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Abstract
Direct chemical modifications of helical peptides have provided a simple and effective means to
‘translate’ the bioactive helical peptides into potential therapeutics targeting intracellular protein-
protein interactions. Previously, we have shown that the distance-matching bisaryl cross-linkers
can reinforce peptide helices containing two cysteines at the i.i+7 positions and confer cell
permeability to the cross-linked peptides. In this work, we report the first crystal structure of a
biphenyl cross-linked Noxa peptide in complex with its target Mcl-1 at a 2.0 Å resolution. Guided
by this structure, we remodeled the surface of this cross-linked peptide through side chain
substitution and N-methylation, and obtained a pair of cross-linked peptides with substantially
increased helicity, cell permeability, proteolytic stability, and cell-killing activity in Mcl-1-
overexpressing U937 cells. The success of this structure-based design of Mcl-1 inhibitors
underscores the value of synergistic use of multifaceted modifications in developing peptide-based
therapeutics.

BH3-only proteins are pro-apoptotic factors that induce cell death through selective binding
to anti-apoptotic Bcl-2 family proteins.1 In a majority of cancers, the interactions between
pro-apoptotic BH3 proteins and anti-apoptotic Bcl-2 family proteins are deregulated because
of the elevated expression of some Bcl-2 proteins such as Bcl-2, Bcl-xL, and Mcl-1,2 which
not only contributes to cancer progression but also renders cancer cells resistant to chemo-
and radiotherapies.3 Therefore, a proven strategy in cancer therapeutic development is to
design BH3 mimics as selective Bcl-2 inhibitors.4 To this end, two approaches have been
successfully employed: (i) use of small molecules to mimic BH3 peptide side chains
involved in binding,5 and (ii) chemically modify BH3 peptides to improve their
pharmaceutical properties.6 In the former, a potent small-molecule Bcl-2 inhibitor,
ABT-737, was designed;7 ABT-737 binds tightly to Bcl-2 and Bcl-xL with subnanomolar
affinity but poorly to Mcl-1.8 In the latter, the chemically modified BH3 peptides containing
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α/β-amino acid backbones, 9 side chain cross-linking, 10 and main chain-to-side chain cross-
linking11 have been reported to show improved cell permeability and/or serum stability.

Mcl-1 is a member of Bcl-2 family that undergoes frequent somatic amplification in
multiple cancers and functions as a key driver of cancer cell survival.12 Although small-
molecule Bcl-2-selective inhibitors, e.g. ABT-263, have entered clinical trials, these agents
generally lack efficacy in tumors with elevated levels of Mcl-1.13 Since a NoxaB-(75-93)-
C75A peptide derived from BH3-only Noxa protein binds to Mcl-1 with high affinity and
selectivity,14 an attractive approach to develop Mcl-1-selective inhibitors is to optimize the
pharmaceutical properties of Noxa BH3 peptide. Recently, we have reported a new
dicysteine alkylation-based side chain cross-linking chemistry using a pair of distance-
matching bisaryl cross-linkers that lead to reinforced peptide helices and improved cellular
uptake.15 Herein, we report the first crystal structure of a biphenyl cross-linked Noxa BH3
peptide in complex with Mcl-1, and subsequent design of a pair of proteolytically stable,
cell-permeable, peptide-based Mcl-1 inhibitors by combining structure-based peptide side
chain cross-linking with peptide surface remodeling.

To apply our cysteine-mediated cross-linking chemistry to NoxaB-(75-93)-C75A peptide
(referred to as Noxa peptide hereafter), we replaced two solvent-exposed i,i+7 residues
(Gln-77 and Lys-84) in Noxa with either D- or L-cysteine, and subjected the 19-mer peptide
to the 4,4′-bisbromomethyl-biphenyl (Bph)-mediated cross-linking (see Table S1 in
Supporting Information for peptide characterizations). The inhibitory activities of the cross-
linked peptides were then evaluated by a competitive fluorescence polarization (FP) assay.
Compared to parent Noxa peptide, the Bph-cross-linked peptides 1 and 2 showed 65-fold
and 12-fold increase in inhibitory activity, respectively (Table 1). To verify that the Mcl-1
targeting selectivity remains intact after cysteine substitution and subsequent side chain
cross-linking, the N-terminal fluorescein-conjugated, Bph-cross-linked Noxa peptides, Fl-1
and Fl-2, were prepared and their binding affinities toward Mcl-1 and Bcl-xL were measured
by FP assay. Gratifyingly, the modified Noxa peptides showed comparable nanomolar
binding affinity toward Mcl-1 (Kd = 4.9 ± 1.5 nM for Fl-1 and 3.4 ± 0.2 nM for Fl-2 vs. 6.7
± 1.0 nM for Noxa) but no measurable affinity toward Bcl-xL (Kd > 1,000 nM) similar to
Noxa, indicating >200-fold selectivity towards Mcl-1. As a control, the BH3 domain of the
BH3-only protein Bim showed essentially equal potency toward Mcl-1 and Bcl-xL in the
same assay (Table S3). To our surprise, similar to the parent Noxa peptide, the cross-linked
Noxa peptides 1 and 2 showed no activity in a cell viability assay in which the Mcl-1-
overexpressing U937 cells were treated with 20 μM of the peptides for 48 hours, suggesting
that Bph-mediated side chain cross-linking is inefficient to allow sufficient cytosolic
transport.

