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Abstract
This is the first paper in a two-part series in which we develop, analyze and simulate a diffuse
interface continuum model of multispecies tumor growth and tumor-induced angiogenesis in two
and three dimensions. Three dimensional simulations of nonlinear tumor growth and
neovascularization using this diffuse interface model were recently presented in Frieboes et al.
(2007), but that paper did not describe the details of the model or the numerical algorithm. This is
done here. In this diffuse interface approach, sharp interfaces are replaced by narrow transition
layers that arise due to differential adhesive forces among the cell-species. Accordingly, a
continuum model of adhesion is introduced. The model is thermodynamically consistent, is related
to recently developed mixture models, and thus is capable of providing a detailed description of
tumor progression. The model is well-posed and consists of fourth-order nonlinear advection-
reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with reaction-
diffusion equations for the substrate components. We demonstrate analytically and numerically
that when the diffuse interface thickness tends to zero, the system reduces to a classical sharp
interface model. Using a new fully adaptive, nonlinear multigrid/finite difference method the
system is simulated efficiently. In this first paper, we present simulations of unstable avascular
tumor growth in two and three dimensions and demonstrate that our techniques now make large-
scale three dimensional simulations of tumors with complex morphologies computationally
feasible. In Part II of this study, we will investigate multispecies tumor invasion, tumor-induced
angiogenesis and focus on the morphological instabilities that may underlie invasive phenotypes.
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1 Introduction
The morphological evolution of a growing solid tumor is the result of many factors,
including cell-cell and cell-matrix adhesion, mechanical stress, cell motility, and the degree
of heterogeneity of cell proliferation just to name a few (Alberts et al., 2002). According to
recent experimental and theoretical work (Cristini et al., 2005; Anderson et al., 2006;
Macklin and Lowengrub, 2006; Frieboes et al., 2007; Gatenby et al., 2007), understanding
the morphological stability of a cancerous tumor may be important for controlling its spread
to surrounding tissue. In addition, the spatial and temporal distribution of oxygen and vital
nutrients, the genetic predisposition to apoptosis, necrosis and cell-to-cell survival signaling,
and the cell population genetic diversity all have an important effect. For instance, if cell-
cell adhesion is uniformly high, it is expected that the resulting morphology would be
compact. It is well known that a compact solid tumor will grow to a diffusion-limited size,
after which it will have to co-opt existing vasculature, or acquire a new one through
angiogenesis in order to grow further. On the other hand, morphological instability driven by
substrate gradients, inhomogeneous cell-proliferation and necrosis, allows the tumor to
overcome diffusional limitations on growth by increasing the surface area of the tumor/host
interface thereby allowing interior tumor cells greater access to vital nutrients and growth
factors.

This is the first paper in a two-part series in which we develop, analyze and simulate a
diffuse interface continuum model of multispecies tumor growth and tumor-induced
angiogenesis in two and three dimensions. Three dimensional simulations of nonlinear
tumor growth and neovascularization using this diffuse interface model were presented in
(Frieboes et al., 2007) but that paper did not describe the details of the model or the
numerical algorithm. This is done here. In this diffuse approach, sharp interfaces are
replaced by narrow transition layers that arise due to differential adhesive forces among the
cell-species. Accordingly, a continuum model of adhesion is introduced. This model is
capable of describing the dependence of cell-cell and cell-matrix adhesion on cell phenotype
and genotype (e.g. expression of e-cadherins and integrins) as well as on the local
microenvironmental conditions such as oxygen levels. The model is thermodynamically
consistent and is capable of providing a detailed description of tumor progression. The
model is well-posed and consists of fourth-order nonlinear advection-reaction-diffusion
equations of Cahn-Hilliard-type (Cahn and Hilliard, 1958) for the cell-species volume
fractions coupled with reaction-diffusion equations for the substrate components. This
approach eliminates the need to enforce complicated boundary conditions across the tumor/
host (and other species/species interfaces) that would have to be satisfied if the interfaces
were assumed sharp. The diffuse interface methodology also has the advantage that there is
no need to explicitly track the interface as is required in the sharp interface framework.

The diffuse interface model is related to recently developed multicomponent mixture
models, e.g., (Ambrosi and Preziosi, 2002; Breward et al., 2002, 2003; Byrne et al., 2003;
Byrne and King, 2003; Byrne and Preziosi, 2003; Franks et al., 2003a,b; Franks and King,
2003; Araujo and McElwain, 2005a; Chaplain et al., 2006), that were introduced to study the
dynamics of multispecies tumor growth. In this approach, mass, momentum and energy
balances are introduced for each species and as such provide the potential for significantly
greater modeling detail than in single phase tumor models like those considered earlier by
Greenspan (1976); Byrne and Chaplain (1995, 1996a); Chaplain (1996); Friedman and
Reitich (1999); Breward et al. (2002, 2003); Byrne and King (2003); Cristini et al. (2003);
Zheng et al. (2005); Hogea et al. (2006); Macklin and Lowengrub (2006) to list a few.
Please find more complete references in the excellent recent reviews of tumor growth
modeling by Araujo and McElwain (2004); Hatzikirou et al. (2005); Quaranta et al. (2005);
Byrne et al. (2006); Graziano and Preziosi (2007); Roose et al. (2007).
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Describing the dynamics of multiple cell species is crucial since the tumor micro-
environment (e.g., hypoxia) and impaired cell genetic mechanisms can create multiple cell
genotypes (and phenotypes) and select for cells that survive under abnormal conditions
(Graeber et al., 1996). Also, the micro-environment of invasive tumors may be characterized
by non-sharp boundaries between tumor and host tissues, and between multiple species
within the tumor (Liotta and Kohn, 2001; Lamszus et al., 2003; Kunkel et al., 2001). The
study of how an invading tumor tissue affects the host at the cellular scale, for example,
would be challenging with a sharp interface, single-phase based model.

There are a variety of numerical methods now available for performing simulations of
nonlinear solid tumor growth. These include cellular automaton and agent based models
(e.g., see the works of Alarcon et al. (2003); Jiang et al. (2005); Anderson (2005); Abbott et
al. (2006); Anderson et al. (2006); Lee and Rieger (2006); Bauer et al. (2007); Gerlee and
Anderson (2007b,a); Bartha and Rieger (2007)), single-phase continuum tumor growth
models (e.g., see the works of Cristini et al. (2003); Zheng et al. (2005); Sinek et al. (2004);
Hogea et al. (2006); Macklin and Lowengrub (2006, 2007); Macklin et al. (2007); Li et al.
(2007)) and continuum multiphase mixture models (e.g., see the work of Preziosi and Tosin
(2007) and the mixture model references listed above). For a more complete set of
references, please see the review papers listed previously. While discrete models may
translate biological processes into model rules more easily than continuum approaches,
discrete models can be difficult to study analytically and the associated computational cost
rapidly increases with the number of cells modeled which makes it difficult to simulate
millimeter or greater sized tumors. In larger-scale systems (millimeter to centimeter scale),
continuum methods provide a good modeling alternative and mixture models provide the
capability of simulating in detail the interactions among multiple cell species. Hybrid
continuum-discrete models (e.g., (Kim et al., 2007)) are very promising and have the
potential to combine the best features of both approaches although more work is necessary
to make these models competitive with the continuum approach at large scales.

Until recently (Frieboes et al., 2007; Cristini et al., 2008; Preziosi and Tosin, 2007),
numerical simulations of mixture models have been limited to either one-dimensional or
symmetric tumor configurations. This is due in part to the complicated nature of the
governing partial differential equations. In addition, some of the mixture models that
account for adhesive forces do so through unregularized backwards diffusion, which may in
general lead to ill-posedness. This can be dealt with easily in one dimension but is
problematic in higher dimensions where spurious instabilities can be more easily triggered
by spatial discretization.

In this paper, we develop a general approach based on energy variation to derive the diffuse
interface equations. The system energy accounts for all the processes to be modeled. Here,
we focus on adhesion which we introduce through an interaction energy that leads to well-
posed fourth-order equations. We note that a related nonlocal continuum model of adhesion
was recently developed by Armstrong et al. (2006).

