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Abstract
Interactions between disseminated tumor cells (DTCs) and stromal cells in the microenvironment
are critical for tumor colonization of distal organs. Recent studies have shown that vascular cell
adhesion molecule-1 (VCAM-1) is aberrantly expressed in breast cancer cells and mediates pro-
metastatic tumor-stromal interactions. Moreover, the usefulness of VCAM-1 to DTCs in two
different organs –lung and bone– is based on distinct mechanisms. In the lungs, VCAM-1 on the
surface of cancer cells binds to its counter-receptor, the α4β1 integrin (also known as very-late
antigen, VLA-4), on metastasis-associated macrophages, triggering VCAM-1 mediated activation
of the PI3K growth and survival pathway in the cancer cells. In the bone marrow, cancer cell
VCAM-1 attracts and tethers α4 integrin-expressing osteoclast progenitors to facilitate their
maturation into multinucleated osteoclasts that mediate osteolytic metastasis. These findings
highlight the importance of direct interactions between DTCs and stromal cells during tumor
dissemination and draw attention to the possibility of targeting the α4 integrin-VCAM-1
interactions in metastatic breast cancer. Anti-α4 integrin inhibitors have been developed to treat
various diseases driven by massive leukocyte infiltrates and have gained FDA approval or are
undergoing clinical trials. Testing these drugs against tumor-stromal leukocyte interactions may
provide a new strategy to suppress lung and bone relapse of breast cancer.

Background
Over the last several decades, early detection, surgical removal and targeted therapy have
improved treatment outcome for primary breast tumors. However, breast cancer still has a
high mortality rate which is primarily due to metastatic disease. Lung, bone, brain and liver
are the most common sites of distant dissemination (1, 2). Metastasis from primary sites to
distal organs is a complex process that involves a series of sequential steps: invasion and
intravasation of tumor cells from the primary tumor sites to enter the circulation,
extravasation of these circulating tumor cells (CTCs) into distant tissues, and final
colonization of the seeded organ (3, 4). Even though CTCs are present in large numbers in
the bloodstream, only a small proportion of these cells succeed in forming distal metastasis
(1, 5). As envisioned in the `seed and soil' hypothesis (6, 7), the organ tropism of metastasis
depends on the complex interplay between tumor cells and the unique microenvironments of
different distal organs. The underlying mechanisms of this interplay are just beginning to be
elucidated. Two recent studies on a cell surface molecule that mediate cell adhesion, termed
vascular cell adhesion molecule-1 (VCAM-1), provide new insights into these mechanisms.
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When aberrantly expressed in breast cancer cells, VCAM-1 mediates distinct tumor-stromal
interactions that are unique to lung and bone microenvironments and facilitate metastasis to
these sites (8, 9). Little is known about the function of VCAM-1 in other cancers. However,
VCAM-1 expression has been reported in gastric and renal carcinomas, and melanomas (10–
12), where it might plays roles similar to those recently reported in breast cancer (8, 9). The
new work identifies VCAM-1 as an interesting new player in tumor progression and a target
worth considering for potential therapies against lung and bone metastasis of breast cancer
and other cancers.

