
report significantly more clusters (176 clusters here compared to 70 in PEP), demonstrating the sensitivity of this approach.
Gene Ontology (GO) terms analysis also reveals that the significant clusters are functionally congruent with the liver cancer
phenotype. PSP is a powerful and sensitive method for analyzing proteomics profiles even when sample sizes are small. It does
not rely on the ratio scores but, rather, whether a protein is detected or not. Although consistency of individual proteins between
patients is low, we found the reported proteins tend to hit clusters in a meaningful and informative manner. By extracting this
information in the form of a Proteomics Signature Profile, we confirm that this information is conserved and can be used for (1)
clustering of patient samples, (2) identification of significant clusters based on real biological complexes, and (3) overcoming
consistency and coverage issues prevalent in proteomics data sets.
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■ INTRODUCTION
Proteomics profiling in cancer is a very useful tool for detect-
ing key players in oncogenic progression. Although high-
throughput methods such as microarrays and RNA sequencing
have been very useful in enhancing our molecular understand-
ing, they only measure RNA level, not protein level. Thus, the
evidence provided are indirect. On the other hand, there are
many difficulties associated with high-throughput direct protein
analysis or proteomics.
Despite improvements in mass spectrometers, protein/

peptide separation approaches and MS-associated algorithms,
proteomics profiling still suffers from a lack of extensive proteome

coverage and consistency across samples and MS assays.1 The
coverage issuethat is, the ability to profile the whole proteome
arises in part due to the limited detection range of MS instruments,
as well as due to inherent sample complexity. The consistency
issuethat is, whether the same results are produced in repeated
runsarises due to the high sensitivity of MS instrument, as well as
stochastic ionization and sampling of ions.
The traditional post-MS analysis approach is to select and

study only those proteins that are found in most of the samples,
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as well as having a consistently over- or under-expressed ratio.
This approach is referred to as thresholding.
Since the use of thresholds increases stringency by imposing

expressional and sample-support constraints, it is expected that
this procedure improves data quality, and the investigator can
therefore concentrate on analyzing a smaller subset of proteins.
However, there are three major problems associated with the
thresholding approach. First, it is an arbitrary filtering step with
no fixed rules on the parameters. Second, the use of thresholds
disregards most of the generated data. This is especially waste-
ful given already low levels of consistency between different
samples. Furthermore, noticeably high or low protein expres-
sion does not necessarily imply importance or causality in the
phenotypein particular, a mutated protein that drives other
proteins to change their levels may not itself report any change
in expression or miss being detected. Third, for those proteins
that do meet a specified threshold, there is a tendency to try to
determine if the protein is over or under expressed by averaging
the reported ratios. Where patient sample size is small, the
averaged ratio reveals little information about the expression
behavior of the proteins in the cancer population at large. The
other point of contention with regards to averaging is that
many proteins report “swing” ratiosthat is, a mixture of both
high and low ratios between samples.
Since proteins do not work singly but in groups as complexes

or submodules, we previously built clusters based on the first-
degree neighbors of highly differentially expressed proteins
(seeds), and ranked them in an approach termed as Proteomics
Expansion Pipeline (PEP).2 By building clusters around seeds,
PEP allows recovery of lower confidence proteinsthat is,
proteins supported by only a few patients or that the proteins
have ratios around 1. It also allows recovery of proteins not
immediately evident from the mass spectra or filtered during
the data analysis. The method is further augmented by hyper-
geometric test of the seeds to discover significant pathways
derived from an in-house integrated database3 as well as transi-
tion tracing between early- and late-stage cancer.2 However,
PEP lacks sensitivity owing to the requirement that clusters
must first contain a seed. It is also dependent on the quality of
the reference protein−protein interaction network (PPIN).
Finally, while PEP addresses the coverage issue in proteomics
partially, it does not resolve consistency issues between samples.
In this paper, we take a departure from conventional analysis

approaches utilizing biological networks. We hypothesized that
meaningful information is embedded in the total set of ex-
pressed proteins in every patient if appropriately contextualized.
As such, it is possible to do away with the use of thresholds on
the detected proteins and maximally utilize available exper-
imental evidence.
Protein complexes can be regarded as units of biological

function and is suitable for contextualizing proteomics data. A
given set of complexes can be represented as an unranked
“cluster vector” against which we can measure the hit rate of a
patient’s reported proteins. For each patient and each cluster,
the hit rate = max(Np/N), where Np is the number of proteins
in that specific patient found in that cluster, and N is the total
number of proteins found in that cluster (Figure 1). The
patient’s Proteomics Signature Profile, or PSP, is therefore
simply a vector of hit rates checked against the cluster vector.
Since a patient’s PSP is a vector of fixed length m, a set of n
PSPs can be represented as a matrix of dimensions (n × m) on
which statistical and mathematical analysis can be performed.

The PSP can be used in two ways as illustrated in this paper.
First, it can be used to understand the relationship between
samples or patients. This is important because, normally, the
samples are first staged according to clinical and pathological
criteria rather than by their molecular profiles. Histopatho-
logical classifications may be subjective and may give rise to
misclassifications. With PSP, proteomic data can be clustered
and analyzed in a manner analogous to microarray data. This
allows a confidence check to ensure the molecular signatures
also concur with the histopathology. The second way PSP can
be used is to determine the significance of each cluster within
the cluster vector. This allows for selection of critical gene
targets for functional studies and biomarker development.
To this end, we adopted and modified the SNet algorithm
(previously developed for gene expression studies), which has
been shown to be extremely robust in detecting significant
subnets.4 The significant clusters can then be further scored
and ranked using “clusters scores” derived from the reported
expression ratios.
To illustrate the efficacy of our approach, we applied PSP to

a group of 12 hepatocellular carcinoma (HCC) patients, 5 of
which were clinically diagnosed to be in the moderate (mod)
and 7 in the poor stage. If the information embedded within the
matrix is indeed meaningful, it should properly segregate
patients according to the cancer stage. The returned significant
clusters based on feature selection should also make biological
sense and support what is currently known about liver cancer.
Finally, because thresholding was not performed to filter off any
reported proteins, PSP is expected to be more sensitive,
therefore capturing a wider array of biological information. To
illustrate how PSP compares with a more conventional network-
based approach, we also compare it to the results from PEP.2

As a supplement to PSP, we also propose and show in this
paper how cluster mining from a PPIN can meaningfully
expand the cluster vector. This is important because the current
set of known complexes is incomplete. Furthermore, more
biological information can be extracted by taking advantage of
network-based information.