The diffuse interface model accounts for hydrostatic pressure and the cell-velocity is found
through a generalized Darcy’s law. The modeling framework is sufficiently general to
account for elastic, poroelastic and viscoelastic effects (Jones et al., 2000; Ambrosi and
Mollica, 2002; Lubarda and Hoger, 2002; Araujo and McElwain, 2004; Ben-Amar and
Gorielly, 2005; Fung, 1990; Humphrey, 2003; Roose et al., 2003; McArthur and Please,
2004) by incorporating the relevant energies in the system energy and performing an energy
variation guided by the mixture formulation developed by Araujo and McElwain (2005a,b).
These more complicated effects will be considered in the future.
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Because the diffuse interface model involves high-order equations and the solutions are
characterized by having narrow transition layers, it is challenging to develop accurate and
efficient numerical methods. For example, explicit methods would result in severe time step
restrictions while the presence of transition layers requires the resolution of multiple spatial
scales. To solve the diffuse interface system numerically, we develop a new and very
efficient, fully adaptive, nonlinear multigrid/finite difference method. The algorithm is fully
implicit in time and the nonlinear equations at the implicit time step are solved using a
nonlinear multigrid finite difference method with nearly optimal complexity. Typically, the
computational cost of the algorithm is proportional to the total number of mesh points. To
efficiently resolve the multiple spatial scales, an adaptive block-structured Cartesian mesh is
used. Locally refined block-structured Cartesian meshes strike a balance between grid
structure and efficiency and are very natural to use together with multilevel, multigrid
methods. Here, we follow the methodology we recently developed inWise et al. (2007).

In this first paper, we present simulations of unstable avascular tumor growth in two and
three dimensions and demonstrate that our techniques now make large-scale three
dimensional simulations of tumors with complex morphologies computationally feasible.
We focus on tumors consisting of viable and necrotic cells and we make several simplifying
assumptions regarding the interaction of the cell and host species. In Part II of this study, we
will investigate multispecies tumor invasion and tumor-induced angiogenesis. We will
examine the effect of variable cell-cell adhesion due to changes in cell phenotype and
microenvironmental conditions (e.g. oxygen levels). We will focus on the morphological
instabilities that may underlie invasive phenotypes.

The paper is organized as follows. In Sec. 2, a general, multi-species, diffuse interface
model is presented. In Sec. 3 we specialize our model to the case of two tumor cell species,
nondimensionalize the model, and show it to be convergent to a classical sharp interface
model of tumor growth using an asymptotic analysis. In Sec. 4, the numerical method is
briefly described and in Sec. 5 the numerical results are presented. In Sec. 6 the paper is
summarized and future work is described. In Appendix A, the detailed constitutive relations
for the cell-velocity and adhesion fluxes are derived via energy variation. In Appendix B, we
provide a brief sketch of the matched asymptotic expansions that demonstrate the
convergence of the new diffuse-interface model to a classical sharp-interface model.

2 A general diffuse-interface tumor model
2.1 Mass conservation laws

We begin by formulating a general multi-species tumor model that accounts for mechanical
interactions among the different species. Here, we focus on cell-cell adhesion. Later, in Sec.
3 we consider a specific case involving viable and necrotic tumor cells and host cells. In part
II of this work, we will consider multiple viable tumor cell species.

The primary dependent variables in the (N + 1)-species model are

• the volume fractions of the water, tumor and host cell species, ϕ0, …, ϕN,

• the densities of the components ρ0, …, ρN,

• the extra-cellular fluid pressure q,

• the cell-to-cell (solid) pressure p, and

• the component velocities u0, …, uN.
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We assume that there are no voids (i.e., the mixture is saturated) and thus  .
Further, we assume that the densities are constant, i.e., independent of temperature, pressure,
etc. Without loss of generality, we may identify i = 0 as the water component. The volume
fractions of the components are assumed to be continuous in a domain Ω, which contains
both the tumor and host domains. The volume fractions obey the mass conservation
(advection-reaction-diffusion) equations

(1)

where Ji are fluxes that account for the mechanical interactions among the cell species. The
source terms Si account for inter-component mass exchange as well as gains due to
proliferation of cells and loss due to cell-death.

The density of the mixture is defined as  . The mass averaged velocity of the

mixture is then defined as  . Summing Eq. (1) we find that mass of the
mixture is conserved only if 3

(2)

We therefore pose these conditions as consistency constraints for the fluxes and sources We
next motivate the constitutive choices for the fluxes Ji. The sources Si will be chosen to
reflect the appropriate biophysical processes and will be discussed in detail in Sec. 3.

2.2 Adhesion energy
To motivate the constitutive laws for the fluxes Ji and the velocities ui, we introduce an
energy of each component Ei that includes all the effects to be considered. In this work, we
focus on adhesion. Elastic and viscoelastic effects will be considered in the future.

To describe the energy associated with the interactions among the different components, we
follow an approach from continuum thermodynamics (e.g., see Rowlinson and Widom
(1982); Landau (1984)) and introduce the Helmholtz free energy of component interactions
(e.g. adhesion) via:

(3)

where Umix, i is the energy that results from adhesive forces between component i and the
other components, smix, i is the entropy of mixing and θ is the temperature which is assumed
to be constant. (The analysis may also be extended to the non-isothermal case.) Introducing
the interaction potential Uij between species i and j, we may write

(4)

3We could take  to be constant. Without loss of generality we set this constant to be zero.
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The entropy of mixing may be written as

(5)

where R is the “gas” constant (Rowlinson and Widom, 1982). To fix ideas, consider a two-
component system with volume fractions ϕ0 and ϕ1 and assume that U01 = U10 for
simplicity. Then, the total free energy of adhesion E = E0 + E1 is given by

(6)

Let us next suppose that the potential U01 is localized, i.e., U01(x) = ε−dU(|x|/ε), where ε is a
small (unit-less) parameter and d is the spatial dimension. We may perform an expansion in
ε to get

(7)

where U0 = ∫ U(|x|) dx and U2 = ∫ U(|x|)|x|2 dx are the mean and second moment of the
potential, respectively. Rescaling the energy Ē = E/Rθ and using that ϕ0 = 1 − ϕ1, we get

(8)

where Ū0 = U0/Rθ and ε̄2 = ε2U2/Rθ. Note that the non-gradient (local) interaction term in
the integrand of Eq. (8) takes the form f(ϕ1) = fc(ϕ1) − Ū0fe(ϕ1), where fc = ϕ1 log ϕ1 + (1 −
ϕ1) log(1 − ϕ1) and fe = ϕ1(ϕ1 − 1) are convex functions. The first term, fc, represents the
repulsive energy among like components, while the second term, −Ū0fe, represents the
adhesion energy among like components.

Performing a similar expansion for the general multispecies energy in Eq. (3) and dropping
the O(ε̄4) terms, we obtain the following weakly nonlocal model of the Helmholtz free
energy of the ith component:

(9)

where the first term models the bulk energy of the components due to local interactions
while the second (gradient energy) term models longer range interactions among the

components. Here ε̄ij are positive constants, such that  has units of energy per unit length.

2.3 Constitutive laws for the fluxes and velocities
Next, thermodynamic constitutive laws for Ji and ui are posed in order to be consistent with

the decrease of the total free energy  . For constant temperature systems, as
considered here, this is equivalent to entropy increase (Rowlinson and Widom, 1982). We
make the following zeroth-order simplifying approximations: (i) the densities of the
components ρi = ρ are matched; and (ii) that the water volume fraction is constant in time
and space, i.e., ϕ0 = ϕ̃W constant. Accordingly, the volume fraction of the solid components
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 is also constant with ϕ̃S = 1 − ϕ̃W. We further assume that there is no adhesive
(mechanical) flux of water, i.e., J0 = 0.

Correspondingly, the sum of the solid fraction fluxes  . This is consistent with the
no-void assumption mentioned earlier. Together, these assumptions allow only limited
coupling between the solid and water phases. In particular, the water will primarily move
freely through the system such that Eq. (1) is satisfied for the water component. More
extensive coupling of between the water transport and the solid phases is considered in the
single-tumor-species, multiphase models of Breward et al. (2002, 2003), Byrne and King
(2003), and Byrne and Preziosi (2003). Each of the assumptions we made above may be
relaxed (see App. A for a more general derivation) and we will consider more extensive
coupling between the solid and liquid components in a future work, building on the more
general framework in App. A.

As derived in App. A, thermodynamically consistent fluxes may be taken to be the
generalized Fick’s law:

(10)

and  , where M̄i > 0 is a mobility,  are variational derivatives of the total
energy E and are given by

(11)

The velocities of the components may be also determined in a thermodynamically and
mechanically consistent way. This can be done either by posing momentum equations for
each component together with momentum exchange terms which are determined in a
thermodynamically consistent way from the energy variation or by posing a generalized
Darcy-type constitutive law for the velocity directly from the energy variation. The former
approach is more general although the two approaches are consistent for specific modeling
choices of the component stress tensors (e.g., see Ambrosi and Preziosi (2002); Byrne and
Preziosi (2003); Chaplain et al. (2006)). In a forthcoming work Cristini et al. (2008), we will
consider the more general momentum exchange approach. Here, we follow the latter, direct
approach which is similar in spirit to the model proposed in (Ambrosi and Preziosi, 2002).
This approach also treats the tumors as viscous, inertialess fluids. As above, we present only
the results here. The details may be found in App. A. The resulting generalized Darcy laws
for the velocities of the components are given by

(12)

(13)
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where q is the water pressure, p is the solid pressure, and k̄0, k̄, k̄j are positive definite
motility matrices. The constitutive laws (10), (12), and (13) guarantee that in the absence of
mass sources, the adhesion energy is non-increasing in time as the fields evolve.