VCAM-1 as an adhesion molecule in endothelial cells
VCAM-1 is an immunoglobulin (Ig)-like adhesion molecule with seven extracellular Ig
domains that are mainly expressed in endothelial cells (13, 14). While expressed at low level
on resting endothelial cells, VCAM-1 is strongly induced by several inflammatory cytokines
(15, 16). VCAM-1 binds with high affinity to the integrins α4β1 (also known as very-late
antigen, VLA-4) and α4β7. α4β1 in particular is a well-studied counter-receptor expressed
on the surface of several cell types of the hematopotietic lineage including lymphocytes,
monocyte/macrophages and eosinophils (17). VCAM-1 plays a critical role in the
inflammatory response by recruiting leukocytes to acute and chronic inflammatory sites (15,
16). In addition to mediating leukocyte adhesion on endothelial cells, VCAM-1 can activate
signaling pathways to facilitate leukocyte passage from blood to tissue. The short
intracellular tail of VCAM-1 interacts with Ezrin (also known as cytovillin or villin-2), a
member of the ERM (Ezrin/Radixin/Moesin) protein family (18). ERM are cytoplasmic
adaptor proteins that link various transmembrane proteins to the actin cytoskeleton (18). In
endothelial cells, VCAM-1 clustering, either by antibody cross-linking or integrin binding,
triggers the activation of Rac1, which is a Rho-like GTPase (19). The activation of Rac1
results in the rearrangement of the cytoskeletal network, which is thought to remodel the
tight junctions between vascular endothelial cells and consequently facilitate
transendothelial migration. Circulating melanoma cells expressing α4 integrin have been
shown to interact with VCAM-1 on endothelial cells to facilitate extravasation and
metastasis in distal organs (20–22). Therefore, in addition to passive entrapment of tumor
cells by size restriction (4), capillary beds may actively participate in the extravasation into
disseminated sites of CTCs via the adhesion molecules on vascular endothelial cells.

Role of VCAM-1 in lung metastasis of breast cancer
Studies combining animal models and analyses of clinical samples identified a lung
metastatic gene signature (LMS) as a set of 18 genes whose expression is associated with
lung relapse in estrogen receptor-negative (ER−) tumors and mediates lung metastasis in
xenograft models (23). Understanding the molecular mechanisms of how the LMS genes
mediate lung metastasis can provide novel treatment modalities for lung metastasis of breast
cancer. VCAM-1 is among these 18 genes, and its expression in breast cancer cells enhances
the ability to form metastases in the lungs (8, 23). The obvious question is why do cancer
cells with a high propensity to form lung metastasis abnormally overexpress a vascular
endothelial adhesion molecule? Our work aiming at question indicates that the high
expression of VCAM-1 in tumor cells does not influence tumor cell intravasation from the
primary sites, the number of CTCs in blood stream, or the CTC extravasation into the lungs.
Instead, VCAM-1 promotes lung colonization by providing juxtacrine survival signaling that
protects tumor cells from death (Figure 1).

Similar to its adhesive function in endothelial cells, VCAM-1 expressed on the surface of
tumor cells tethers leukocytes that express α4 integrins. Analyses on leukocyte
subpopulations in lung metastatic lesions indicate that tumor-associated monocytes and
macrophages prominently express α4 integrins, but also express higher level of α4 integrins
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compared to T and B lymphocytes. Macrophages have been shown to play important roles in
primary tumor growth and lung metastasis at different steps of the lung metastatic process,
including promoting tumor angiogenesis, tumor invasion at the edge, tumor cell
intravasastion into blood stream and lung colonization (24, 25). Most of these studies have
been done on breast tumors and show that the crosstalk between tumor cells and tumor-
associated macrophages (TAMs) is mediated by various soluble factors secreted by tumor
cells and TAMs. However, recent studies have shown that depleting lung macrophages or
preventing the recruitment of macrophages into lung by blocking CCL2-CCR2 signaling in
mouse models significantly decreases lung metastasis, via unknown molecular mechanisms
(26, 27). The recent work on VCAM-1 provides one such mechanism (8). Tumor cells
entering the lung parenchyma are immediately surrounded by macrophages, probably as a
result of an innate immune response. VCAM-1 itself does not appear to play an active role
in recruiting macrophages to the vicinity of tumor cells. However, the close proximity of
macrophage and tumor cells subsequently facilitates contact between the α4 integrins and
VCAM-1. This direct contact initiates juxtacrine stimulation by clustering VCAM-1 on
tumor cells to activate pro-survival AKT signaling. VCAM-1 engagement by α4 integrins
recruits Ezrin to the VCAM-1 cytoplasmic tail, leading to phosphorylation of Ezrin on
tyrosine. Once activated, Ezrin serves as an adaptor that binds both PI3K and its
downstream mediator, AKT, leading to activation of AKT-mediated cell survival signaling
(8). Similar survival advantage from VCAM-1 is observed in TAM-enriched primary tumor
sites when lung metastatic tumor cells were back-seeded into primary tumors (8). Therefore,
α4 integrin-expressing TAMs create a favorable microenvironment for high VCAM-1
expressing tumor cells in lungs and also in areas of primary tumor infiltration. A direct
interaction between lung macrophages and DTCs via VCAM-1 evokes tumor cell pro-
survival signaling and promotes lung metastasis.