Figure 1. Proteomics signature profiling (PSP) pipeline. The pipeline
consists of incorporating data from complex, PPI and GO. Protein lists
from individual patients are converted into a proteomics signature
profile (PSP) based on a vector of complexes generated from
CORUM and graphlet-derived clusters. The PSP can then be used for
performing sample clustering for assessing the patient samples and
determining significant clusters. GO terms are used to evaluate
functional significance and coherence. (Abbreviations: GDV, Graphlet
degree vector; GDS, Graphlet Degree Similarity Scores). For detailed
explanations, refer to Results.
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■ MATERIALS AND METHODS

Patient Sample Preparation and Proteomics Profiling

Briefly, liver tissues were obtained from 12 male patients
diagnosed with HCC and suffered from cirrhosis with chronic
Hepatitis B virus (HBV) infection. There was no reported meta-
stasis at the point of surgery. Tissues collected were grouped
according to histology report; 5 had moderately differentiated
HCC (mod) and 7 had poorly differentiated HCC (poor).
Paired tissues were obtained from each patient, one from the
adjacent nontumor region (normal) and the other from the
tumor region of the resected liver.

iTRAQ Labeling

Protein lysates from samples were first precipitated using the
2-D Clean-Up kit. The protein pellets were subsequently
resuspended in either dissolution buffer (500 mM triethylam-
monium bicarbonate and 0.1% (w/v) SDS) for iTRAQ label-
ing. iTRAQ labeling and processing of the samples were carried
out as described by the protocol with minor modifications and
using the reagents provided from Applied Biosystems. One-
hundred micrograms of protein from each sample was reduced
with 50 mM of TCEP at 6 °C for 1 h, and subsequently
alkylated with 200 mM of methyl methanethiosulfonate
(MMTS) for 10 min at room temperature. Each sample was
diluted to achieve a final concentration of 0.05% (w/v) SDS
prior to trypsinization at 37 °C for 16 h. Following this, each
tryptic digest was labeled for 1 h with one of the four isobaric
amine-reactive tags. The labeling was carried out at random
ensuring that 2 pairs of patient tissues were labeled as follows:
Channel 114 (nontumor); Channel 115 (tumor); Channel 116
(nontumor); and Channel 117 (tumor samples). These four
iTRAQ-labeled samples were then pooled and passed through a
strong cation exchange cartridge as recommended by the
manufacturer (Applied Biosystems). This eluate was further
desalted using a Sep-Pak cartridge (Millipore), lypholised and
reconstituted in appropriate buffers for 2-D LC

Two-Dimensional Liquid Chromatography Separation of
Labeled Peptides

iTRAQ-labeled peptide mixtures was further separated using an
Ultimate dual-gradient LC system (Dionex-LC Packings) with
a Probot MALDI spotting device. A two-dimensional LC
separation was performed as follows: the labeled peptide
mixture was first dissolved in 2% (v/v) acetonitrile containing
0.05% (v/v) TFA and injected into a 0.3 × 150 mm strong
cation-exchange (SCX) column (FUS-15-CP, Poros 10S;
Dionex-LC Packings) for the first dimensional separation.
The mobile phase A was 5 mM KH2PO4 buffer, pH 3, 5%
acetonitrile and mobile phase B 5 mM KH2PO4 buffer, pH 3,
5% ACN + 500 mM KCl respectively. The flow rate was 6 μL/
min. A total of 9 fractions were obtained using step gradients of
mobile phase B: unbound, 0−5, 5−10, 10−15, 15−20, 20−30,
30−40, 40−50, 50−100% of B. The eluting fractions were
captured alternatively onto two 0.3 × 1-mm trap column,
washed with 0.05% TFA and followed by gradient elution in a
0.2 × 50-mm reverse-phase column (Monolithic PS-DVB;
Dionex-LC Packings). The mobile phase used for this second-
dimensional separation was 2% ACN with 0.05% TFA (A) and
80% acetonitrile with 0.04% TFA (B). The gradient elution
step was 0−60% B in 15 min at a flow rate of 2.7 μL/min. The
LC fractions were mixed directly with MALDI matrix solution
(7 mg/mL CHCA and 130 μg/mL ammonium citrate in 75%
acetonitrile) at a flow rate of 5.4 μL/min via a 25-nl mixing tee

(Upchurch Scientific) before they were spotted onto a 192-well
stainless steel MALDI target plate (Applied Biosystems) using a
Probot Micro Precision Fraction collector (Dionex-LC
Packings), at a speed of 5 s per well. ACTH (50 fmol,
18−39) peptide (m/z = 2465.199) was spiked into each well as
internal standard.

Mass Spectrometry Analysis and Database Search

We analyzed samples previously using a 4700 Proteomics
Analyzer mass spectrometer (AB SCIEX) with MALDI source
and TOF/TOF optics.5,6 Briefly, MS/MS analyses were
performed using nitrogen at collision energy of 1 kV and a
collision gas pressure of 1 × 10−6 Torr. The GPS Explorer
software Ver. 3.6 (AB SCIEX) was used to create and search
files with the MASCOT7 (version 2.1; Matrix Science) and
Paragon8 (Protein Pilot version 4; AB SCIEX) search engines
for peptide and protein identifications. The International
Protein Index (IPI) human database (version 3.31) was used
for the search and this was restricted to tryptic peptides. One
thousand shots were accumulated for each MS spectrum. For
MS/MS, 6000 shots were combined for each precursor ion with
signal-to-noise (S/N) ratio greater or equal to 100. For
precursors with S/N ratio between 50 and 100, 10000 shots
were acquired. The resolution used to select the parent ion was
200. No smoothing was applied before peak detection for both
MS and MS/MS, and the peaks were deisotoped. For MS/MS,
only the peaks from 60 to 20 Da below each precursor mass,
and with S/N greater than or equal to 10 were selected. Peak
density was limited to 30 peaks per 200 Da, and the maximum
number of peaks was set to 125. Cysteine methanethiolation,
N-terminal iTRAQ labeling, and iTRAQ labeled-lysine were
selected as fixed modifications while methionine oxidation was
considered as a variable modification. One missed cleavage was
allowed. Precursor error tolerance was set to 100 ppm while
MS/MS fragment error tolerance was set to 0.4 Da. Maximum
peptide rank was set to 2.
The average iTRAQ ratio and standard deviation (S.D.) were

determined using the GPS Explorer software (version 3.6) or
Protein Pilot (version 4). The ratio is taken as the tumor
sample against adjacent nontumor region. For MS/MS, only
the peaks from 50 to 20 Da below each precursor mass, and the
minimum S/N filter was designated at 10. The mass exclusion
tolerance was 3 Da around 115.5 m/z. Peak density was limited
to 50 peaks per 200 Da, and the maximum number of peaks
was set to 80.

