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Abstract
Humans can attend to different objects independent of their spatial locations. While selecting an
object has been shown to modulate object processing in high-level visual areas in occipitotemporal
cortex, where/how behavioral importance (i.e., priority) for objects is represented is unknown.
Here we examined the patterns of distributed neural activity during an object-based selection task.
We measured brain activity with functional magnetic resonance imaging (fMRI), while
participants viewed two superimposed, dynamic objects (left- and right-pointing triangles) and
were cued to attend to one of the triangle objects. Enhanced fMRI response was observed for the
attention conditions compared to a neutral condition, but no significant difference was found in
overall response amplitude between two attention conditions. By using multi-voxel pattern
classification (MVPC), however, we were able to distinguish the neural patterns associated with
attention to different objects in early visual cortex (V1 to hMT+) and lateral occipital complex
(LOC). Furthermore, distinct multi-voxel patterns were also observed in frontal and parietal areas.
Our results demonstrate that object-based attention has a wide-spread modulation effect along the
visual hierarchy and suggest that object-specific priority information is represented by patterned
neural activity in the dorsal frontoparietal network.

Keywords
attention; fMRI; object-based; pattern classification; top-down control

1. Introduction
Attention helps us selectively process information in complex visual scenes. Visual attention
can be directed towards spatial locations (Posner, 1980; Treisman & Gelade, 1980), feature
properties such as color or orientation (Maunsell & Treue, 2006; Saenz, Buracas, &
Boynton, 2002). There is also considerable behavioral evidence for object-based attention,
an ability to select whole perceptual objects, often independent of their spatial locations
(Blaser, Pylyshyn, & Holcombe, 2000; Duncan, 1984; Kanwisher & Driver, 1992). Object-
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based attention is important because objects tend to be the focus of our perceptual awareness
and also the target of our action. Object-based selection is particularly necessary when
different objects occupy similar location (e.g., due to occlusion).

Previous functional magnetic resonance imaging (fMRI) studies have revealed enhanced
response in higher-level object-selective regions (e.g. fusiform face area and lateral occipital
complex) during object-based selection (Murray & Wojciulik, 2004; O'Craven, Downing, &
Kanwisher, 1999; Serences, Schwarzbach, Courtney, Golay, & Yantis, 2004). Recent studies
using neural pattern analyses also revealed identity- and category-specific population
responses during visual search tasks in these areas (Peelen, Fei-Fei, & Kastner, 2009; Peelen
& Kastner, 2011; Zhang et al., 2011). Although the majority of studies on object-based
attention have focused on high-level visual areas, neurophysiological studies using a curve
tracing task have demonstrated a modulation of neuronal activity due to object-based
selection in early visual cortex such as V1 (Khayat, Spekreijse, & Roelfsema, 2006;
Roelfsema, Lamme, & Spekreijse, 1998). However, there is a lack of neuroimaging
evidence on whether object-based attention can modulate early visual activity in human
cortex.

Furthermore, and more importantly for the present study, although previous studies have
documented the effects of object-based attention on visual cortex, the nature of the top-down
control signals for object-based selection is unknown. Here we hypothesized that if people
can select different objects behaviorally, there should be neural signals representing the
behavioral importance for selected objects, i.e., attentional priority, that exert top-down
modulation on sensory representations. Using a similar logic, studies on spatial attention
have suggested the dorsal frontal and parietal areas in both humans and monkeys encode
priority information for spatial locations (Bisley & Goldberg, 2010; Silver, Ress, & Heeger,
2005; Thompson & Bichot, 2005). These areas (frontal eye field and lateral intraparietal area
in monkeys and their human analog) contain topographic maps of the visual space which
provide spatial frameworks to exert top-down retinotopic-specific modulation. However, a
pure spatial priority signal is not sufficient to explain selection of stimuli that share the same
spatial location (e.g., superimposed objects). Indeed, we have shown in a recent study (Liu,
Hospadaruk, Zhu, & Gardner, 2011) that these areas also contain motion and color-selective
responses during feature-based selection. This observation suggests that the dorsal frontal
and parietal areas encode priority information for not only spatial locations, but also for
visual features. In this study, we further test whether these areas encode more abstract, non-
spatial priority signals for visual objects.