Role of VCAM-1 in bone metastasis of breast cancer
Another set of studies identified a role of VCAM-1 in osteolytic bone metastasis by breast
cancer cells that have emerged from latency in the bone marrow (9). Although high
expression of VCAM-1 is observed in clinical tissue samples of lung metastasis and bone
metastases compared to brain metastasis tissues, VCAM-1 did not directly support the
survival of bone metastatic breast cancer cells in the marrow in mouse models (8). However,
VCAM-1 was highly expressed in aggressive clones that emerged from an indolent bone
metastatic breast cancer cell line (9). Hyperactive NF-kB signaling appears to drive
VCAM-1 expression in these cells. Regardless, a high level of VCAM-1 expression
mediates the aggressive osteolytic phenotype of these “post-dormancy” breast cancer cells.
VCAM-1 also mediated bone metastasis in other mouse and human breast cancer cell lines.
Notably, systemic administration of blocking antibodies targeting either α4 integrin or
VCAM-1 decreased bone metastasis in these mouse models (9).

VCAM-1 expression had no effect on the proliferation of breast cancer cells in the bone
marrow (9). So how does VCAM-1 facilitate bone metastasis in these “post-dormancy” cells
that egressed from the indolent stage? Bone metastasis proceeds with the outgrowth of
micrometastases in the bone marrow and areas adjacent to the bone matrix. As the lesion
grows, it engages osteoclasts in the destruction of bone matrix, causing the release of bound
TGF-β and other growth factors that further stimulate the cancer cells to release more
osteoclast activating factors. This is referred to as the “vicious cycle” of bone metastasis (28,
29). Thus, osteolytic metastasis is dependent on the differentiation of osteoclast precursors
and their maturation into multinucleated osteoclasts. Bone metastatic cells have been shown
to increase the activity of osteoclast progenitors through RANKL (receptor activator of
nuclear factor kB ligand) (29, 30). The study by Lu et al. showed that osteoclast progenitors
in the bone marrow express α4β1 integrin. The tethering of these cells to the VCAM-1 rich
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surface of the cancer cells apparently stimulates osteoclast differentiation by facilitating cell
fusion into multinucleated, mature osteoclasts (Figure 1) (9).

Clinical-Translational Advances
The prevention and treatment of metastatic breast cancer remain a challenge. The recent
findings on the roles of VCAM-1 in lung and bone metastasis provide one potential target to
control the disease. Drugs that disrupt the binding of α4 intergrins to VCAM-1 have already
been in development to treat diseases involving massive influx of leukocytes into
inflammatory sites (31, 32). Natalizumab, a monoclonal antibody against α4 integrin, is an
FDA-approved drug for the treatment of relapsing multiple sclerosis (MS) and inflammatory
bowel disease (IBD). Furthermore, small molecule inhibitors against α4 integrin are in
clinical trials. Based on the highlighted studies, these drugs have potential usefulness in
treating metastatic breast cancer by interrupting α4 intergrin-VCAM-1 interactions.