Peptide Identification and iTRAQ Quantification

For each peptide, a confidence interval (CI%), corresponding
to confidence of identification, was calculated using manufac-
turer’s recommended parameters (Mascot). Each MS/MS
spectrum was searched against IPI Human. The CI% was
calculated such that a CI% value of 95% is equivalent to a
Mascot ion score at the significance value (Supplementary
Figure 5, Supporting Information).9,10 The individual peptide
identifications were grouped into protein identifications and
assigned a total ion CI% by GPS Explorer.
In Goh et al., it was found that the reported proteins for both

databases searches (Mascot and Paragon) corresponded well in
terms of ratios and ranks.2 Most Mascot hits were also found in
Paragon. In addition, Paragon consistently reported more
proteins although we found that these were significantly lower
ranked. Given that PSP relies on the hit rates of patient
proteins against a vector of complexes, the additional proteins
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may (and indeed as we report in this paper) improve the
performance of analysis.

CORUM

CORUM is currently among the most extensive data source for
human protein complex data.11 It contains manually annotated
protein complexes from mammalian organisms. Annotation in-
cludes protein complex function, localization, subunit compo-
sition, literature references and more. All information is
obtained from individual experiments published in scientific
articles; data from high-throughput experiments is excluded.
523 complexes (minimum size 4) were derived from

CORUM. A minimum size requirement is introduced to re-
duce large hit-rate fluctuations.

Generation of Patient Proteomics Signature Profiles (PSP)

Each cluster C in the cluster vector, is a group of proteins
derived from CORUM11 and/or the Graphlet-derived clusters.
Two sets A and B of proteomic profiles from two phenotypes
respectively (mod and poor) are given. For each cluster C, and
each patient i in A, the hit rate H_CAi is computed, that is, the
overlap between the cluster and patient. Similarly H_CBj is
computed for each cluster C and patient j in B. The total set
of hit-rates for each patient across the set of clusters is the
patient’s PSP.

Identification of Significant Clusters

For each cluster C in the cluster vector, we can produce two
lists HA = ⟨H_CA1, ..., H_CAm⟩ and HB = ⟨H_CB1, ...,
H_CBn⟩, where A and B correspond to the mod and poor
stages. The t-statistic score between the lists HA and HB is then
computed by the standard formula:

‐ = −

+

− −

S
t score

HA HB

n mHA,HB
1 1

where

=
− + −

+ −
S

m S n S
m n

( 1) ( 1)
2HA,HB

HA
2

HB
2

If this t-statistic is significant, then the cluster C is
differentially expressed between mod and poor stage. As the
t-statistic may not necessarily follow an approximately normal
distribution, weighted randomization via class label swapping
was performed between members of moderate and poor 10000
times to produce the null distribution. If the t-statistic value is
negative, the empirical p-value is determined by the percentage
of null-distribution t-scores that are smaller than the actual
t-statistic value. If the t-statistic value is positive, the empirical
p-value is determined by the percentage of null-distribution
t-scores that are larger than the actual t-statistic value. Examples
of the null-distribution t-scores for 4 clusters are shown in
Supplementary Figure 1 (Supporting Information).

Cluster Score

For those clusters regarded as significant (p ≤ 0.05), we
calculate a score for the mod and poor stage respectively using
the reported iTRAQ protein ratios. Suppose we have a complex
comprised of proteins A, B, C, D. A is supported by 4 mod
stage patients with ratio (1.1, 0.8, 1, 1.2), B is supported by 1
patient with ratio of 5, while C and D are not supported.

If the ratio is lower than 1, we convert it by taking its reciprocal.
To find out how big is this ratio, we take difference = ratio −1.
The score S, would thus be Σ(0.1, 1/0.8 − 1, 0, 0.2) + 4.
However, with this scoring approach, complexes with more

proteins tend to be ranked high. For example, a complex with
10 proteins (A1, ..., A10) and patient_i has high ratio value on Ai
and low ratio value on the other 9 proteins; this complex will
get a higher score than a complex of size 4 with all patients have
medium ratio value on all 4 proteins in this complex. To
improve the scoring function for such instances, we propose
dividing S by the number of unique proteins that were reported
in the patient. For example, in complex (A, B, C, D), 2 patients
report A - and their scores are 1.1, 1.2 while 1 patient report B
and his score is 5. The cluster score is therefore (0.1 + 0.2 + 4)/2
(note that the denominator is not 4).

Gene Ontology and Cluster Functional Annotation

GO provides a controlled vocabulary for assessing cluster
function and coherence.12 The annotation files and GO tree
(ver. 1.2) files for Homo sapiens were downloaded from http://
www.geneontology.org/ (dated 23 April 2011). UniProtKB
accessions were mapped to Ensembl Gene IDs via Biomart.
Informative biological process terms were extracted from the

GO OBO file.13 Significance testing for each cluster was per-
formed using the hypergeometric test with Bonferroni
correction (p ≤ 0.05).

Clustering of Patient Proteomic Signature Profiles

The patient proteomic signature profiles can be used to
examine the consistency and confidence of the derived re-
lationships between samples.
Hierarchical clustering was used to understand links between

samples. Euclidean distance was used to generate distance
matrix based on an m × n matrix (where m are the samples, and
n is the patient proteomic signature profile). Ward’s14 was used
to evaluate distance between groups derived from the distance
matrix.
To gain confidence on the structure of the tree, we used the

R bootstrap resampling package pvclust. For each cluster in
hierarchical clustering, p-values (between 0 and 1) are cal-
culated via multiscale bootstrap resampling. pvclust provides
two types of p-values: AU (Approximately Unbiased) and BP
(Bootstrap Probability). AU, which is computed by multiscale
bootstrap resampling, is a better approximation to unbiased p-
value than BP value computed by normal bootstrap resampling.