Note that with these choices of flux and velocity, the tumor growth equations (1) are fourth-
order, nonlinear advection-reaction-diffusion equations of Cahn-Hilliard type (Cahn and
Hilliard, 1958).

3 Two-tumor species model of tumor growth
3.1 Basic model assumptions

Here we present a two-tumor species, diffuse-interface model of tumor growth. While the
following model is formulated specifically for a tumor comprised of dead (D) and viable (V)
tumor cells, it will be clear that the model describing a tumor comprised of multiple tumor
cell species can be formulated analogously and will be treated in Part II of this work.

Also, as a first approximation we formulate the model around a single vital nutrient (e.g.,
oxygen). The transport of multiple nutrient species may be added in a straightforward way.
We assume that the density of the extracellular matrix (ECM) remains constant in time and
space. In particular, as a first approximation we suppose that the ECM does not significantly
degrade or remodel as the tumor mass grows. The effects of matrix degrading enzymes and
matrix remodeling can easily be incorporated and will be considered in future work.

We make the following identifications:

• 0 represents the water phase: e.g., ϕ0 = ϕ̃W,

• 1 represents the viable tumor cell phase, e.g., ϕ1 = ϕV,

• 2 represents the dead tumor cell phase, e.g., ϕ2 = ϕD,

• 3 represents the host tissue phase, e.g., ϕ3 = ϕH.

We define the total tumor cell volume fraction ϕT and the total volume fraction of the solid
component ϕS to be

(14)

(15)

In words, the tumor contains both viable and dead cells. In the diffuse interface context, the
tumor cell volume fraction ϕT is large in the tumor interior and tends rapidly, but smoothly,
to zero in the tumor exterior. See Fig. D.1 (top). Between the tumor and host regions, there
is a boundary layer (see Fig. D.1). The dividing surface ΣT, i.e., the tumor/host interface, can
be arbitrarily assigned in the diffuse boundary layer. Since the maximum packing volume
fraction of cells is ϕ̃S > 0 then the tumor volume fraction ϕT/ϕ̃S lies between 0 and 1, as
depicted in the figure, and the most common and convenient choice of the inteface ΣT is ΣT
= {x| ϕT(x)/ϕ̃S = 1/2}. Following this definition, we may precisely define the tumor and host
domains by ΩT = {x| ϕT(x)/ϕ̃S > 1/2} and ΩH = {x| ϕT(x)/ϕ̃S < 1/2} respectively.

From the continuum advection-reaction-diffusion equations (1), the volume fractions of the
tissue components obey
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(16)

(17)

(18)

(19)

where JV, JD and JH are adhesion fluxes from Eq. (10) and will be specified precisely
below. The quantities SV, SD, SH and SW are the net mass exchange/source/sink terms. Note
that because the densities of the components are constant, we absorbed them into the fluxes
and source terms.

3.2 Adhesion energy, fluxes and cell-velocities
Define the total adhesion energy to be

We suppose that tumor cells prefer to adhere to one another rather than to the host. Indeed,
cell separation and sorting due to an imbalance in adhesive forces has been observed in a
variety of different cell combinations. See, for example, Armstrong (1971) for a classic
study and Armstrong et al. (2006) for a recent computational study using a nonlocal model
of adhesion. As a simplifying assumption, we do not distinguish between the adhesive
properties of the viable and dead cells. Accordingly, in Eq. (9), we take Fi(ϕ0, …, ϕN) =
ϕif(ϕT) and εij = 0 for i, j < 3, and ε33 = ε̄. We therefore obtain the total adhesion energy:

(20)

where f is a double-well bulk energy, with minima at ϕT = ϕ̃S and ϕT = 0, giving rise to a
well-delineated phase separation of the tumor (ϕT ≈ ϕ̃S) and the host tissues (ϕT ≈ 0). This
form of the energy arises also in the classic theory of phase transitions (e.g., Cahn and
Hilliard (1958)). Rather than using a function containing logarithmic terms as in Eq. (8),
here we use the polynomial approximation of the local interaction energy:

(21)

where Ē > 0 is an energy scale. Note that f may be written as the difference of the two
convex functions

(22)

where
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(23)

Since ϕT is continuous, it is necessary that 0 < ϕT/ϕ̃S < 1 in the interfacial region dividing
the tumor and host domains. On the other hand, the states ϕT > ϕ̃S or ϕT < 0 are not physical,
and the interaction energy tends to prevent their formation by increasing the energy of those
states. Note that taking an interaction energy with logarithmic terms would explicitly
prevent their formation (Elliot and Luckhaus, 1991). In Part II of this work, we will
generalize the polynomial free energy in Eq. (21) to account for multiple cell species and the
effects of cell phenotype and the microenvironment on adhesion.

The thickness of the diffuse interface between the tumor and host tissue depends on the
relative sizes of ε̄ and Ē. Specifically, for fixed Ē the smaller the constant ε̄ is, the less
diffuse the interfacial region is, as indicated in Fig. D.1 (top). We note that this approach has
been used successfully in many problems in the physical sciences. See for example
(Anderson and McFadden, 1998; Lowengrub and Truskinovsky, 1998; Kim et al., 2003;
Badalessi et al., 2003; Yue et al., 2005) among many others for applications to multiphase
flows. We further remark that if the tumor contains different species that have different
adhesion properties, the energy (20) can be modified to account for the different cell-cell
interactions following the more general approach described in Sec. 2.2. Examples of
energies that account for different interactions among multiple components can be found in
the context of multiphase flows (e.g., see the treatment of three-phase flows in (Kim and
Lowengrub, 2005)).

From the flux constitutive Eq. (10) and the adhesion energy (20), we may determine the
adhesion fluxes. Recalling that the densities of the components are matched, and taking the
mobilities M̄V = M̄ϕV and M̄D = M̄ϕD, where M̄ is a positive constant, we obtain the fluxes:

(24)

where we have used that the energy does not depend explicitly on ϕH. The terms  , and

 are the variational derivatives of the energy with respect to ϕV and ϕD respectively and
are given by

(25)

where we have also used that ϕT = ϕV + ϕD.

From the velocity constitutive equation (13) and the adhesion energy (20), we obtain the
following expression for the component velocities:

(26)

(27)
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(28)

(29) (30)

where we have used that the energy does not explicitly depend on ϕ0 and ϕH. In these
equations, the terms dependent on δE/δϕT represent the excess force due to adhesion and
arise from cell-cell interactions. The coefficients k̄W, k̄, k̄V, k̄D, and k̄H are motilities that
reflect the response of the water and cells, respectively, to pressure gradients. The cell
motilities contain the combined effects of cell-cell and cell-matrix adhesion.

As a further simplifying assumption, we take k̄V = k̄D = k̄H = 0 which is consistent with
assuming the cells are tightly packed and that they march together (we will consider more
general velocity choices in a future work).

Consequently, defining the velocity of the solid components to be

(31)

we obtain uV = uD = uH = uS. Note that the motility k̄ > 0 may be a function of ϕV, ϕD and
other variables. In particular, if k̄ = k̄(ϕV, ϕD), the individual components may respond to the
pressure and adhesive forces differently, but mixtures of components tend to move together.
The response of different components to the forces will be explored further in part II of our
work.

The constitutive choices (24), (31) and (26) guarantee that in the absence of mass sources
(SV = SD = 0), the adhesion energy is non-increasing as the fields evolve, while the total
tumor mass is conserved.

We note that Cohen and Murray (1981) and Murray (2002) used a diffuse-interface model to
study non-Fickian dynamics in single-species populations. As pointed by Cohen and Murray
(1981), such a model is physically and biologically consistent when Fickian diffusion is
dominated by higher-order effects that tend to “maintain a spatial pattern even in a single
diffusing species.” In our case this pattern is the one imposed by the interface structure that
arises from the phase-separation of tumor and host cells due to differential adhesion. Purely
Fickian diffusion of viable tumor cells, is recovered if E = ∫Ω fe(ϕV) d3x, where fe is a
convex function. This would tend to lessen gradients of the volume fractions and would not
be appropriate for maintaining a well-delineated tumor-host interface.