Natalizumab
Natalizumab (TYSABRI™, Elan Pharmaceuticals and Biogen Idec) is a humanized
monoclonal antibody that binds to α4 integrin chains and prevents formation of the α4β
complexes. Natalizumab is generated by fusing the complementary determining regions of
antibody AN100226m and human immunoglobulin (IgG4) framework, in order to reduce
immunogenicity and increase the half-life of the drug in patients (33, 34). Its efficacy in
treating MS was preclinically demonstrated using an animal model of autoimmune
encephalomyelitis (EAE) (35). Cerebral microvessels in these animals, as well as in MS
patients, display high VCAM-1 expression prior to perivascular leukocyte infiltration (36).
AN100226m suppressed and reversed the disease progression in the EAE animal model
(37). Natalizumab can block α4 integrin binding to both MAdCAM-1 and VCAM-1, the
two adhesion molecules mediating leukocyte trafficking in gut-associated lymphoid organs
and inflammatory sites (15, 38, 39). According to the public accessible website from U.S.
National Institute of Health (ClinicalTrials.gov), Biogen Idec additionally conducted a
clinical trial testing the utility of natalizumab as a potential therapy for multiple myeloma
(MM) (40). In animal models of MM, anti-α4 integrin treatment decreases the growth of
MM in bone marrow (41–43). This suppressive effect is due to the disruption of α4 integrin
interactions between tumor and bone marrow stromal cells as well as tumor cells and
extracellular matrix proteins (43–47).

Although no significant adverse events were observed in earlier clinical trial studies of
natanizumab, a small proportion of patients developed progressive multifocal
leukoencephalopathy (48). This is a rare but fatal neurological condition that occurs in
patients with severe immune deficient condition (49). Therefore, Natalizumab is not
approved in combination with immunossupressive agents. Immunosuppression is a common
adverse effect of many chemotherapeutic agents used to treat breast cancer, creating a
significant challenge for the potential use of natalizumab to treat metastatic breast cancer.

Small molecule inhibitors against α4 integrin
Small molecule inhibitors against a4 integrin have been developed, largely by structure
based design. They are in clinical testing for its efficacy in treating autoimmune diseases,
but still in much more preliminary stage than antibody based therapy. Importantly, these
small molecules have several advantages over antibody based therapy. Although the human
IgG4 framework used to humanize natalizumab does not activate the complement cascade
and has low affinity to Fc receptors, antibodies against natalizumab still emerged in 11% of
MS patients and 7% of IBD patients in the clinical trials (50, 51). This problem is largely
averted with small molecules. Furthermore, long-term treatment is required for autoimmune
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diseases and potentially in breast cancer patients to with metastasis. Natalizumab needs to be
administered intravenously over one hour every four weeks, whereas small molecule
inhibitors of α4 integrin make oral bioavailability possible (52). Despite these advantages
over Natalizumab, the application of small molecule inhibitors against α4 integrin target a
biologically important interaction and therefore would need to be closely monitored for
possible adverse reactions. Currently, an orally active α4 integrin antagonist, AJM300,
reportedly is under clinical trials in IBD patient (53) and a non-oral small inhibitor,
ELND002, is in phase I clinical trials in MS patients (54).

Disrupting α4 integrin-VCAM-1 interactions between cancer cells and stromal components
of the tumor microenvironment offers a possibility to suppress the outgrowth of
disseminated breast cancer cells. Additional studies are needed in order to better identify the
efficacy of this approach, but the recent reports (8, 9) provide encouraging evidence in
support of this possibility.
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Figure 1.
VCAM-1 expressed in breast cancer cells mediates lung and bone metastasis by interacting
with stromal leukocytes that express α4 integrin counter-receptors. In primary tumor sites
and in the pulmonary parenchyma, interactions with macrophages initiate juxtacrine
stimulation through the C-terminal tail of VCAM-1 and the adaptor protein Ezrin, which
enhances PI3K-Akt cell survival signaling. In the bone marrow, cancer cell VCAM-1
attracts and tethers myeloid osteoclast progenitor cells to facilitate their maturation and
stimulate osteolytic metastasis.
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