Reference PPI Network

As a supplement to CORUM, we used a reference protein
interaction network compiled by Bossi and Lerner1 to mine
for additional clusters. Briefly, human protein interactions were
extracted from 21 different databases. To improve the
confidence of an edge, each had to be supported by at least
one direct experimental source confirming the physical inter-
action. The complete network consists of 80922 interactions
between 10229 human proteins.

Calculation of Graphlet Degree Similarities from the GDVs

The Graphlet degree vector (GDV) is a generalization of the
degree property, that is, the number of connections of any node
in a network.15 Graphlets are all possible combinations for
subgraphs size 2 to 5. However, some positions in a graphlet
are topologically equivalent. For example, the three points in a
closed triangle.
To eliminate redundancy, the notion of graphlet orbit

is introduced. That is, if the node of interest is involved in a
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graphlet position of topological equivalence (e.g., one point of a
closed triangle), it only counts once. As there are 73 graphlet
orbits from size 2 to 5, this can be represented as a vector of
length 73, with each position indicating the number of counts
the node of interest is found in an orbit.
Relationships between nodes can be established by

measuring their GDV similarities. Although the GDVs can be
translated into a distance matrix, typical distance measure such
as Euclidean or Manhattan cannot be used directly due to
dependencies between various orbits.
Milenkovic and Przulj introduced a distance measure for this

purpose.15 A 73-dimension vector W containing the weights wi
corresponding to orbits i ∈{ 0, ...72 } was defined. To compute
weights wi, each orbit i is assigned an integer oi that is obtained
by counting the number of orbits that affect orbit i. wi as a

function of oi is computed as:

= −w
o

1
log( )
log(73)i

i

The distance for orbit i between two nodes is computed as:

=
+ − +

+

⎛
⎝⎜

⎞
⎠⎟D u v w

u v
u v

( , )
log( 1) log( 1)

log(max{ , } 2i i
i i

i i

Total distance between two nodes based on all 73 orbits is
simply:

=
∑

∑
=

=
D u v

D

w
( , ) i i

i i

0
72

0
72

Figure 2. Comparison of bootstrapped HCL trees generated via pvclust. Values on the edges of the clustering are p-values (%). Red values are AU p-
values, and green values are BP values as explained early under methods. Clusters with AU larger than 95% are highlighted by red boxes and are very
strongly support by the data. With only 73 graphlet-derived clusters, this did not provide sufficient dimensions for clearly resolving the mod and poor
patients (left column) although Paragon fared much better because of better hit rates. The right column shows that with the use of a much larger set
of dimensions or clusters, in this case, derived from CORUM, the trees are virtually identical despite that Paragon reports a considerably larger
number of proteins. It is also noteworthy in all cases; mod patient #203 is clustered with other poor patients.
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Since the distance is a value between 0 and 1, the similarity
can be calculated as:

= −S u v D u v( , ) 1 ( , )

If two nodes have very similar connection patterns between
them, it is plausible they are involved in similar processes. This
is checked using functional coherence measures as shown in the
next section.

Cluster Generation and Functional Evaluation Using LOC
Scores

GDV similarity scores are calculated for all connected nodes in
the reference PPIN. Since a high GDV similarity score between
two adjoined nodes implies same cluster membership, we
partitioned the network into clusters based on establishing a
range of thresholds between from 0.8 to 0.9. That is, at
threshold 0.8, we keep edges in the PPIN with a score of at
least 0.8, and keep connected components of size 4 and above
as clusters.
A cluster needs to be biologically relevant. To evaluate if the

clusters have “reason” to exist, we measured their localization
coherence. Cellular component terms from Gene Ontology12

were extracted and filtered for informative GO localization
terms (that is, this term is annotated to at least 30 proteins and
none of its descendant terms are annotated to at least 30
proteins).16 We let L = {L1, L2,..., Lk} be a set of localization
groups, where each group contains a set of colocalized proteins.
The colocalization score of a complex is defined as the maximal
fraction of proteins in this complex that are in the same
localization group among those proteins with localization
annotations.17 It is a measure of functional coherence based on
whether the members in a cluster tend to localize to the same
functional complex or subcellular component.13 The colocaliza-
tion score of a set of complexes loc_score (C) is defined as the
weighted average score over all complexes c ∈ C:

_

=
∑ | =
∑ | | ∈ ∧ ∃ ∈ ∈ |

∈

∈

C
c L i k

p p c L L p L

loc score ( )
max{overlap( , ) 1, 2, ... }

{ , }
c C i

c C i i

By using different levels of similarity scores (from 0.6 to
0.95), the PPIN is fragmented into clusters where we
monitored the effect on the localization score (loc_score)
(Supplementary Figure 3, Supporting Information). Although
the best loc_score is observed at similarity score of 0.95, the
number of graphlet-derived clusters (minimum size 4) are far
too few. We chose to use a similarity score cut off of 0.85 where
the number of returned clusters did not drop too drastically and

where the loc_score was acceptably high (Supplementary
Figure 3, Supporting Information). Seventy-three graphlet-deri-
ved clusters were obtained.

■ RESULTS

PSP clustering reveals strong associations within
phenotype classes

Despite high variability and low consistency in reported
proteins for each patient (Supplementary Figure 4; Supple-
mentary Tables 1 and 2, Supporting Information), we find that
meaningful information can be extracted by contextualizing the
reported proteins in each patient using the PSP approach.
PSP was performed using the identified proteins from

Mascot and Paragon respectively. In both cases, Paragon and
Mascot generated tree structures that are similar. This indicates
that PSP produces results that are stable. Also, Paragon
consistently outperforms Mascot (Figure 2) due to its higher
sensitivity.2 Since hierarchical clustering of patient PSPs is an
unsupervised method (i.e., no class label of patients was used),
there can be no overfitting with regards to class label of the
patients.
In all the HCL trees in Figure 2, we noticed that mod patient

#203 is consistently linked to poor patient #120. Also, mod
patient #203 was always found in the cluster corresponding to
the poor patients. Since the poor and mod patient groups were
resolved with very high confidence from the bootstrap analysis,
mod patient #203 might have been misclassified by the
clinician, or has not yet presented the histological phenotype
for classification as poor stage. A further check revealed that
mod patient #203 reported 667 proteins whereas the other
mod patients reported on average ∼300 proteins. Analysis of
the histopathology data (reported in 2002) did not reveal
any useful or interesting information on mod patient #203.
Unfortunately, it was impossible to follow up on whether mod
patient #203 developed poor-stage cancer.