We conducted an fMRI experiment in which participants viewed a compound stimulus
including two spatially superimposed objects and performed a detection task on one of the
objects. A conventional univariate analysis identified brain areas active during object-based
selection compared to a baseline condition. Furthermore, using multivariate pattern analysis
we found distinct neural patterns for different attended objects in both dorsal frontoparietal
areas and the visual cortex. A control experiment ruled out contribution from spatial
attention. These results suggest that the dorsal frontoparietal areas represent priority
information for selected objects and modulate object processing in the visual cortex.

2. Material and Methods
2.1 Participants

Six individuals (two females) participated in the main experiment; all had normal or
corrected-to-normal vision. Two of the participants were authors, the rest were graduate and
undergraduate students at Michigan State University. Four individuals (1 female)
participated in the control experiment, two of whom also participated in the main
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experiment, including one author. All participants were given informed consent according to
the study protocol that was approved by the Institutional Review Board at Michigan State
University. Participants were compensated at the rate of $25 per scanning session.

2.2 Stimuli and display
The stimuli were composed of two superimposed equilateral triangles (2.17-4.33° in length
per side, 0.15° edge in thickness, luminance: 18.2 cd/m2) presented on a dark background
(0.01 cd/m2). The triangles were centered at fixation and were oriented such that one pointed
to the left and the other one pointed to the right (see Figure 1). All the stimuli were
generated using MGL (http://gru.brain.riken.jp/doku.php?id=mgl:overview) running in
Matlab (Mathworks, Natick, MA).

Images were projected on a rear-projection screen located in the scanner bore by a Toshiba
TDP-TW100U projector outfitted with a custom zoom-lens (Navitar, Rochester, NY). The
screen resolution was set to 1024×768 and the display was updated at 60 Hz. Participants
viewed the screen via an angled mirror attached to the head coil at a viewing distance of 60
cm.

2.3 Design and Procedure
2.3.1 Main experiment: task and procedure—Two triangles centered in a fixation
cross expanded and contracted in a counter-phase fashion, i.e., when one triangle increased
in size the other decreased in size and vice versa (Figure 1A). The white fixation cross
(width: 0.25°) was displayed in the center of the screen throughout the experiment.
Participants were cued to attend to either the triangle with a left-pointing vertex (T1), the
triangle with a right-pointing vertex (T2), or the fixation (null). At the beginning of each
trial, an arrow cue (“←”, “→”, “↔”) was presented for 500 ms, which indicated participant
to attend to T1, T2, or the fixation. Trials were 19.8 s long, with the order pseudo-
randomized such that the first trial in a run was always a null trial and each trial type
followed/preceded each other trial type equally often. Each scanning run contained 5 trials
of each type, for a total of 15 trials (297 s/run). In addition, an 8.8 s fixation period was
presented at the beginning of the run whose imaging data were subsequently discarded. Each
participant completed 10 of these runs in the scanner for a total of 50 T1, 50 T2 and 50 null
trials.

Meanwhile, participants performed a luminance change detection task which probed
whether they were able to selectively attend to the cued object. Both objects underwent brief
luminance increments on one of the edges at randomized intervals (duration: 0.5 s, average
interval: 5.43 s), and the timing of the luminance increments were randomized
independently for two objects. Participants were instructed to count the number of
luminance increments (targets) they detected in the cued object, which could be 3, 4, or 5.
At the end of each trial, the fixation cross turned to yellow for 1 s, which indicated to
participants to report the number of targets. Participants pressed one of three buttons using
their index finger, middle finger, or ring finger, to indicate 3, 4, or 5 targets occurred on the
cued object, respectively. The magnitude of the luminance increments was determined in a
separate behavioral experiment, using a 1-up 2-down staircase procedure, to maintain
performance at an intermediate level.

2.3.2 Control experiment—The control experiment was run to test whether a spatial
attention bias can be detected in our protocol. The stimuli and timing were identical to the
main experiment while the task and instruction differed. The arrow cues instructed
participants to attend to either the corner of the cued object, or the fixation cross. Brief
luminance increments (0.5 s) at the corner of the triangles (17% along the length of the edge,
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see Figure 6A), as well as luminance increments of the fixation cross, appeared at random
times and participants pressed a button to indicate their detection of the luminance change
on the attended object (T1, T2, or fixation). The magnitude of the luminance increment was
controlled by separate 1-up 2-down staircases to maintain performance at an intermediate
level. Each participant completed 6 scanning runs, which yielded 30 trials for each attention
condition (T1, T2, and fixation).