3.3 Mass exchange terms
As a first approximation, we assume that viable tumor cells necrose based only on the level
of the local nutrient concentration n, i.e., when the nutrient falls below the cell viability limit
n̄N.We assume that cells are comprised entirely of water. In terms of volume fraction, this is
a reasonable first approximation.We assume that cell mitosis is proportional to the amount
of nutrient present and as mitosis occurs, an appropriate amount of water is converted into
cell mass. Conversely, the lysing of cells represents a mass sink as cellular membranes are
degraded and the mass converts completely into water. We neglect mitosis in the host
domain as the proliferation rate for tumor cells is much larger. Accordingly, we take
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(32)

(33)

(34)

(35)

where λ̄M, λ̄A, λ̄N, and λ̄L are the rates of volume gain or loss due to cellular mitosis,
apoptosis, necrosis, and lysing, respectively, and where n̄∞ is the far-field nutrient level.
Finally, ℋ is the Heaviside function.

Note that our model neglects the effects of a properly working immune system (where
leukocytes phagocytose apoptotic cells) by degrading both necrotic and apoptotic tumor
cells the same way. The effect of the immune system could be easily described, for example
by removing the apoptotic source term in Eq. (33).

Using (15) we may now eliminate Eq. (18). Summing Eqs. (16)–(18), we have

(36)

and likewise

(37)

Finally, we present some remarks.

• The energy E has a central, two-fold role in our model and numerical
implementation. First, from the physical and biological perspective, the energy
provides a route for the modeling of multiple co-existing cell species through a
description of cell adhesion that controls the spatial extent by which tumor and host
cells species intermix. As mentioned above Cohen and Murray (1981) and Murray
(2002) have pointed out the biological and physical significance of the diffuse
interface approach in population dynamics. Second, from the computational
perspective, this energy is a mathematical formalism for maintaining the structure
of the diffuse interface and for keeping the cell volume fractions physically
realistic. As the diffuse interface thickness goes to zero the solutions to the
equations converge to solutions to a sharp interface model, in a specific sense (see
Sec. 3.6). In addition, the diffuse interface model provides a convenient method for
capturing the tumor evolution.

• While neither of the inequalities 0 ≤ ϕT/ϕ̃S ≤ 1 and 0 ≤ ϕD ≤ ϕT that are required for
physically realistic solutions are strictly enforced, the energy tends to maintain
these inequalities and our numerical experimentation indicates that they hold to
within acceptable tolerances.
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• The effects of adhesion appear both in the adhesion fluxes JV and JD (e.g., see also
(Pego, 1989) in the context of the Cahn-Hilliard equation) as well as in the cell-
velocity uS. In the sharp interface setting (e.g., Cristini et al. (2003)), the adhesion
only appears in uS. The complex interplay between the two sources of adhesion is
the focus of ongoing work.

• We have tacitly assumed that the mechanical interaction between tumor and host
tissue cells and the capillaries may be neglected. This is a reasonable
approximation since the ratio of endothelial to tissue cells is of the order 1/50 or
1/100 (Bussolino et al., 2003).

3.4 Nutrient diffusion
The nutrient diffuses through interstitial fluid to reach the cells. As a first approximation, we
model the host tissue at equilibrium, where the net nutrient uptake therein is negligible
compared to the uptake by tumor cells. In particular, we assume that whatever nutrient is
uptaken by the host tissue is replaced by supply from the normal vasculature. This may not
be the case in the tumor, where not only the uptake in general greatly exceeds the supply,
but also can be much higher than that of the host tissue (Ramanathan et al., 2005; Esteban
and Maxwell, 2005). Therefore we neglect nutrient uptake by host cells and pose the
following diffusion equation for the nutrient concentration n:

(38)

where D̄ is the diffusion coefficient, and ν̄U is the nutrient uptake rate by the viable tumor
cells. The nutrient diffusion coefficients in the tumor (DT) and host (DH) domains may be
different and so we take

(39)

where Q(ϕT) is an interpolation function such that Q(0) = 0 and Q(ϕ̃S) = 1. Here, we will use
Q(ϕT) = 3 (ϕT/ϕ̃S)2 −2 (ϕT/ϕ̃S)3, which satisfies Q(1) = 1, Q(0) = 0, Q(1/2) = 1/2 and that Q
′(0) = Q′(1) = 0, a useful fact for asymptotic analyses (Jou et al., 1998)

An additional source term, T̄C, due to the presence of a capillary network in the tumor and
host tissues has been incorporated, as in (Cristini et al., 2003; Zheng et al., 2005; Frieboes et
al., 2007; Macklin et al., 2007). T ̄C is the capillary-to-tissue nutrient transfer function and
may vary depending on the differences in nutrient and pressure levels between the
capillaries and the surrounding tissue. This will be explored more extensively in part II of
our work where we will consider the coupling between tumor growth and the tumor-induced
angiogenic response in the host and the development of a neovasculature network in 3D. For
the capillary-to-tissue nutrient transfer we use the simple model

(40)

where  are the nutrient transfer (source) rates
for preexisting capillaries in the host and tumor domains, n̄C is the nutrient concentration in

the capillaries and  is the nutrient transfer from the neovasculature. We defer further

discussion of  until Part II of our work.

3.5 Nondimensional equations
We nondimensionalize space and time using the diffusion length and mitosis time scales
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(41)

and we introduce the characteristic tumor pressure

(42)

where k̿ is a characteristic value of the motility k̄. The field variables are made
dimensionless by the replacements indicated in Tab. C.1. In particular, the solid volume
fractions are now bounded above by 1. See Tab. C.2 for definitions of the nondimensional
parameters.

Because of Eqs. (14) and (15), it is sufficient to solve for the volume fractions of the total
tumor ϕT and necrotic ϕD cell species since the host and viable cell species may be
recovered by ϕH = 1 − ϕT and ϕV = ϕT − ϕD, respectively. The nondimensional equations are
given as follows:

(43)

(44)

(45)

where we have introduced the notation μ = δE/δϕT, for the cell-chemical potential, and ST =
SV + SH. The nondimensional equation for the volume fraction of necrotic cells is

(46)

(47)

The nondimensional cell-velocity is

(48)

where γ̃ is a nondimensional measure of the adhesion force (see Tab. C.2). The velocity is
constrained to satisfy

(49)

Together, Eqs. (48) and (49) constitute a Poisson equation for the pressure p:

(50)
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Knowing the pressure p we back calculate uS using Eq. (48). The nondimensional nutrient
equation is

(51)

where we have used that nutrient diffusion occurs on much shorter time scales (e.g.,
minutes) than cell-proliferation (e.g., day or more) to drop the convection terms in Eq. (38).
The diffusion coefficient and angiogenesis source are

(52)

(53)

The interpolated diffusivity in Eq. (52) is appropriate when DH is comparable to 1. If on the
other hand DH ≪ 1 or DH ≫ 1, then it may be necessary to use another interpolation, as we
point out later.

Equations (43)–(53) are valid throughout Ω and not just on the tumor volume ΩT. Note now
that no boundary conditions are required for ϕT or ϕD at the tumor boundary ΣT. For outer-
boundary conditions, we choose

(54)

where ζ∞ is the outward-pointing unit normal on the outer boundary Σ∞ = ∂Ω. The
condition μ = 0 allows for the free flow of cells across the outer boundary.

3.6 Convergence to classical models
The method of matched asymptotic expansions can be used to show the formal convergence
of solutions of the diffuse interface model (43)–(53), in the limit as ε → 0, to those of a
classical sharp interface model given below (see Appendix B for details):

(55)

(56)

(57)

and in ΩT and ΩH:

(58)

(59)

where χΩT is the characteristic function of the tumor domain ΩT. Across ΣT, the jump
conditions hold:

(60)
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where κ is the mean curvature, ζ is the normal vector to ΣT and γ and γ̃ are related by

 for the quartic local interaction energy in Eq. (21). The nutrient
satisfies

(61)

where the functions D and TC may be discontinuous across the tumor interface, satisfying

(62)

(63)

and χΩH is the characteristic function of the host domain ΩH. Across ΣT, the nutrient
satisfies the jump conditions

(64)

At the far-field boundary Σ∞, the boundary conditions are:

(65)

This sharp interface system is a generalization of classical models, e.g. see (Greenspan,
1976; Byrne and Chaplain, 1995, 1996a; Chaplain, 1996; Friedman and Reitich, 1999; Pettet
et al., 2001; Breward et al., 2002, 2003; Byrne and King, 2003; Cristini et al., 2003; Zheng
et al., 2005; Macklin and Lowengrub, 2006, 2007). The well-posedness of a such a model
was recently established by Chen and Friedman (2003).