Significant Clusters Are Functionally Congruent;
Expressionally Silent Clusters May Also Play Key Roles

Using a modified SNet approach,4 we identified 159 CORUM
complexes as significant (p-value ≤ 0.05).
To guide functional analysis, that is, whether a cluster has a

propensity to show obvious expressional changes, expression
information is incorporated to score and rank the significant
clusters (see “cluster score” under Methods)
Since the clusters are scored in a similar manner in PEP,2 this

facilitates correspondence analysis to check if the best matched
clusters score and rank similarly.

Table 1. Top Ranked Clusters

cluster ID p-value mod score poor score cluster name

5179 0.000300541 0.513951977 3.159758312 NCOA6-DNA-PK-Ku-PARP1 complex
5235 0.000300541 0.513951977 3.159758312 WRN-Ku70-Ku80-PARP1 complex
1193 0.000300541 0.513951977 3.159758312 Rap1 complex
159 0 0 2.810927655 Condensin I-PARP-1-XRCC1 complex
2657 0.008815869 0 2.55616281 ESR1-CDK7-CCNH-MNAT1-MTA1-HDAC2 complex
3067 0.00911641 0 2.55616281 RNA polymerase II complex, incomplete (CDK8 complex), chromatin structure modifying
1226 0.013323983 0.715352108 2.420592827 H2AX complex I
5176 0 0.513951977 2.339059313 MGC1-DNA-PKcs-Ku complex
1189 0 0.513951977 2.339059313 DNA double-strand break end-joining complex
5251 0 0.513951977 2.339059313 Ku-ORC complex
2766 0 0.513951977 2.339059313 TERF2-RAP1 complex
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Among the top ranking clusters in PSP (Table 1), which also
corresponded closely to the top reported clusters in PEP, is a
cluster comprising XRCC5, XRCC6, WRN, PARP1 and
PRKDC.2 This correspondence further supports that this
group of proteins is likely key drivers for HCC progression.
We also ranked the most commonly occurring GO BP terms

among all 159 significant clusters (Table 2). The results are

congruent with expectations. The top ranking term is “viral
reproduction”, which is in line with the fact that all 12 patients
are Hepatitis B infected. The subsequent ranking terms
corresponding to cellular reproduction, for example, mitotic
cycle, S phase, etc.is in line with the unregulated division of
cancer cells. Interestingly, “base-excision repair”, “telomere
maintenance” and “apoptosis” also comes among the top-
ranking terms.

The loss of repair mechanisms gives rise to mutations that
fuel cancer progression while telomeres and control over cell
death or apoptosis are essential for cellular immortality and
continued division. These findings indicate that, even without
artificially filtering the proteins by the expression ratios or by
consensus from at least half of the patients, the threshold-free
PSP approach produced significant clusters that were function-
ally congruent with GO BP terms expected in cancer.
There were 24 clusters for which the mod and poor cluster

scores are both zero, that is, the reported protein ratios for
patients in both groups had no change from the normal state.
This means the cluster score is zero in both mod and poor
samples for these clusters. However, each of these clusters is
still significant because proteins in them tend to occur mostly in
mod group and not in poor group (or vice versa).
We took the view that significantly differing patterns of

expression is important even if the proteins are not necessarily
driven to excessively higher or lower levels. Not all mutations
function in such a manner. On the other hand, it can also be
argued that coverage issues due to small sample size may also
introduce many false positives, in which case, it may be more
feasible to focus on complexes with either high poor scores, low
moderate scores, or a high poor/moderate score ratio.
Given that this group may be potentially interesting, we

describe two significant complexes therein with the lowest p-
values, the Wave2 complex and the Bloc1-Bloc2 complex. The
Wave2 complex plays a role in controlling cellular movement
and is implicated in metastasis of liver cells to the colon.18

Bloc1-Bloc2 functions in secretion and lysosomal functions.
While this is an associated function of the liver, whether it plays
a key role in liver cancer is not clear.

Comparisons with Proteomics Expansion Pipeline (PEP)
Approach

In PEP, we obtained a smaller number of clusters at 70. This is
hardly surprising because in PEP, clusters were built around
seed proteins. That is, proteins which are supported by more
than half of patients, and which exhibit fold change ratios above
1.3 and below 0.75.2 With such thresholds in place,
(Supplementary Figure 4, Supporting Information), fewer
proteins can meet such a stringent requirement.
To understand how well results match between PEP and

PSP, we presorted the files in a similar order (that is, in des-
cending order of poor cluster scores, followed by mod cluster
scores).
Since the complexes will not match completely, we find the

best similarity (max Jaccard score or J score) of at least 10%
similarity for each PSP complex to PEP complex. The reason is
because PEP clusters are built using the clique percolation
method19 where similar or overlapping groups are merged and
hence are more likely to be unique.
PEP ranks and PSP ranks obeyed a linear correlation (p-val =

0.00058) and the adjusted fit is acceptable (adjusted R-squared =
0.5) (Figure 3). This imperfect correlation is not unexpected
given how methodologically different the two methods are.
Table 3 shows the best-matched PEP clusters ranked by the J

score. As mentioned earlier, the third best cluster reported in
PSP corresponds closely to PEP’s DNA damage cluster
comprising of XRCC6, PCNA, PRKDC, WRN, XRCC5 and
PARP1. As previously reported, XRCC5/6, and PCNA and
PARP1 are repair factors, while WRN is a nuclear protein that
could be involved in maintaining genomic stability. PRKDC is a
protein kinase that is capable of targeting p53 (and we did find