2.3.3 Eye tracking—To evaluate the stability of fixation, we monitored the eye position
outside the scanner when participants performed the attention task. All participants took part
in the eye tracking session, and each participant performed one run of the attention task. The
position of the right eye was recorded with an Eyelink II system (SR Research, Ontario,
Canada) at 250 Hz. Eye position data were analyzed offline using custom Matlab code.

2.3.4 Localizer experiment: task and procedure—For each participant, we also ran a
localizer task to identify the lateral occipital complex (LOC), a key brain area for shape
processing (Grill-Spector, Kourtzi, & Kanwisher, 2001). Twenty intact images (9.74°) of
simple line drawings of 3-D recognizable object (“on”) or their scrambled version (“off”)
were presented in a 19.8 s block. Each block contained 20 object images, with each image
presented for 495 ms followed by a fixation interval of 495 ms. A total of 16 blocks (8 on-
off cycles) were presented in one scanning run. In addition, an 8.8 s fixation period was
presented at the beginning of the scanning run whose imaging data were subsequently
discarded. Participants were instructed to maintain fixation on a cross in the center, and to
press a button whenever they noticed two identical images in a row (one-back matching).
Using this task we defined object selective regions LOC which were two areas in the
occipital cortex, one on the lateral surface and one in ventral occipitotemporal regions
(Grill-Spector et al., 2001).

2.3.5 Retinotopic mapping—Early visual cortex and parietal areas containing
topographic maps were defined in a separate scanning session for each participant. We used
rotating wedge and expanding/contracting rings to map the polar angle and radial
component, respectively (DeYoe et al., 1996; Engel, Glover, & Wandell, 1997; Sereno et al.,
1995). Borders between visual areas were defined as phase reversals in a polar angle map of
the visual field. Phase maps were visualized on computationally flattened representations of
the cortical surface, which were generated from the high resolution anatomical image using
FreeSurfer and custom Matlab code. In addition to occipital visual areas, our retinotopic
mapping procedure also identified topographic areas in the parietal areas, IPS1-4 (Liu et al.,
2011; Swisher, Halko, Merabet, McMains, & Somers, 2007). In a separate run, we also
presented moving vs. stationary dots in alternating blocks and localized the human motion-
sensitive area, hMT+, as an area near the junction of the occipital and temporal cortex that
responded more to moving than stationary dots (Watson et al., 1993). Thus for each
participant, we indentified the following areas: V1, V2d, V2v, V3d, V3v, V3A/B, V4, V7,
hMT+ and four full-field maps in the intraparietal sulcus (IPS): IPS1, IPS2, IPS3, and IPS4.

2.4 MRI Data acquisition
All functional and structural brain images were acquired using a GE Healthcare (Waukesha,
WI) 3T Signa HDx MRI scanner with an 8-channel head coil, in the Department of
Radiology at Michigan State University. For each participant, high-resolution anatomical
images were acquired using a T1-weighted MP-RAGE sequence (FOV = 256 mm × 256
mm, 180 sagittal slices, 1mm isotropic voxels) for surface reconstruction and alignment
purposes.
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Functional images were acquired using a T2*-weighted echo planar imaging sequence
consisted of 30 slices (TR = 2.2 s, TE = 30 ms, flip angle = 80°, matrix size = 64×64, in-
plane resolution = 3mm x3 mm, slice thickness = 4 mm, interleaved, no gap). In each
scanning session, a 2D T1-weighted anatomical image was also acquired that had the same
slice prescription as the functional scans, but with higher in-plane resolution (0.75 mm ×
0.75 mm × 4 mm) for the purpose of aligning function data to high resolution structural data.

2.5 fMRI data analysis
Data were processed and analyzed using mrTools (http://www.cns.nyu.edu/heegerlab/wiki/
doku.php?id=mrtools:top) and custom code in Matlab. Preprocessing of function data
included head movement correction, linear detrend and temporal high pass filtering at
0.01Hz. The functional images were then aligned to high resolution anatomical images for
each participant. Functional data were converted to percent signal change by dividing the
time course of each voxel by its mean signal over a run, and data from the 10 scanning runs
were concatenated for subsequent analysis.