Finally, the method of matched asymptotic expansions can be used to show that the
interaction force tends, in the sense of distributions, to

(66)

where δΣT is the surface delta function which may be written as  , κ = ∇ · ζ
and ζ = −∇ϕT/|∇ϕT| are again the mean curvature and the outward normal vector
respectively. The form on the right-hand-side of (66) was introduced by Kim (2005).

4 Numerical method
The governing equations (43)–(51) are complex high-order nonlinear partial differential
equations, and require sophisticated numerical methods to avoid severe time-step restrictions
for numerical stability, to accurately resolve phenomena on various spatial scales, and to
solve the equations efficiently. With these considerations in mind, we build upon our
previous work (Wise et al., 2007) and develop a new nonlinear, multilevel multigrid method
combined with adaptive, block-structured Cartesian mesh refinement to solve the governing
equations. This algorithm allows for a very fine resolution of the tumor interface without
expending computational resources where fine resolution may be unnecessary. In short, the
numerical degrees of freedom can be very nearly minimized. Since the solver is based on the
multigrid algorithm, the resulting discrete equations can be solved with nearly optimal
complexity (Trottenberg et al., 2005). Here, we very briefly describe the algorithm for a
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two-dimensional computational domain. The details of the discretization are deferred to a
forthcoming work Wise et al. (2008).

We use the second-order accurate Crank-Nicholson algorithm to solve the equations at the
implicit time level (Morton and Mayers, 2005). The equations are discretized in space using
(at least) second-order accurate finite differences. Except for the advection terms, center-
differences are used to replace the derivatives. The advection terms are treated using an
upwinding WENO scheme (Jiang and Shu, 1996). The governing equations are discretized
on a block-structured Cartesian mesh, examples of which are seen in Fig. D.5a. The
composite mesh consists of a hierarchy of levels. The coarsest level, that with the largest
mesh-spacing, is called the root level, or the level-0 mesh. The root-level consists of a single
rectangular, uniform grid of mesh spacing h0. The next level, the level-1 mesh, consists of a
union of rectangular grid patches. The uniform spacing of cells in the level 1 mesh, h1, is
half of h0. The next level of refinement is called level 2, and again consists of a union of
uniform rectangular grids, with mesh spacing h2 = h1/2, etc. Each new “child” level mesh
lives on top of the coarser “parent” level mesh (Wise et al., 2007).

In Fig. D.5a each mesh (the mesh changes every time step) has a root level grid of size 64 ×
64, and there are 3 levels of refinement. The mesh-spacings are h0 = 40/64, h1 = 40/128, h2
= 40/256, and h3 = 40/512. We say that each composite mesh in Fig D.5a has an effective
resolution of 512 × 512, meaning that to obtain the equivalent resolution using a uniform
grid the grid would have size 512 × 512. However, it is clear that each mesh has
significantly fewer cells than 5122, especially at early times.

Where the child level mesh is added in the parent depends upon certain refinement criteria.
Here we have used a single, very simple refine criterion. We refine the mesh in areas where
the volume fractions have a steep gradient. In particular, the volume fraction of tumor cells
has a steep gradient at the tumor/host interface. The refinement in Fig. D.5a is such that
there are approximately 8 mesh cells in the finest level between the level curves ϕT = 0.1
and ϕT = 0.9. We also refine the mesh so as to have sufficient resolution of the necrotic
interface, i.e., the region between the level curves ϕD = 0.1 and ϕD ≈ 0.9. The refinement
criterion can be modified to account for other physical processes. For example, as explored
in Part II of this work, refinement may be initiated around the growing blood vessels in
addition to the tumor/host or species/species interfaces in the system (Frieboes et al., 2007).
(A similar refinement scheme was adopted by Zheng et al. (2005) for coupled growth and
neovascularization in 2D.) Once a new, locally-refined, block-structured Cartesian mesh is
constructed data are copied and or interpolated into the new composite mesh, the governing
equations are discretized on the composite mesh, and the resulting nonlinear system of
equations is solved according to the nonlinear FAS multigrid method. The basic
methodology of refining, interpolating, and solving is detailed by Wise et al. (2007).

Finally, by hmin we denote the smallest mesh-spacing in the composite mesh. In other
words, hmin = hkmax, where kmax is the number of levels or refinement. By s we denote the
fixed time-step size for the simulation.

5 Numerical results
We begin this section by considering spherically symmetric, avascular tumor growth in 5.1.
In Secs. 5.2 and 5.3 we examine nonsymmetric tumor growth in two and three dimensions,
respectively. For simplicity, we will assume here that the cell-motility k = 1. In Part II, we
will explore the effect of variable cell-motility. See also Macklin and Lowengrub (2006) for
simulations where k is nonuniform.
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5.1 Spherically symmetric solutions
In Fig. D.2 a typical evolution to steady state is shown for a spherically symmetric tumor.
This simulation is performed by solving the system of equations (43)–(51) in spherical
coordinates. The nondimensional parameters for the simulations are given in Tab. C.3. Note
that the nutrient diffusion coefficients inside and outside of the tumor are matched. The
computational domain is [0, 10] and the spatial and temporal grid sizes are hmin = 10/128
and s = 5.0 × 10−3. Because the solution is one dimensional and thus resolution is not an
issue, we use a uniform mesh. At time t = 0, there are no dead cells. As the evolution
proceeds, cells undergo necrosis near the tumor center as the nutrient drops below the level
needed for viability. A necrotic core then develops. As the necrotic (dead) cells are lysed,
water is released and is uptaken by the proliferating cells near the tumor/host interface. This
creates a flux of water outward from the center of the tumor spheroid (e.g. positive water
velocity uW). As cellular mass is lost due to lysing, viable cells in the proliferating rim are
fluxed towards the tumor spheroid center (e.g. negative cell velocity uS). The tumor grows
to a diffusion-limited steady-state size with a final radius rT ≈ 4.35, where rT is defined by
ϕT(rT) = 0.5.

At steady state, observe that the velocity uS at the tumor interface rT is nearly zero. uS need
not be precisely zero at the interface at steady-state, since there is an effective diffusion
velocity associated with adhesion that acts against it. Inside the tumor the cellular velocity is
negative and the water velocity is positive. There is still proliferation of viable cells, mainly
near the tumor boundary, but only enough to exactly balance the loss due to lysing and
degradation. These results are consistent with the predictions of previous models of solid
tumor growth (e.g., see the reviews (Chaplain, 1996; Bellomo et al., 2003; Araujo and
McElwain, 2004; Byrne et al., 2006)).

The interface between the necrotic core (where ϕD ≈ 1) and the proliferating rim (where ϕD
≈ 0) is well-delineated for this set of parameters. However, because viable cells do not
become necrose instantly, but at a certain rate (controlled by λN = 3.0), the necrotic
interface is not sharp. In fact there are some viable cells in the hypoxic region where n < nN.
Recall from Tab. C.3 that nN = 0.11. This is consistent with experimental observations
where perinecrotic regions can be seen. In the limit as λN → ∞ the necrotic interface
becomes sharp, and the nutrient concentration in the necrotic core approaches the value nN.

At steady-state, the tumor cell density outside the bulk of the tumor (e.g., for r > rT ≈ 4.35)
is very small but non-zero. This reflects the fact that the adhesive force is not strong enough
to hold all the proliferating tumor cells together and instead a very small fraction of cells
escape into the host domain.

We note that such behavior is consistent with steady, spherical solutions of the pure Cahn-
Hilliard equation (e.g., Eq. (43) where the cell-velocity uS and source term ST are neglected,
see for example Lowengrub and Truskinovsky (1998)). The amount of shedding can be
controlled through the interface thickness parameter ε (which is 0.1 in Fig. D.2). This is seen
in Fig. D.3 where the steady-states are shown corresponding to interface thicknesses ε = 0.1
in (a), 0.05 in (b), 0.025 in (c), and 0.0125 in (d). The density of tumor cells in the host
domain tends to zero as ε → 0 as the interface between the tumor and host domains
sharpens. Because there is a finite necrosis rate λN, the necrotic interface remains non-sharp
as ε decreases. Further, when ε = 0.0125, the pressure jump across the tumor/host interface
is [p] ≈ 0.4552 which is very close to the sharp interface value of 0.4591.

Finally, we note that, consistent with other tumor growth models, the celladhesion parameter

γ (recall  ) has no effect on the steady-state radius of the spherically symmetric
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tumor but does affect the pressure and cell-velocity inside the tumor. As we will see later,
the cell-adhesion can have a profound effect on the morphology of non-symmetric tumors.