Table 2. Top Ranked GO BP Terms Found in Significant
Clusters

GO ID description
no. of
clusters

GO:0016032 viral reproduction 36
GO:0000398 nuclear mRNA splicing, via spliceosome 34
GO:0000278 mitotic cell cycle 28
GO:0000084 S phase of mitotic cell cycle 28
GO:0006366 Transcription from RNA polymerase II promoter 26
GO:0006283 Transcription-coupled nucleotide-excision repair 22
GO:0006369 Termination of RNA polymerase II transcription 22
GO:0006284 base-excision repair 21
GO:0000086 G2/M transition of mitotic cell cycle 21
GO:0000079 regulation of cyclin-dependent protein kinase

activity
20

GO:0010833 Telomere maintenance via telomere lengthening 20
GO:0033044 regulation of chromosome organization 19
GO:0006200 ATP catabolic process 18
GO:0042475 Odontogenesis of dentine-containing tooth 18
GO:0034138 toll-like receptor 3 signaling pathway 17
GO:0006915 Apoptosis 17
GO:0006271 DNA strand elongation involved in DNA

replication
17

GO:0031145 anaphase-promoting complex-dependent
proteasomal ubiquitin-dependent protein
catabolic process

17

GO:0006261 DNA-dependent DNA replication 17
GO:0048015 phosphatidylinositol-mediated signaling 16
GO:0006986 Response to unfolded protein 16
GO:0000077 DNA damage checkpoint 16
GO:0008063 Toll signaling pathway 16
GO:0043488 regulation of mRNA stability 16
GO:0006338 chromatin remodeling 16
GO:0002756 MyD88-independent toll-like receptor signaling

pathway
16

GO:0000216 M/G1 transition of mitotic cell cycle 16
GO:0071103 DNA conformation change 16
GO:0000724 double-strand break repair via homologous

recombination
16

GO:0034142 toll-like receptor 4 signaling pathway 16
GO:0010212 Response to ionizing radiation 16
GO:0051301 cell division 15
GO:0006333 chromatin assembly or disassembly 15
GO:0071445 cellular response to protein stimulus 15
GO:0002755 MyD88-dependent toll-like receptor signaling

pathway
14

GO:0043487 regulation of RNA stability 14
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p53 in a larger but lower scoring variant of this cluster), and
this was found to be differentially expressed in a majority of
poor patients (5 out of 7). The repair factors were all low
count, between 1 to 2 patients each. In PEP, we proved that
even if patients report different proteins, they are likely to be
linked directly to a seed, or situated in the same community as a
seed and thus can be recovered by clustering the expanded
neighborhood around the seed. In PSP, this was taken to a
higher level where we did not consider seeds, but we found that
patients expressed proteins that tend to be localized to certain
complexes or submodules anyway (similar contexts).
Other top ranking clusters in PEP were also found highly

ranked in PSP. For example, cluster comprising ACTR2,

ACTR3, ARPC4 and ARPC5; RAN, RCC1, XPO1 and
RANBP3; FUS, PTBP1, SFPQ and ZMYM2 were all found
in the top 30 ranks of their corresponding PSP best match.

Using PSP with Predicted Clusters from PPIN

It was unsurprising that the CORUM-derived cluster vector
performs better than the use of graphlet-derived clusters
(73 clusters) alone as the former contains many more clusters
(523 complexes). As the number of graphlet-derived clusters is
only 73, it lacks sufficient information on its own to properly
group our cancer patients. Indeed, it was found that it was less
powerful (lower AU scores) in resolving poor and moderate
patients although the tree structure was on the whole still stable
(Figure 2, left column).
To investigate if there are significant overlaps between the

information captured in CORUM and the graphlet-derived
clusters, we checked the Jaccard distance between all clusters in
both groups. The Jaccard distance is a measure of similarity
between two groups by comparing their intersection divided
over the union. At Jaccard threshold 0.9, that is, at least 90%
similarity, only one graphlet-derived cluster from was dropped.
When we relaxed the Jaccard threshold to 0.6, we still kept
about 69 out of 75 graphlet-derived clusters. This suggests that
the graphlet-derived clusters are quite distinct from the
CORUM complexes and encapsulates a different set of infor-
mation that is potentially interesting.
Seventeen out of 72 graphlet-derived clusters were identified as

significant (24%). This is comparable to 30% from CORUM com-
plexes. This suggests that there might be a slight bias to hit only real
complexes. This also brings the total number of significant PSP
complexes to 176.
Hence we merged the 72 graphlet-derived clusters (based on

0.9 Jaccard distance threshold) and the 523 CORUM
complexes to be compared against the Paragon data set in
the final and functional analysis. We find that the HCL tree
generated from the merger (Supplementary Figure 2,
Supporting Information) is identical to that of Paragon with
CORUM clusters (Figure 2 bottom right). However, the
approximately unbiased (AU) p-value dropped slightly. This is
not surprising since the larger number of dimensions may give
rise to more noise but, in turn, increase the number of potential
clusters that could be implicated in cancer. CORUM com-
plexes, while extensive, are likely to contain gaps in information
that could be supplemented by the graphlet-derived clusters.
Hence, for functional downstream analysis, we used Paragon
with the cluster vector comprising both CORUM complexes
and graphlet-derived clusters.
In any case, PSP can confidently resolve the patient groups

even in the event where very few dimensions are available
(using only graphlet-derived clusters) although it would be
preferable in such a situation to use a database search algorithm
that returns more protein hits such as Paragon. This suggests
that PSP can be used in instances where only a reference PPI
network and very little complex information are available.

■ DISCUSSION

Here in this study, we describe a novel in silico method to
functionally characterize proteome-wide data related to HCC
progression by doing without predefined data thresholds on the
reported protein list. Early thresholding of MS-generated
proteomic data may result in a decreased volume of crucial
information for statistical and biological interpretation. To yield
potentially useful interpretations, we avoided the use of analysis

Figure 3. Ranks correlation between PEP and PSP. Although PEP and
PSP clusters were derived from very different methods, it can be seen
that their results correlate well. To reduce the level of noise, we
required a Jaccard score of at least 0.1 (10% similarity).