2.5.1 Functional localizer—We performed a Fourier-based analysis on data from the
localizer experiment. For each voxel, we computed the correlation (coherence) between the
best-fitting sinusoid at the stimulus alternation frequency and the measured time series
(Heeger, Boynton, Demb, Seidemann, & Newsome, 1999). The coherence indicates the
modulation magnitude of experimental parameters on the response of the particular voxel
and thus serves as an index of how active a voxel responded to the visual stimulation. We
used a threshold coherence value of 0.3 to define the object selective area LOC.

2.5.2 Univariate analysis—For univariate analysis, each voxel's time series were fitted
with a general linear model whose regressors corresponded to the two attentional conditions
(attending T1 vs. T2). Each regressor was composed of 10 volumes, modeling the fMRI
response in a 22 s window after the onset of trial. The design matrix was pseudo-inversed
and multiplied by the time series to obtain an estimate of the hemodynamic response evoked
by the attention task. To measure the response magnitude of a region, we averaged the
deconvolved response across all the voxels in a region-of-interest (ROI).

In addition to the visual and parietal regions defined by retinotopic mapping, we also
defined ROIs active during the attention task (Figure 2). This was done by using the
goodness of fit measure (r2 value), which is the amount of variance in the fMRI time series
explained by the deconvolution model. The statistical significance of the r2 value was
evaluated via a permutation test by randomizing event times and recalculating the r2 value
using the deconvolution model. One thousand permutations were performed and the largest
r2 value in each permutation formed a null distribution expected at chance (Nichols &
Holmes, 2002). Each voxel's p-value was then calculated as the percentile of voxels in the
null distribution that exceeded the r2 value of that voxel. Using a cut-off p-value of 0.005,
we defined six additional areas that were active during the attention task: frontal eye field
(FEF), anterior intraparietal sulcus (aIPS), medial frontal gyrus (MFG), superior frontal
gyrus (mSFG), insula (INS), post-central gyrus (PCG, see Figure 2).

2.5.3 Multi-voxel pattern classification—For each voxel in a region, we obtained
single-trial fMRI response by averaging the fMRI time series between the 2nd and the 9th

time point (2.2 s to 19.8 s) after trial onset. For each ROI, there were 50 instances for each
object-based attention condition (T1 and T2) in an n-dimensional space (n is the number of
voxels). We selected voxels that were most strongly modulated by the attention task, ranked
by their r2 value. Then we used a binary Fisher linear discriminant analysis (FDA) and
cross-validation procedure (leave-one-instance-out) to evaluate the reliability of the multi-
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voxel activity patterns associated with the two attentional conditions. During the binary
FDA, we projected each test instance onto a weight vector, converting the n-dimensional
instance to a scalar which was then compared to a bias point to predict which class the
instance belonged to. We trained the FDA on 99 instances and tested on data from one
instance. The procedure was repeated for each instance of the data and we calculated overall
classification accuracy for each ROI. We varied number of voxels used for the classifier
from 1 to 200 voxels (or the maximum number of voxels for ROIs less than 200 voxels).
The classification accuracy generally improved with increasing number of voxels. However,
classification accuracy was not always a monotonic function of number of voxels; this could
be caused by noise in weakly-responding voxels as they were included in the classifier or by
overfitting when the classifier contained too many features (voxels) which could lead to
poor generalization. Because we did not perform sophisticated feature selection procedure
(De Martino et al., 2008; Yamashita, Sato, Yoshioka, Tong, & Kamitani, 2008), we used the
maximum classification accuracies for the purpose of quantification. Importantly, the
statistical tests were based on exactly the same set of voxels as those used for main
classification analysis (see below).

We then used a permutation test to evaluate the statistical significance of the classifier
performance. For each permutation, we randomly interchanged the trial labels and obtained
a classification accuracy using identical classification and cross-validation method as above.
For each ROI in each participant, we used the exactly the same set of voxels as those used to
compute the classification accuracy plotted in Figure 4A. We repeated this process 1,000
times to obtain a distribution of classification accuracies, which represented classifier
performance expected by chance. The observed classification accuracy was then compared
with this chance distribution and the significance was defined as the proportion of the
chance distribution greater than the observed classification accuracy.