To gain a structural understanding of how the cross-linked Noxa peptide binds to Mcl-1, we
solved the crystal structure of mouse Mcl-1 (mMcl-1) in complex with 2 by molecular
replacement. The structure was refined to 2.0 Å resolution with Rcryst = 19.2% and Rfree =
23.9% (see Table S2 for crystal data and structural refinement). Overall, the Mcl-1 subunit
in the complex is superimposable with mMcl-1 NMR structure 2JM6 with RMSD of 1.2 Å
(Figure S2) and rat homolog 2NLA with RMSD of 0.6 Å.14 The bound peptide 2 adopts a
helical conformation, with Bph cross-linker projecting 90º away from the deep hydrophobic
binding groove (Figure 1a). Compared to 2JM6, most of the interactions between Noxa and
mMcl-1 were maintained, including the hydrophobic interactions between the side chains of
three canonical resides (Leu-4, Ile-7, and Val-11) of Noxa and their respective hydrophobic
binding pockets on mMcl-1 formed partly by Val-216, Val-220, Phe-228, Leu-267, and
Phe-270; the salt bridge between Noxa Asp-9 and mMcl-1 Arg-244; the hydrogen bonding
between Noxa Asn-19 side chain and mMcl-1 backbone amide oxygen of Phe-299. A few
hydrogen bonds are formed only in the mMcl-1:2 complex, i.e. between Asp-9 and mMcl-1
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Asn-241 side chains, and between Arg-5 side chain and mMcl-1 His-233 and Val-234
backbone. In addition, Bph cross-linker makes an edge-to-face π-π interaction with His-205
of mMcl-1 (Figure 1a). Collectively, these new interactions may be responsible for the 12-
fold increase in inhibitory activity observed in the competitive FP assay. When cross-linked
peptide 2 was superimposed with linear Noxa peptide in 2JM6, significant changes in side-
chain orientations in 2 were observed for the solvent-exposed, positive-charged residues
(Figure 1b). For example, Arg-6 side chain disengages from the salt bridge with Asp-238 of
mMcl-1 and re-orients toward the Bph cross-linker; Arg-14 becomes completely solvent
exposed as the salt bridge with mMcl-1 Gly-308 carboxyl terminus was not detected; and
Lys-16 side chain disengages from the salt bridge with Noxa Met-20 carboxyl terminus due
to the Noxa peptide truncation. Taken together, they suggest that these three solvent-
exposed, positive-charged residues can be replaced without the loss of binding affinity
toward Mcl-1.

Since molecules with large polar surface areas generally show poor passive membrane
permeation,16 we hypothesized that by substituting the solvent-exposed charged residues
with neutral ones, we could substantially improve cell permeability of the cross-linked Noxa
peptides, leading to increased cellular activity. Accordingly, we replaced the three non-
essential residues (Arg-6, Arg-14, and Lys-16) in 2 with Ala to obtain the cross-linked
peptides 3-5, and assessed their inhibitory activities against Mcl-1 using competitive FP
assay and their cell-killing activities in U937 cells using ATP assay (Table 1). To our
satisfaction, roughly twofold increase in inhibitory activity was observed after Ala-
substitution. More importantly, we observed progressive increases in cellular activity as the
net charge decreased from +3 to 0, with only 44% U937 cells remained viable after
treatment with 20 μM of the charge-neutral cross-linked peptide 5. This implies that the
charge-neutral peptide surface facilitates cytosolic transport of the cross-linked peptides,
presumably through passive membrane diffusion. While peptide 5 still carry two charged
residues, Arg-5 and Asp-9, which contribute to Mcl-1 binding (Figure 1a), it is tempting to
speculate that they may form an internal salt bridge in the lipid bilayer during membrane
transport because of their favorable i/i+4 geometry.