5.2 Two dimensional tumor growth
We next present fully two-dimensional simulations of tumor growth using the parameters
given in Tab. C.4. A radially symmetric tumor with the parameters for Fig. D.4a would
reach a steady size with radius rT ≈ 3.75. Because the diffusivity of the nutrient in the host
medium is 1000 times larger than that in the tumor interstitium, we do not use Eq. (52) to
interpolate the diffusivity but rather instead we use

(67)

This interpolation function sets the diffusivity at the interface (ϕT = 0.5) to be D(0.5) ≈ 4.9.
If Eq. (52), which is appropriate for a ratio of the diffusion coefficients less than 10, were
used the model greatly over-predicts the diffusivity of nutrient in the proliferating rim.

Since the cell-motilities are matched inside and outside the tumor (k = 1), the host medium
is able to sustain pressure gradients. The host medium could represent a gel or porous
scaffold, interpenetrated by a nutrient-rich fluid or could also represent a well-perfused host
tissue. The effect, and interpretation, of inhomogeneous cell motilities on the growth of solid
tumors was recently discussed in Macklin and Lowengrub (2006).

The evolution of the tumor is shown in Fig. D.4a. More specifically, the level curves ϕV =
0.5 are plotted. The initial condition is a slightly elliptical tumor, with its major axis along
the x-direction: ΣT = {(x, y)|x2/1.1 + y2 = 22}. The computational domain is Ω = [0, 20] × [0,
20], the time step is s = 1.0 × 10−2. In this simulation, a uniform mesh is used with mesh
size hmin = 20/256. While the adhesion parameter γ = 0 here, the adhesion energy gives rise
to a relatively small body force (via the cell-chemical potential μ in Eq. (43)) which tends to
hold the tumor together.

Initially, there are no dead cells in the tumor, but they quickly begin to accrue since the
nutrient concentration falls below level needed for viability (nN = 0.6) in the center of the
tumor from the initial time. The viable region of cells is located primarily between the inner
and outer 0.5 contours of ϕV and the dead cells primarily lie in the region bounded by the
inner 0.5 contour.

At time t = 5, the tumor has a fully developed necrotic core, and the perturbed radius of the
tumor boundary is about 3.5. Rather than tending toward a steady solution as it would if the
tumor was radially symmetric, instead the perturbation grows. One can observe a slight
bulge oriented along the x-direction. At later times, the (diffusional) instability becomes
more pronounced and the tumor develops buds that elongate into protruding fingers. The
instability enables the tumor to increase its exposure to nutrient as its surface area increases
relative to its volume. This allows the tumor to overcome the diffusional limitations to
growth. The tumor will grow indefinitely as the instability repeats itself on the buds and
protruding fingers. This is shown more clearly in the next figure (Fig. D.5a).

At t = 45, the numerical solutions at two resolutions are compared where the dashed curve
corresponds to a more refined mesh: hmin = 20.0/512, s = 5.0 × 10−3. There is good
agreement between the two simulations indicating that adequate resolution is achieved using
hmin = 20/256 for the interface thickness parameter ε = 0.1. This degree of resolution puts
approximately 8 mesh cells across the tumor/host diffuse interface region during the
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calculation. Smaller values of ε lead to thinner diffuse interface thicknesses, and would
require more resolution to accurately track the tumor evolution.

Figure D.4b shows some further details of the simulation in Fig. D.4a. In Fig. D.4b(left) a
close-up of the pressure field is shown at t = 45 with the ϕV = 0.5 contours and the cell
velocity field uS. One can see by the cell velocity that the tumor is pinching in the middle,
and growing at its buds. In particular around the points (11, 12) and (16, 10) the velocity at
the tumor boundary points inward towards the center of the tumor, where the pressure is
lowest due to the lysing of dead cells. On the other hand, around the point (11, 16), at the tip
of the bulb where there is considerably more proliferation, the velocity field points outward
from the tumor. This phenomenon bears a striking similarity to, and a quantitative
explanation for, the swirling arrangement of glioma cells as seen in our previous in vitro
experiments of tumor growth. In particular, see Fig. D.4c which is taken from Frieboes et al.
(2006).

In Fig. D.4b(right) the nutrient and pressure fields are shown at the slightly later time t =
47.5. Four buds are now clearly visible. The tumor has evolved into a complicated structure
in order to maximize its surface area relative to its sustainable volume. Notice that the shape
of the tumor has nearly perfect reflectional symmetry relative to the axes x = 10 and y = 10,
forming from an initially perturbed shape having the same symmetries. Note that in the
invaginations where access to nutrient is limited, the nutrient concentration is considerably
less than 1 (e.g., near the points (10, 7) and (10, 13)).

In Fig. D.5a we consider a growing tumor in a much larger domain (twice the size in each
coordinate direction); the initial tumor shape is as in Fig. D.4a. The parameters are given in
Tab. C.4. Nutrient is supplied in the host through an assumed pre-existing vasculature with
nC = 1. To solve the system of equations efficiently, the adaptive mesh algorithm is used
with three levels of refinement. Each level of refinement has half the mesh spacing of the
one on the level below. The coarsest level, level 0, consists of a grid of size 64 × 64. The
finest level, level 3, has the equivalent resolution of a 512 × 512 uniform grid. The time step
is s = 1 × 10−2, and the space step is hmin = 40/512. In Fig. D.5a, the ϕV = 0.5 contours are
shown together with the adaptive mesh. The bottom right image shows the full viable cell
region (white) at t = 200. As in Fig. D.4a, the regions surrounded by the inner ϕV = 0.5
contour contain primarily dead cells while the region exterior to the outer ϕV = 0.5 contour
is the host tissue.

The simulation shows that the tumor evolves nonlinearly into a complex, branched shape
that invades the host tissue. The complex structure arises from diffusional instability which
leads to the creation of buds which then elongate and become unstable themselves. As in the
previous figure, the tumor will grow indefinitely via this mechanism. The results obtained
here are consistent with the predictions of linear stability theory for an analogous sharp
interface model (Byrne and Chaplain, 1995, 1996b; Cristini et al., 2003; Li et al., 2007), and
previous nonlinear simulations of unstable tumor growth (Macklin and Lowengrub, 2005;
Zheng et al., 2005; Macklin and Lowengrub, 2006, 2007).

Figure D.5b shows (a) the water pressure, with the water velocity field superimposed, and
(b) the cell pressure and velocity of the growing symmetric tumor at time t = 125 from the
simulation in Fig. D.5a. The water is fluxed out from the center of the tumor where dead
cells are lysing and converting their mass back to water. On the other hand, the cell pressure
is lowest in the interior of the tumor, and tumor cells tend to flow toward the necrotic region.
This is seen in the radially symmetric case in Figs D.2 and D.3 as well although there are
two-dimensional features seen here. Observe that there is the circulation present in the cell
velocity which is largely absent in the water velocity. There is still growth of the tumor in
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this case, but mainly near the tumor/host interface. The involution of the tumor can be
clearly seen in Fig. D.5b(b), as the tumor increases its surface area to expose more interior
cells to nutrients.

5.3 Three dimensional tumor growth
We next consider asymmetric growth in three dimensions. The nondimensional parameters
for the simulations are given in Tab. C.3. In Fig. D.6 the isosurfaces corresponding to ϕV =
0.5 are shown throughout the evolution (the inner surface bounds the necrotic core). In Fig.
D.6(a) the cell adhesion parameter γ = 0; in Fig. D.6(b) γ = 0.1; and in Fig. D.6(c) the
parameter γ is ten times larger: γ = 1.0. The initial tumor shape is the same for all three
simulations, and is comprised of two dominant spherical harmonic modes, a two mode and a
four mode. The computational domain is Ω = [0, 20] × [0, 20] × [0, 20], and the numerical
resolution is hmin = 20.0/128, s = 2.0 × 10−2.

For the smaller cell adhesion cases (γ = 0 and 0.1, Figs. D.6(a) and D.6(b)), both the two
and the four modes are unstable during growth. When γ = 0, the tumor breaks apart in the
middle by time t = 30 as the upper and lower lobes grow towards the nutrient-rich boundary.
When γ = 0.1, the break-up occurs somewhat later. The precise distribution of nutrients
outside the tumor also plays a critical role in the morphological evolution of the tumor
boundary.