2.5.4 Surface-based registration and visualization of group data—All analyses
were performed on individual subject data, and all quantitative results reported were based
on averages across individual subject results. However, to visualize the task-related brain
areas, we also performed group averaging of the individual maps (see Figure 2A). Each
participant's two hemispherical surfaces were first imported into Caret and affine-
transformed into the 711-2B space of the Washington University at St. Louis. The surface
was then inflated to a sphere and six landmarks were drawn, which were used for spherical
registration to the landmarks in the Population-Average, Landmark- and Surface-based
(PALS) atlas (van Essen, 2005). We then transformed individual maps to the PALS atlas
space and performed group averaging, before visualizing the results on the PALS atlas
surface. To correct for multiple comparisons, we set the threshold of the maps based on
individual voxel level p-value in combination with a cluster constraint.

For the r2 map (Figure 2A), we derived a voxel level p-value based on aggregating the null
distributions generated from the permutation test for each individual participant.
Specifically, 1000 randomizations were performed; in each randomization we randomly
selected one sample (with replacement) from each participant's distribution (of 1000 values).
This generated a distribution of 6000 values, which represented the maximum r2 values for
all voxels expected to be at the chance level across participants. The p-value of each
individual voxel was thus the percentile of voxels that has a higher r2 value in the null
distribution. We then performed 10,000 Monte-Carlo simulations with AFNI's AlphaSim
program, to determine the appropriate cluster size given a particular voxel-level p-value, to
control for the whole-brain false positive rate (cut-off p-value = 0.005, cluster size = 12,
whole-brain corrected false positive rate = 0.004).
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3. Results
3.1 Behavioral results

Behavior results showed that participants were able to selectively attend to the cued object.
We plotted the number of reported target as a function of number of luminance changes in
the cued and uncued object (Figure 1B). The number of reported targets increased as the
number of luminance changes (targets) on the cued object increased, but there was no such
relationship between the number of reported target and the number of luminance changes
(distracters) on the uncued object. This was supported by a two-way repeated-measures
ANOVA that showed a significant main effect of target number (F (2, 25) = 9.10, p <
0.005), and a significant interaction between number of targets and attention condition (F (2,
25) = 9.08, p < 0.005). This pattern of results suggested that participants were able to attend
to the cued object and ignore the uncued object.

We further broke down the data from the attended condition into two cued object conditions
(T1 vs. T2) and conducted a two-way repeated-measures ANOVA with factors: number of
targets and cued object. This analysis revealed a significant main effect of target number (F
(2, 25) = 28.16, p < 0.001), which suggested the participants successfully performed the
task. Furthermore, there was no interaction between the number of target and the cued object
(p > 0.5), indicating participants paid equal attention to the two objects (T1 and T2) during
the detection task.

Eye position data averaged across trials and participants were shown in Figure 1C. There
was no significant difference in mean eye position within a trial between the two attention
conditions, for either the horizontal or vertical eye position (paired t-test, p > 0.5),
suggesting participants maintained their fixation during the experiment and there was no
systematic difference between fixation behavior in T1 and T2 conditions.

3.2 Cortical areas modulated by object-based attention
We first examined cortical areas activities during the attention task, using the r2 value (see
Methods). This criterion selected voxels whose activities were consistently modulated by the
task, regardless of their relative activities between the two attention conditions (T1 vs. T2).
The group-averaged r2 map was projected onto the atlas surface and shown in Figure 2A.
Object-based attention modulated activity in a network of areas in occipital, parietal, and
frontal cortex. The occipital activity overlaps with localizer-defined areas (V1, V2, V3,
V3A/B, V4, V7, hMT+, LOC). The parietal activity ran along the intraparietal sulcus and
extended to postcentral gyrus. The posterior portion of this activity overlapped with the
retinotopically defined IPS areas (IPS1-4). We defined the anterior portion of IPS as a
separate ROI, aIPS, and the activity on postcentral gyrus and the adjacent postcentral sulcus
as PCG. Frontal activity included a region around posterior superior frontal sulcus and
precentral sulcus, the putative human frontal-eye-field (FEF, see Paus, 1996), middle frontal
gyrus (MFG), and a posterior portion of the superior frontal gyrus on the medial wall
(mSFG). All these areas were found in both hemispheres, displaying largely a bilateral
symmetry. Notably, we found activity in left central sulcus which was absent in the right
hemisphere; this is presumably the primary motor cortex (M1) as participant used their right
hand to make button press responses. To provide further localization information about the
individually defined ROIs, we showed the loci of these regions on a PALS atlas surface
(Figure 2B).