Encouraged by the initial Arg/Lys-to-Ala substitution results, we sought to further reduce
the number of polar groups on peptide surface in order to maximize the passive membrane
diffusion. In this regard, a proven modification is backbone N-methylation, especially for
the N-H groups that are not involved in the intramolecular hydrogen bonding.17 For the N-
acyl-capped helical peptides, the first three N-terminal N-H groups are typically not engaged
in the intramolecular hydrogen bonding because of the lack of preceding carbonyl groups
one helical turn away. Careful examination of the Mcl-1:2 complex structure revealed that
the first two Ala N-H are solvent-exposed while the 3rd residue D-Cys N-H forms a
hydrogen bond with the capping acetyl group (H···O distance = 2.20 Å) (Figure S2c).
Therefore, we substituted the N-terminal Ala with N-methyl-Ala to generate the cross-linked
peptides 6-8, and compared their inhibitory activities to that of their parent peptide (Table
1). We found that addition of two N-methyl groups afforded higher activities both in the FP
assay and in the cell viability assay (compare 7 to 2; 8 to 5). In particular, Bph-cross-linked
peptide 8 containing two N-methyl groups in addition to three Ala substitutions showed the
most robust activity in cell culture: only 35% cells remained viable after treatment with
peptide 8 for 48 hours (Table 1). A subsequent concentration-dependent ATP assay with
U937 cells for peptide 8 gave rise to an EC50 value of 13.4 μM (Figure S3).

To probe the effect of chemical modifications on the peptide secondary structure, we
performed far-UV CD measurement and determined the helicity for cross-linked Noxa
peptides 1, 2, 5, 7, and 8 along with the linear Noxa peptide (Figure 2). It is evident that all
Bph-cross-linked peptides showed higher helicity than the linear Noxa peptide. Replacing
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the three positive-charged residues with Ala in the cross-linked peptides led to more than
twofold increase in helicity (compare 5 to 2), presumably due to stronger helix propensity of
Ala relative to Arg and Lys.18 Addition of two N-methyl groups at the N-terminus appears
to destabilize the helix (compare 7 to 2);19 however, the Ala-substituted, cross-linked
peptide 8 seems to tolerate N-methylation to some extent (compare 52% helicity for 8 vs.
66% for 5).

To confirm that the increased cellular activity was a result of improved cytosolic transport,
we prepared the fluorescein-labeled Bph-cross-linked peptides Fluo-2, Fluo-5, and Fluo-8,
together with Fluo-Noxa (Table S1). The uptake of these cross-linked and linear peptides
into HeLa cells at both 37 °C and 4 °C were analyzed by fluorescence activated cell sorting.
We expect that at 4 °C, the energy-dependent active transport processes, e.g. pinocytosis
previously reported to be a major membrane permeation pathway for the side chain cross-
linked peptides20 will be inhibited, while the passive membrane diffusion will remain
unaffected. Not surprisingly, we observed that Bph-mediated cross-linking enhances peptide
cellular uptake by 26–40-fold at 37 °C and by 7–33-fold at 4°C (compare Fluo-2, -5, -8 to
Fluo-Noxa in Figure 3b, 3c). However, the effect of temperature switch from 37 °C to 4 °C
varies; the +3 charged, cross-linked peptide 2 showed 82% reduction whereas the Ala-
substituted, charge-neutral cross-linked peptides showed much smaller reduction (48% for 5
and 45% for 8). The dramatic reduction in cellular uptake of Fluo-2 indicates that peptide 2
permeates into cells mainly through the energy-dependent endocytotic process, resulting in
endosome trapping. On the other hand, the smaller reductions for 5 and 8 indicate that
passive membrane diffusion represents a major pathway for the uptake of 5 and 8 because of
their favorable physicochemical properties including neutral charge, reduced number of
polar groups on their surfaces, and overall higher helicity. To confirm that the cross-linked
peptides 5 and 8 are localized in the cytosol and not bound to the cell membrane, a confocal
microscopy experiment was carried out. We found that the fluorescent peptides were
predominantly localized in the cytosol (Figure S4).

One of the key benefits of peptide side chain cross-linking is the improved proteolytic
stability. To test this, we selected the most potent Bph-cross-linked peptides 5 and 8 and
compared their proteolytic stability to that of the parent Noxa peptide in the presence of
chymotrypsin, trypsin, and mouse serum (Figure 4). In all three conditions, the cross-linked
peptides 5 and 8 exhibited greatly improved proteolytic stabilities compared to the linear
Noxa peptide, 7.2- and 8.7-fold improvement in half-life (t1/2) against chymotrypsin, and
8.9- and 14.8-fold improvement against trypsin, respectively. The higher stability of 5
relative to 8 can be attributed to its higher helicity (66% vs. 52%). The most dramatic effect
was seen with mouse serum where the linear Noxa peptide showed a half-life of only 10.5 ±
2.3 min while the cross-linked peptides 5 and 8 showed half-lives of 31.6 ± 2.2 h and 21.2 ±
2.6 h, representing 180- and 121-fold increase in stability, respectively. This prolonged
stability may be also partly due to the presence of the hydrophobic biphenyl cross-linker in 5
and 8, which facilitates sequestration/protection of the Bph-cross-linked peptides by serum
albumin proteins.21