When the surface tension is 10 times larger (γ = 1.0, Fig D.6(c)), the tumor grows with a
more compact shape, and only the two-mode is unstable. The tumor elongates only in the z-
direction, as the top and bottom buds grow to the nutrient rich outer boundary. This behavior
is consistent with linear stability analyses, and recent studies, e.g., (Byrne and Chaplain,
1996b; Cristini et al., 2003; Anderson, 2005; Zheng et al., 2005; Frieboes et al., 2006;
Cristini et al., 2005; Macklin and Lowengrub, 2006; Li et al., 2007; Gerlee and Anderson,
2007b,a), which predict that cell adhesion stabilizes tumor morphologies from high
wavenumber instabilities and that increasing the cell adhesion increases the range of stable
wavenumbers.

The corresponding adaptive computational mesh for the simulation in Fig. D.6(a) is shown
in Fig. D.7. The finest mesh (red) is clustered around the tumor boundary to resolve the
diffuse interface, as well as the necrotic interface where ϕD ≈ 0.5. The coarsest grid (not
shown), which covers the entire computational domain, has size 323 and mesh spacing h0 =
20.0/32. There are two levels of refinement in the composite mesh, with respective mesh
spacings of h1 = 20.0/64 (mesh spacing in the blue boxes) and h2 = hmin = 20.0/128 (mesh
spacing in the red boxes). This simulation, which took less than 24 hours on a 3.2GHz pc,
demonstrates the capability of feasibly simulating complex tumor progression in three
dimensions.

6 Summary and Future Work
In this paper, which is the first in a two-part series, we developed, analyzed and simulated a
thermodynamically consistent diffuse interface continuum model of multispecies tumor
growth. Sharp interfaces were replaced by narrow transition layers that arose as a result of
differential adhesive forces among the cell-species. Accordingly, a continuum model of
adhesion was introduced. The model, which consists of fourth-order nonlinear advection-
reaction-diffusion equations (of Cahn-Hilliard-type) for the cell-species coupled with
reaction-diffusion equations for the substrate components is well-posed and is related to
previously developed mixture models for solid tumor growth.
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We demonstrated analytically and numerically that when the diffuse interface thickness
tends to zero, the system reduces to a classical sharp interface model. To solve the equations
numerically, we developed a new highly efficient adaptive, nonlinear multigrid/finite
difference method. We presented simulations of unstable avascular tumor growth in two and
three dimensions and demonstrated that our techniques now make large-scale three
dimensional simulations of tumors with complex morphologies computationally feasible. In
Part II of this study, we will investigate multispecies tumor invasion, tumor-induced
angiogenesis and focus on the morphological instabilities that may underlie invasive
phenotypes.

In the simulated model, we made several simplifications including the assumption that the
tumor and host cells were closely packed and moved with the mass averaged velocity field.
We also assumed that viable and tumor cells were indistinguishable from one another from
the perspective of cell-cell adhesion and that the adhesion energy depended solely on total
tumor volume fraction ϕT rather than the individual components directly. We further
postulated that the interstitial liquid could be decoupled from the solid cell evolution and
that the cells moved with the mass-averaged velocity arising from a generalized Darcy’s
law.

In the future these assumptions will be relaxed and additional biological aspects will be
added. For example, the adhesion energy may not simply depend on ϕT but instead on the
different tumor species directly. In addition, interstitial fluid transport should be coupled
with the motion of cells in a more physical way, as is done in the mixture models by
Breward et al. (2003); Byrne and King (2003); Byrne and Preziosi (2003); Araujo and
McElwain (2005a). Additionally, for some cases the treatment of cells as a fluid may be
unreasonable, and more realistic models of soft tissue mechanics may be employed. These
include elastic, poroelastic and viscoelastic models, e.g., (Jones et al., 2000; Ambrosi and
Mollica, 2002; Lubarda and Hoger, 2002; Araujo and McElwain, 2004; Ben-Amar and
Gorielly, 2005; Fung, 1990; Humphrey, 2003; Roose et al., 2003; and Please, 2004). These
effects may be included in our model by incorporating the relevant energy in the system
energy and following the mixture model development by Araujo and McElwain (2005a,b).

The model and numerical methods presented here are capable of describing the effects of
biological events such as mutations that select for more malignant cell species, progression
of necrosis, tumor response to therapy and tumor-induced angiogenesis in a complex three
dimensional environment. It represents a computational tool to study tumor morphological
evolution observed experimentally in vitro and in vivo and will enable the modeling of the
complex interaction between diffusional instability, invasion of host tissue, vascular
development, and drug therapy through all stages of tumor progression in three dimensions.
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Appendix

A Details of thermodynamic consistency of the multi-species mixture
model

To obtain the constitutive relations for the fluxes Ji and the cell-velocities ui, we use an
energetic variational approach so that the resulting system (1) is consistent with the second
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law of thermodynamics. To satisfy the second law of thermodynamics in isothermal
systems, it is sufficient to obtain a non-increasing free energy functional since this is
equivalent to a non-decreasing entropy. In particular, the Helmholtz free energy E = U − θs
where U is the internal energy, θ is the temperature and s is the entropy (e.g., see
(Rowlinson and Widom, 1982; Landau, 1984)). As in Sec. 2.2, we take the Helmholtz free

energy of the system to be of the form  , where

(A.1)

Next, we take the time derivative of E. This is equivalent to varying the functions ϕi
simultaneously and independently. Using Eq. (1), assuming the mass-exchange terms Si = 0
and integrating by parts, gives

(A.

2)

where  , and p̃ is a Lagrange multiplier (the pressure) that may be introduced

since  . Further,

The boundary terms arise from integrating by parts and using the divergence theorm (for
brevity, we do not present them here). Assuming natural boundary conditions, these terms
vanish. Next, write

(A.3)

where u is the mass averaged velocity and wj is the deviation from the mass averaged
velocity (i.e., diffusion velocity). Plugging these into Eq. (A.2) and performing algebraic
manipulations, we get
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(A.4)

Assuming now that each term separately is dissipative yields a generalized Fick’s law for
the flux

(A.5)

where M ̄i is a positive-definite matrix representing the diffusive mobility of the ith

component, and velocity

(A.6)

where k̄, k̄i are non-negative cell motilities that reflect the response of the average and

individual motions of cells to pressure and adhesive forces. Recall that  from
Eq. (2). The accompanying energy dissipation is

(A.7)

where  .

To accomodate a scenario in which the water volume fraction is constant and hence the total
solid volume fraction is constant, the previous analysis and constitutive relations presented

requires modification. We assume ϕ0 = ϕ̃W constant and  . We may
rewrite the time derivative of the energy in Eq. (A.2) as

(A.

8)

where q and p̃ are Lagrange multipliers, the liquid and solid pressure respectively, that
enforce the two constraints on the volume fractions. We then write
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(A.9)

where uS is the mass averaged velocity of the solid fractions, i.e.,

(A.10)

and wj is the deviation from the solid fraction mass averaged velocity. Plugging these into
Eq. (A.8) and performing algebraic manipulations, we get

(A.

11)

Assuming now that each term separately is dissipative yields the following
thermodynamically consistent constitutive relations:

(A.12)

(A.13)

(A.14)

(A.15)
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where k̄0, k̄, k̄j and M ̄j are positive definite matrices and  . Note that both the
solid and water pressures appear in the mechanical fluxes Jj and thus the solid and water
phases couple. The energy dissipation here is analogous to that in Eq. (A.7).

We can further simplify the problem if we assume that there is no mechanical flux of the

water, i.e., J0 = 0, and thus  . In this case, arguing similarly as above, we obtain
the constitutive relation for the mechanical fluxes:

(A.16)

for 1 ≤ j ≤ N − 1 and  . Taking ρj = ρ and absorbing ρ in into M̄j yields the
results in Sec. 2.3.