3.3 fMRI response amplitude
We next examined the mean fMRI response amplitudes in different object-based attention
conditions in individually defined ROIs. To simplify data presentation, for this and
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following analysis we combined visual areas V2 and V3 into a single area V23; V3A/B and
V7 into a combined area V3AB7; and five intraparietal regions (IPS1-4 and aIPS) into a
combined area IPS. Compared with these combined ROIs, results remained essentially the
same for individual ROIs, except the multivariate result (see below) was weaker for
individual IPS areas, presumably because these areas were small and contained fewer
voxels.

All areas showed an increase in fMRI response compared to the baseline (null) condition
Figure 3 shows fMRI time course from 16 select ROIs, separately for the left and right
hemisphere; the rest of the ROIs showed similar time courses. Overall, the two attention
conditions (T1 and T2) elicited equivalent levels of neural activity in all areas. We compared
response amplitude associated with the two attention conditions, both for each single time
point and for the average response across time points in the trial. None of the comparisons
reached statistical significance in any ROI (paired t-test, all p > .14).

Even though the two triangle objects occupied the same central location, because attention
was cued by left- and right-ward pointing arrows, participants might preferentially attend to
left and right visual field (or the left and right part of the object), respectively. We think this
spatial strategy was unlikely because the target could occur on any edge of the triangle,
which required participant to attend the whole object. Furthermore, this spatial strategy
should predict a contralateral attention effect: left hemisphere ROIs should show a higher
response when attending to rightward pointing triangle (T2) and vice versa. To test this
prediction, we first obtained a response amplitude for each condition (T1 and T2) by
averaging the time points around the peak (time points 2-5). Then for each pair of ROI (left
vs. right), we performed a two-way repeated-measures ANOVA with factor attended object
(T1 vs. T2) and hemisphere (left vs. right). We found no interaction effect among all areas
(all p>0.07), suggesting no differential attentional modulation for left and right hemishperes
associated with attending to the two objects. We also performed the same time course
analysis for all ROIs using voxels that were selected for the classifier (see below) and
obtained the same result—non-significant interaction between attended object and
hemisphere (all p>0.10). Finally, we conducted a control experiment to further rule out the
contribution of spatial attention (see section 3.6).

3.4 Multi-voxel pattern classification
Next we examined whether the patterns of brain activity varied as participants attended
different objects by using multi-voxel pattern classification. In this analysis, we further
combined the corresponding ROI in the left and right hemispheres to increase statistical
power, except for M1, which was only present in the left hemisphere. We used Fisher linear
discriminant analysis and a cross-validation procedure to evaluate the classifier performance
(see Methods). In general, classifier performance increased rapidly at small voxel numbers
but much more gradually afterwards. For the purpose of quantification, we plotted the
maximal classification accuracy for each region (Figure 4A). The average number of voxels
used for each area is shown in Figure 4C. We used a permutation test to evaluate whether
these classification accuracies were significantly above chance using the same exact voxels.
Figure 4B shows the average percentile rank of the observed accuracy in the null
distributions generated by the permutation test. This value indicates the probability of
obtaining the observed accuracy by chance and we used 5% tail as the criterion to determine
statistical significance. The classifiers reliably differentiated the object-based attention
conditions in all the visual areas (V1, V23, V4, hMT+ and V3AB7, LOC), parietal (IPS) and
frontal cortex (FEF). Classification accuracies in other frontal regions (MFG, mSFG, INS,
PCG and M1) were not significantly different from chance.
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3.5 Control analyses for cue-evoked response
Because we used visual cues at the beginning of each trial to direct participant's attention,
the classification results might be contributed by the sensory response to the cues. To
evaluate this possibility, we performed two control analyses. In the first control analysis, we
compared the classification accuracies using first and second half of the time series data
within a trial (Figure 5A). If the visual cues can account for the classification results, we
would predict higher classification accuracies in first half of the fMRI response than second
half of the fMRI response, because the sensory response to the briefly presented cue should
dissipate over time. We constructed two classifiers by using either the average response of
first 4 time points (2.2 s-11 s) or the last 4 time points (11 s-19.8 s). The rest of the
classification analysis was performed identically to the main analysis. There was no
significant difference in classification accuracy for the first vs. second half response in any
area (paired t-test, all p >.05).