Table 3. - Best matching PEP clusters

PEP
rank

PSP
rank J score members (as in PEP)

41 104 0.4 DHX9 SMN1 DDX20 GEMIN4 SMN2
SNRPB SIP1

23 17 0.333333333 COL1A2 CD36 ITGB3 ITGA2B
9 1 0.25 XRCC6 PCNA PRKDC WRN XRCC5

PARP1
20 134 0.25 PRKDC XPA RPA1 RPA2
11 20 0.222222222 ACTR2 ACTR3 ARPC4 ARPC5
40 147 0.222222222 PRKCD RAF1MAPK1 PRKCZ

PEBP1MAP2K1
16 1 0.2 XRCC6 PCNA PRKDC TP53 WRN

NCOA6 XRCC5 PARP1
34 74 0.1875 MAP3K14 CHUK MAP3K7 PEBP1

IKBKB
4 33 0.142857143 FUS PTBP1 SFPQ ZMYM2
5 88 0.142857143 YWHAB HSP90AB1 IKBKB MAP3K3
22 30 0.142857143 CANX ITGA6 ITGB1 CD82
43 137 0.133333333 GSN AR CASP3 PXN BCAR1 FYN
1 77 0.125 YWHAQ HSPA1A HSPA8 YWHAG
2 0 0.125 TP53 NPM1 NCL PARP1
12 77 0.125 SET APEX1 GZMA HMGB2
13 23 0.125 RAN RCC1 XPO1 RANBP3
52 162 0.125 PRKCD EP300 CREBBP KLF5
57 147 0.125 PRKACA RAF1 BAD BCL2
61 74 0.117647059 AKT1 IRS1 PRKCQ CHUK IKBKB
27 147 0.111111111 YWHAZ RAF1 CDC25A MAP3K5

YWHAE
31 77 0.111111111 HSPA1A BAG1 STUB1 HSPA8 HSF1
65 147 0.111111111 RAF1 AR HSP90AA1MAPK1 NR3C1
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thresholds at this level, instead opting to generate a PSP using
our cluster vector.
Importantly, since PSP does not rely on fold change ratios

and patient selection a priori and utilizes several lines of
evidence including protein complexes and biological networks,
we implicated dysregulated DNA repair and immune-evasion as
two important mechanisms in the transition of moderate-stage
HCC to poor-stage HCC characterized by poor survival
prognosis in our patient set.
Although we are not able to follow up on mod patient #203,

the results from PSP revealed fundamental weaknesses in
relying solely on histopathological classifications. Compared to
clinical staging, for example, TNM Classification and
Barcelona-Clinic Liver Cancer (BCLC) staging which is often
hampered by surgeon-to-surgeon subjectivity, heterogeneity of
HCC (including borderline cases) and poor qualification,
molecular signatures are objective, specific to cancer types and
our results here demonstrate that PSP can deliver unprece-
dented characterization of HCC tumors at a medically relevant
level.
Although mod patient #203 may be an anomaly, PSP results

are stable even when performed using different protein pre-
diction algorithms or when using predicted clusters and real
protein complexes. Furthermore, with the exception of mod
patient #203 and given that clustering approaches do make
errors due to incomplete information, its performance is
acceptable for classifying patients by their molecular signatures.

The Use of Both CORUM and Graphlet-derived Clusters in
the Cluster Vector

The drop in p-value for the cluster vector comprising CORUM
and graphlet-derived clusters is not unexpected. Given the
larger number of dimensions included, the more likely that
some dimensions might be noise/irrelevant despite controlling
for biological coherence of the graphlet-derived clusters via the
loc_score. Hence, it may be by sheer chance that some patients
(of different phenotypes) scored identically on these irrelevant
dimensions, contributing to the slight fall in p-value. It does
however justify the use of our SNet-based approach for feature
selection, such that analysis is focused only on significant
clusters.
A second point is that graphlet-derived clusters are very

different from CORUM complexes. As reported, at the mini-
mum Jaccard score of 0.9, only one graphlet-derived cluster was
dropped. This did not change significantly as the Jaccard score
threshold was lowered to 0.6. Hence, it is more likely that
graphlet-derived clusters capture different biological informa-
tion from CORUM clusters and are therefore potentially
interesting.

Fundamental Differences between PSP and PEP and How
They Complement Each Other

We showed that the ranked results from PSP correlated well
with PEP even though they are extremely different techniques.
PEP is dependent on the quality of the reference PPIN but

produces clusters that are generally larger and more likely to
contain novel interactions. It requires the initial definition of
seeds, which means that it begins with a large loss of data,
which is attenuated by the expansion and clustering phase.
PSP only considers whether a protein is detected or not, and

uses this information to first establish a vector of hit rates to
define the patient’s signature profile. The vector is limited on
current knowledge of complexes, in which the exact binding
configuration needs not be well-defined. Although there is

substantially more knowledge on human complexes, it is by no
means complete. To boost the information contained in the
cluster vector, CORUM can be supplemented via the
partitioning of the reference network into biologically coherent
submodules.
We opted to use the graphlets approach in this paper because

it has been shown to be effective in identifying clusters based
on topological similarity.15 Although it gives rise to a small
number of topologically coherent subnets, which may or may
not be real, we found that there was only a slight propensity to
report real complexes as significant. In the current literature,
there exists a multitude of clustering algorithms that could
also be utilized to generate a more exhaustive list of predicted
clusters. However, in this instance, using one clustering ap-
proach is sufficient to demonstrate the potential of this
approach in enriching PSP’s cluster vector.
The top-ranked clusters in both PEP and PSP are well

matched given the surprisingly good correlations between the
ranks of similar clusters. However, we also note that the
complexes in PEP and PSP have a generally modest overlap.
The best match is only about Jaccard score 0.4. Since PSP
reports known and generated complexes whereas PEP identifies
novel clusters based around seeds, matched clusters based on
similarity should therefore be analyzed closely in a comple-
mentary manner. This should be a good way to discover pre-
viously unreported or novel cluster members that make for
interesting biological interpretations.