Appendix

B Details of the sharp-interface matched asymptotic expansions
The method of matched asymptotic expansions can be used to show the formal convergence
of solutions of the diffuse interface model (43)–(53), in the limit as ε → 0, to those of the
classical sharp interface model given in Sec. 3.6. Briefly, the method is as follows (e.g., see
(Pego, 1989; Lee et al., 2002) for details). Assume that at time t = 0, there is a smooth
transition layer of width ε separating the tumor and host domains. In ΩT, ϕT ≈ 1 and in ΩH,
ϕT ≈ 0, which are the wells of the nondimensional local interaction energy. Let ΣT be a
curve centered in the transition layer. The idea is to expand ϕT, uS, p and n in powers of ε
both away from the transition layer (outer expansion), i.e.,

(B.1)

(B.2)

(B.3)

(B.4)

and inside the transition region (inner expansion). In the inner expansion, a stretched local
coordinate system (with respect to ΣT) is used. Let the interface be represented by ΣT(t) =
{ψ(x, y, z, t) = 0}, where ψ(x, y, z, t) is a signed distance function which measures the
distance to the interface (ψ < 0 denotes the ΩT region). Introduce the stretched local
coordinates (x̂, ŷ, ẑ) where (x̂, ŷ) denote tangential coordinates in ΣT and ẑ = ψ/ε. We
assume uS = υ̂1t1 + υ̂2t2 + ŵζ where υ̂1, υ̂2 and ŵ are the components of the cell-velocity
in the tangential and normal directions to the interface. We then take the inner expansions:

(B.5)
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(B.6)

(B.7)

(B.8)

By substituting these expansions into the equations, introducing the appropriate coordinate
transformations of the differential operators in the inner region and matching powers of ε,
the field equations may be determined in the ε → 0 limit. By evaluating the outer and inner
expansions in a region near the edge of the transition layer where both expansions are valid
and matching the results, the sharp interface jump conditions may be recovered. At order 1/
ε, we find that p−1 is constant in both ΩT and ΩH. From the inner expansion, and the
matching condition, we conclude that p(−1) is the same constant in each domain and thus
does not contribute to the velocity. At the next order in ε, (e.g., ε0), the solutions of the

diffuse interface system satisfy  in ΩT and  in ΩH. Further, the other order ε0

variables satisfy the sharp interface system given in Sec. 3.6.
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D.1.
Top: Representation of a one dimensional tumor by the continuous function ϕT. As ε is
reduced (from ε1 to ε2), the thickness of the diffuse interfacial region is reduced. The
interface is chosen conveniently, but arbitrarily, to be ΣT = {x|ϕT(x) = 0.5}. For comparison
we plot the sharp interface representation of the tumor as well. Bottom: Representation of a
two dimensional tumor by the function ϕT. Apart from the region through which it has a
large gradient, the range of ϕT is essentially {0, 1}. ϕT = 1 in the tumor region ΩT, and ϕT =
0 in the host tissue region ΩH.
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D.2.
(Color online.) Growth of a radially-symmetric three-dimensional tumor with surface
tension γ = 1.0. All other parameters are given in Tab. C.3. The tumor develops a necrotic
core and grows to a steady size, with final radius approximately 4.35. The steady-state is a
dynamic one, where cells are constantly undergoing mitosis and lysis at a balanced rate.
Note that for this radially symmetric case the surface tension has no effect on the
equilibrium radius, but only on the pressure and cell velocity inside the tumor.
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D.3.
(Color online.) Near-equilibrium (t = 100) radially-symmetric three-dimensional tumors
with varying interfacial thickness. Except for the value of ε, all parameters are the same as
in Fig. D.2; See Tab. C.3. These results are confirmation of the asymptotic analysis in Sec.
3.6. The steady radius for ε = 0.0125 is x ≈ 4.356; the predicted cell pressure jump is [p] ≈
0.4552. The jump predicted by the sharp interface model for a tumor of this radius is 0.4591.
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D.4.
a The evolution of the contours ϕV = 0.5 during growth. The viable cells are primarily
contained between the inner and outer contours. The biophysical parameters are given in
Tab. C.4 and the grid sizes are (solid) hmin = 20.0/256, s = 1.0 × 10−2. At time t = 45, a
comparison is made with a higher resolution simulation (dashed) with hmin = 20.0/512, s =
5.0 × 10−3.
b A close-up view of the pressure field shown at t = 45 (left); and the nutrient and pressure
fields at t = 47.5 (right, top and bottom), for the case shown in Fig. D.4a. Superimposed on
the pressure plot on the left are the tumor cell density contours and the cell velocity field.
This shows that cells at the tip of the bulb have a net outward velocity due to higher
proliferation because of better access to nutrient, while the lower proliferation of cells in the
invaginated, lower nutrient regions leads to mass involution. The tumor has evolved by
diffusional instability into a complicated, but highly symmetric shape.
c A histological section of an in vitro tumor spheroid showing the swirling motion of cells
near the protruding bud from the study in (Frieboes et al., 2006). Reprinted with permission
from the American Association for Cancer Research.
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D.5.
a The evolution of the contours ϕV = 0.5, together with the adaptive mesh, during growth.
The viable cells are primarily contained between the inner and outer contours. The
biophysical parameters are given in Tab. C.4. There are three levels of refinement; each
level of refinement has half the grid spacing of the one on the level below. The coarsest
level, level 0, is 642. The finest level, level 3, has the equivalent resolution of a 5122 mesh.
The time step is s = 1 × 10−2. The bottom right image shows the full viable cell region.
White corresponds to ϕV ≈ 1, black, ϕV ≈ 0.
b (a) The water pressure and water velocity field and (b) the cell pressure and cell velocity at
t = 125 for the simulation from Fig. D.5a.
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D.6.
Growth of a two-plus-four mode tumor with three different cell adhesions γ. The ϕV = 0.5
isosurface is shown. In simulation (a) γ = 0; in (b) γ = 0.1; and in (c) γ = 1.0. All other
parameters are the same for the three cases and are given in Tab. C.3. For γ = 0 and 0.1,
both the two and the four modes are unstable during growth, while for γ = 1.0 only the two
mode is unstable. This behavior is consistent with linear analysis (Byrne and Chaplain,
1996b; Cristini et al., 2003)).
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D.7.
(Color online.) Snapshots showing the adaptive mesh from the tumor growth simulation
from Fig. D.6(a) where γ = 0. The ϕT = 0.5 isosurface is shown, where in the interior of the
shape ϕT ≈ 1 and in the exterior ϕT ≈ 0. The coarsest level, level 0, is a 323 grid (not
shown), and there are 2 levels of refinement. The mesh spacings are h1 = 20/64 (blue boxes),
and h2 = hmin = 20/128 (red boxes).
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Table C.1

Nondimensional dependent variables from Eqs. (55)–(61). Note that we abuse notation by using the same
characters for the dimensional (on the right of “→”) and the nondimensional (on the left of “→”) field
variables.

viable tumor cell volume fraction ϕV → ϕV/ϕ̃S dead tumor cell volume fraction ϕD → ϕD/ϕ̃S

host cell volume fraction ϕH → ϕH/ϕ̃S nutrient concentration n → n/n̄∞

cell velocity u → u/(ℒλ̄M) pressure p → p/p̄T

interaction energy f → f/Ē
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Table C.2

Nondimensional parameters from Eqs. (55)–(61). Parameters with an overbar are dimensional.

Rate of nutrient transfer from vasculature

Nutrient level in the blood nC = n̄C/n̄∞ Diffusivity in host tissue DH = DH̄/D̄T

Nutrient limit for cell viability nN = n̄N/n̄∞ Blood pressure in neo-vasculature pC = p̄C/p̄T

Rate of volume loss due to apoptosis λA = λ̄A/λ̄M
Rate of volume loss due to necrosis λN = λ̄N/λ̄M

Rate of volume loss due to degradation λL = λ̄L/λ̄M
Adhesion force

Intermixing thickness Mobility M = M̄ Ē/ (λ̄Mℒ2)

Motility k = k̄/k̿
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Table C.3

Nondimensional parameters used in the radially symmetric and non-symmetric three-dimensional numerical
simulations shown in Figs. D.2, D.3, D.6, and D.7. These parameters are chosen such that the corresponding
steady-state, radially-symmetric tumor will have a radius of about 4.3. See Figs. D.2 and D.3.

0.0 0.0

DH = D̄H/D̄T 1.0 nN = n̄N/n̄∞ 0.11

λA = λ̄A/λ̄M
0.0 λN = λ̄N/λ̄M

3.0

λL = λ̄L/λ̄M
1.5 0.0 (Figs. D.6a, D.7)

0.1 (Fig. D.6b)
1.0 (Figs. D.2, D.3, D.6c)

M 10.0 ε 0.1 (Figs. D.2, D.3(a), D.6, D.7)
0.05 (Fig. D.3(b))
0.025 (Fig. D.3(c))

0.0125 (Fig. D.3(d))
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Table C.4

Nondimensional parameters used in the two-dimensional numerical simulations shown in Figs. D.4a, D.4b, D.
5a, and D.5b.

0.0 (Figs. D.4a,D.4b)
0.5 (Figs. D.5a, D.5b)

0.0

DH = D̄H/D̄T 1.0 × 103 (Figs. D.4a, D.4b)
1.0 (Figs. D.5a, D.5b)

nN = n̄N/n̄∞ 0.6 (Figs. D.4a, D.4b)
0.4 (Figs. D.5a, D.5b)

λA = λ̄A/λ̄M
0.0 λN = λ̄N/λ̄M

3.0

λL = λ̄L/λ̄M
1.0 0.0

M 10.0 ε 0.1
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