To further test the sensory effect of the cue, we conducted a second control analysis by
excluding voxels that were directly stimulated by the cue. Recall that for each participant we
also conducted the retinotopic mapping procedure, which included eccentricity mapping
using expanding/contracting rings (see Methods). Thus for each voxel in a ROI we can use
its phase in eccentricity mapping to infer its preferred retinal location. We excluded voxels
whose response phase fell in the central 0.5° eccentricity (twice the size of the cue) and
performed multi-voxel classification using the remaining voxels. If sensory response to the
cue contributed to our pattern classification result, we should expect a decrease in accuracy
using the reduced voxel set. However, we found no such decrease comparing classification
accuracy from the reduced set voxels to the original set (Figure 5B, paired t-test, all p>.11).
These control analyses showed that the observed classification accuracies were not driven
by the sensory response to the attentional cues.

3.6 Control experiment for spatial attention
Although the two triangle objects in our experiment occupied the same overall location, they
were not completely overlapping. In particular, the left and right corners of the two objects
might provide anchors for employing a spatial attention strategy. That is, when cued to
attend to object 1 (T1), participants attended to its left-pointing corner, and vice versa. We
have argued against this possibility based on the task demands and the lack of contralateral
attention effects. However, it might be that participants still used such a sub-optimal strategy
and our protocol was not sensitive enough to detect such spatial biases. To evaluate how a
spatial bias might contribute to our results, we conducted a control experiment, in which
participants were explicitly instructed to attend to the corner region of the cued triangle
(Figure 6A). We performed the same univariate analysis as in the attention experiment and
conducted two-way repeated-measures ANOVA on the fMRI response amplitude with
attended object (T1 vs. T2) and hemisphere (left vs. right) as factors. We found significant
interactions between the two factors in both IPS (F(1,3)= 11.0, p<0.05) and FEF (F(1,3)=
10.1, p<0.05). The time course revealed a contralateral attention effect: attending to the left-
pointing corner (T1) resulted in a larger fMRI response in the right hemisphere ROIs and
vice versa (Figure 6B). There was an apparent asymmetry in this effect such that the
difference between the two attention conditions was larger in the right than the left
hemisphere. Although this result suggests a hemispheric asymmetry in the control of spatial
attention, we should caution against any strong interpretation due to the small sample size.
Importantly, however, the contralateral attentional effect stands in contrast with the lack of
such effect in the main experiment. Thus we conclude that participants unlikely resorted to a
spatial strategy to attend only to the corner region of the cued object in our main experiment.
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4. Discussion
We studied the representations of attentional priority during an object-based selective
attention task. By instructing participants to selectively attend to one of the spatially
superimposed objects, we found identical fMRI response amplitude associated with
attending to different objects using the univariate deconvolution analysis. However, using
MVPC we were able to discern distinct neural patterns for different attended objects in both
the dorsal frontoparietal network and visual cortex. We suggest that the distinct patterns in
frontoparietal areas constitute top-down priority signals for object-based selection.

4.1 Object-based attention modulates response patterns in the visual cortex
In this study, we showed that attention to objects with dynamic feature properties can
modulate both primary and extrastriate visual cortex in terms of multi-voxel activity
patterns. Previous studies often employed superimposed faces and houses stimuli (O'Craven
et al., 1999; Serences et al., 2004), and have demonstrated response amplitude changes due
to object-based selection in category-selective visual areas FFA and PPA (Murray &
Wojciulik, 2004; O'Craven et al., 1999; Serences et al., 2004). Our study employed simpler
shapes to probe the early and intermediate levels of shape representation. Consistent with
these early studies on category-selective high-level areas, our finding of successful
classification of the attended object in LOC suggests that attention can modulate shape
representations in this intermediate visual area (see also Stokes et al., 2009). Unlike previous
studies, none of the brain areas showed an overall amplitude difference between attending to
the two objects in our study. Thus, low-level differences that should affect overall response
amplitude (e.g., size, contrast, brightness) cannot explain our results. Recent studies on
scene categorization have also demonstrated different multi-voxel patterns for different
scene categories in object-selective areas (Peelen et al., 2009; Peelen & Kastner, 2011). Our
results are consistent with these results, which on a whole suggest that the intermediate and
high-level visual areas could represent object identity in a rather abstract fashion.