Why the PSP Approach Is More Powerful and Sensitive

PSP is a very powerful technique because first, it is not
constrained by the use of thresholds on the reported protein
list, which is arbitrarily defined by the analyst. Instead, it uses all
the information provided from the proteomics screen. It also
does not use the average expression ratios of any given protein
because that is likely misleading in a small sample set, especially
for proteins supported by only two to three patients, or if the
protein expression levels swing from low to high in different
patients.
Second, it is less reliant on the reference network in which

noise levels and false negative levels are not known. Instead, it
uses biologically rich data sources such as complexes. It is also
expandable to incorporate information from network partitions
as we had done with the derivation of graphlet-derived clusters.
Although we found that the sole use of graphlet-derived clusters
gave poorer result, it was due to the small number of clusters.
The results are improved by using a more sensitive protein
search algorithm such as Paragon. The third important
advantage of PSP is that by generating the signature profiles
for each patient, it allows the generation of a matrix on which
systematic analysis can be applied. As seen here, we showed
that the poor and mod patients segregate well. We also discover
a single mod-stage patient who is anomalous, and would skew
the analytical results by virtue of the small sample size. PSP’s
signature-based methodology will be able detect this. We have
also developed a feature selection method on which to identify
clusters that are significantly different in the moderate and poor
phase.

Possible limitations of PSP

PSP is dependent on the quality and quantity of the cluster
vector. As seen under Results, PSP performs relatively poorer in
its ability to resolve moderate and poor patients using only the
73 graphlet-derived clusters although performance is greatly
improved by using Paragon instead of Mascot. The obvious

Journal of Proteome Research Article

dx.doi.org/10.1021/pr200698c | J. Proteome Res. 2012, 11, 1571−15811579



difference being that Paragon is more sensitive. Our previous
analysis showed that Paragon and Mascot correlated well in
both ranks and reported ratios for the same proteins.2 In
addition, most Mascot proteins are also found in Paragon. The
extra proteins reported in Paragon, however, are of lower
confidence. That is, their ranks are significantly lower than
expected by chance.2

On the other hand, although we used 523 CORUM
complexes, there might be some redundancy. Some CORUM
complexes are quite similar, with high overlaps with each other
(results not shown). However, we elected not to merge these
given that the merged clusters would be arbitrary and not
reflective of a true biological unit. A second problem with
CORUM complexes is that they do not encompass the entire
protein network. Although we demonstrate how to improve
this shortcoming by supplementing the cluster vector with
graphlet-derived clusters, the “representative” cluster vector,
encompassing maximal biological information, is probably not
attainable.
We do know that the cluster vector derived using CORUM

complexes gives very significant resolution in segregating mod
and poor patients. Despite veering far from conventional
methods, it produced results that are congruent with what is
known about liver cancer, and correlates very well with PEP,
which is closer to current conventional approaches.
Since we did not use any kind of thresholds to filter proteins

in PSP, the effects of false-positive proteins are a legitimate
concern. This is especially so on big protein complexes, because
a big complex encompasses more proteins and so has a higher
likelihood to be hit by false-positive proteins. However, this is
mitigated as elaborated below:
The score of a complex with regards to a patient is based on

hit rate, which is the percentage of proteins in the complex that
got hit and not by an absolute count of the proteins that got hit.
Suppose the chance of an individual protein being false positive
in any patient (regardless of phenotype) is r%. And suppose a
complex has n proteins. Then the expected hit rate of this
complex in any patient (regardless of phenotype) due to false-
positives is (n × r%)/n = r%. Thus the contribution to the hit
rate of a complex with regards to any patient (regardless of his
phenotype) by false-positive proteins is “independent” of the
size of the complex. It follows that the t-score of a complex is
unaffected by false-positive proteins. Since each randomized
sample (for obtaining the null distribution for p-value
calculations of whether a complex is significant) is obtained
by class-label swapping, the hit rate of a complex with respect to
this randomized sample also contains the same r% contribution
by false-positive proteins. Therefore, the t-score of a complex
with respect to randomized samples is also unaffected by false-
positive proteins. Thus the r% increase in hit rates of protein
complexes due to false-positive proteins is not expected to lead
to an increase in false-positive protein complexes. Similarly,
since the clustering distance between a pair of PSPs is based on
hit rates (and not on which proteins in a complex are hit), the
uniform r% contribution by false-positive proteins to the hit
rates of complexes does not change this clustering distance.
Therefore, the false-positive proteins are not expected to affect
the hierarchical clustering of PSPs.
There is, however, an important caveat to the reasoning

above. Let u and v respectively be the actual hit rate (i.e., not
due to false-positive proteins) of a complex in positive and
negative phenotypes. Suppose u + r% and v + r% both exceed
100%. Then the observed hit rates (i.e., due to both true-positive

proteins and false-positive proteins) of a complex in positive
and negative phenotypes would both be 100%. In such a case,
the t-score of this complex is 0, regardless of whether this
complex is significant, leading to a loss of sensitivity in our
procedure. Similarly, this complex’s contribution to the clustering
distance of any pair of PSPs would become 0, causing a loss of
resolution in our hierarchical clustering procedure. In general,
whenever |u − v| > | min(u + r%, 100%) − min(v + r%, 100%)|,
there would be a loss of sensitivity and resolution. Hence a large
value of r can have a negative impact on our analysis procedures,
especially when the complexes involve have high actual hit rates.
Although theoretically, pathways could also be used as cluster

vectors for PSP, there might be many limitations. We expect
PSP to work well with small pathways but for pathways that are
too large, the extra proteins would confound the significance
testing. For example, in gene expression analysis, GSEA often
indicates a pathway as insignificant. Yet, when a subnetwork
identified using SNet from the same pathways is fed to GSEA,
the results become significant. One possible way to get around
this is to extract likely subnets from pathways; however, there is
no straightforward way to perform this.

■ CONCLUSIONS
We introduce a novel contextualization proteomics approach
that does away with thresholding at the protein list level and
apply it to a case study on liver cancer. We compared the
results to our analytical pipeline PEP and found that the results
correlated well. Unlike PEP and other network-based method,
PSP can deal with both coverage and consistency issues in pro-
teomics. GO term analysis also indicates that the threshold-free
approach select clusters that play integral roles in cancer. The
PSP approach revealed many more potential clusters than PEP
and is not constrained by any prior arbitrary filtering which is a
common first step in conventional analytical approaches.
As PSP only considers whether a protein is present or not in

a sample, it also should mean that it could be generalized for
multiphase comparisons. For example, mixing data from
different cancers and establishing which clusters are differential.
This is likely useful for discovering cancer-type-specific complexes
from which biomarkers could be derived and developed.
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