In conclusion, we have solved the first crystal structure of a biphenyl-cross-linked peptide in
complex with its target Mcl-1. Similar to what was observed in the crystal structures
involving the hydrocarbon cross-linkers,22 the biphenyl-cross-linker made an edge-to-face
π-π interaction with His-205 of Mcl-1, potentially contributing to the tighter binding. With
the structural insights, we then successfully remodeled the surface of the cross-linked
peptide through residue substitution and backbone N-methylation, and obtained a pair of
cross-linked peptides with greatly increased helicity, cell permeability, proteolytic stability,
and cell-killing activity in Mcl-1-overexpressing cancer cells. While side chain cross-linking
has become a major strategy for translating bioactive helical peptides into potential
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therapeutics targeting the intracellular protein-protein interactions,23 the work presented
here illustrates the subtlety of each system and highlights the value of complementary
peptide modification chemistries, e.g. N-methylation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Crystal structure of mouse Mcl-1 in complex with Bph-cross-linked Noxa-BH3 peptide 2.
(a) Overall complex structure. The peptide and the side chains of three canonical
hydrophobic residues of peptide 2, Leu-4 (h2), Ile-7 (h3) and Val-11 (h4), are colored in
deep teal. The two flexible loops, Gly-1733Gly-187 (in the front; shown in dashed line) and
Leu-2163Val-224 (in the back; not shown), are disordered in the electron density maps. (b)
A stereo view of the superimposition of Bph-cross-linked peptide 2 (yellow-colored stick
model) with mNoxa-BH3 peptide (green-colored stick model) as seen in 2JM6. The BH3-
binding pocket of mMcl-1 is rendered in surface model.
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Figure 2.
CD spectra of the Bph-cross-linked and linear Noxa peptides and their calculated percent
helicity values. The peptides were dissolved in ACN/H2O (1:1) for a final concentration of
50 μM. The percent helicity was calculated based on [θ]222 value.
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Figure 3.
Flow cytometry analysis of HeLa cells after treatment with 10 μM fluorescein-labeled
peptides, Fluo-Noxa, Fluo-2, Fluo-5, and Fluo-8. (a) Structure of Fluo-8; (b) Representative
flow cytometry histogram at 37°C and 4°C; (c) Bar graph showing normalized relative
fluorescence: filled bar = 37°C; open bar = 4°C.
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Figure 4.
Proteolytic stability of the linear and Bph-cross-linked Noxa peptides in the presence of (a)
chymotrypsin (ChT), (b) trypsin, and (c) mouse serum. A zoom-in view of the degradation
plot for the linear Noxa peptide is shown on the right in (c). The calculated half-life (t1/2)
values for the various peptides are given in (d).
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Table 1

Sequence and biological activities of the native and chemically modified Noxa BH3 peptides.

Name Sequencea Charge FP assayb Ki (nM) Cell viabilityc (%)

Noxa AAQLRRIGDKVNLRQKLLN +4 648±128 97.6±0.9

1 AAC′LRRIGDC′VNLRQKLLNd +3 10±1 98.6±4.0

2 AAc′LRRIGDC′VNLRQKLLNe +3 54±14 100.3±0.2

3 AAc′LRAIGDC′VNLRQKLLN +2 23±8 85.9±2.2

4 AAc′LRAIGDC′VNLAQKLLN +1 28±11 72.9±3.2

5 AAc′LRAIGDC′VNLAQALLN 0 29±4 44.3±0.2

6 AmAc′LRRIGDC′VNLRQKLLNf +3 32±3 87.3±2.8

7 AmAmc′LRRIGDC′VNLRQKLLN +3 22±4 80.5±4.7

8 AmAmc′LRAIGDC′VNLAQALLNg 0 22±8 34.8±0.5

a
Peptides with N-terminal Ala were acetylated while those with N-terminal N-methyl-Ala (Am) were capped with methoxycarbonyl (Moc); all

peptides were amidated at the C-termini.

b
Competitive fluorescence polarization (FP) assay was performed three times to derive average IC50 values along with standard deviations.

c
Cell viability was measured with ATP assay by treating Mcl-1-overexpressing U937 cells (cultured in RPMI1640 supplemented with 5% FBS)

with 20 μM peptides for 48 hours.

d
C′ denotes Bph-linked L-cysteine.

e
c′ denotes Bph-linked D-cysteine.

f
Am = N-methyl-alanine

g
The structure of 8 is shown as follows:
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