Interestingly, we also observed significant classification in early stages of the visual
hierarchy such as V1 and V2. Such results suggest that object-based selection can also
modulate relatively early visual representations. Consistent with our findings, a recent study
reported V1 modulation during surface-based selection (Ciaramitaro, Mitchell, Stoner,
Reynolds, & Boynton, 2011). These authors reported a higher fMRI response amplitude
when a transient target event occurred on the cued vs. uncued surface (object) composed of
moving dots. However, these results could be partly driven by a bottom-up attentional
capture effect due to the use of an exogenous attention cue and a transient target. Here we
employed purely top-down attentional instructions and measured brain activity associated
with the active maintenance of attention to visual objects. Thus our results complement and
extend the finding of attentional modulation of V1 activity associated with transient visual
targets (Ciaramitaro et al., 2011). Our results are also consistent with findings of significant
decoding of attended orientation and direction in early visual areas using superimposed
stimuli (Kamitani & Tong, 2005, 2006). One key difference is that in those studies the two
stimuli differed by one simple feature, whereas more complex features distinguished our
stimuli. Thus selection demands are likely more high-level and object-based in our study.

What are the possible neuronal mechanisms for modulation of early visual areas during
object-based selection? One possibility is that attention can select high-level features such as
the corners of the cued object. Given that some neurons in extrastriate areas are sensitive to
such complex features (Hubel & Wiesel, 1965; Pasupathy & Connor, 2001), it seems
plausible that attention can modulate their response. This explanation, however, cannot
easily accommodate our finding of significant decoding in V1, where simple features such
as orientation are represented. Interestingly, studies have also demonstrated V1 neuronal
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modulation due to object-level selection in a curve tracing task (Khayat et al., 2006;
Roelfsema et al., 1998), which has been interpreted as attentional facilitation of horizontal
connections that tend to connect neurons preferring collinear line elements and neurons with
adjacent receptive fields (Schmidt, Goebel, Löwel, & Singer, 1997). A similar mechanism
could be at work in our task such that the representation of the component parts of an object
(e.g., line segments and vertices) can be linked together and enhanced in V1. Such neuronal
enhancement could manifest as distinct multi-voxel activity patterns in fMRI BOLD
measures. This scenario is akin to the “grouped array” account of object-based selection
(Kramer, Weber, & Watson, 1997), which suggests that attention can be applied selectively
to a shape outline and dynamically updated. Thus object-based selection could be
implemented by sophisticated combination of spatial- and feature-level selections. Although
this is a possible interpretation of our data, we should note that such a view of object-based
selection is quite different from typically studied forms of spatial and feature selection
which involves selection along a single dimension with large (often maximum) difference
(e.g., left vs. right hemifield, upward vs. downward motion). Future studies with higher
spatial and temporal resolution data could shed light on the nature of early visual modulation
during object-based selection. Our current results suggest that attentional selection is a
highly flexible mechanism that can highlight the prioritized object at multiple processing
levels, from image-based representations in early visual areas, to object-based
representations in LOC.

4.2 Domain general network of attention control
Here we showed that neural activities in FEF and IPS can be used to differentiate specific
attended objects. This finding, together with previous work showing the importance of these
areas in maintaining spatial attention (Silver et al., 2005; Szczepanski, Konen, & Kastner,
2010) and feature-based attention (Egner et al., 2008; Liu et al., 2011), suggest the dorsal
frontoparietal areas contain domain-general control signals for different types of attention.
Earlier studies which directly compared overall brain activity for spatial and object-based
attention (Fink, Dolan, Halligan, Marshall, & Frith, 1997; Wojciulik & Kanwisher, 1999)
also found largely overlapped brain networks active for different types of attention task.
Here we further demonstrated that the distributed pattern of neural activity in these areas
correlated with the specific attended object, a neural signature for attentional priority signal
(see below for further discussion). The notion of a domain general network for the
maintenance of attention is also complimentary to findings on attentional shift. Shifts of
attention consistently evokes a transient response in a medial superior parietal lobule region
(Liu, Slotnick, Serences, & Yantis, 2003; Serences et al., 2004; Yantis et al., 2002), which is
thought to be domain general for resetting the current focus of attention. Thus current
evidence supports the notion that the dorsal frontoparietal network controls both the shift
and maintenance of attention in a variety of domains.

4.3 Priority signals for object-based selection
Accumulating evidences suggest frontal and parietal regions like FEF and IPS contain
topographical representation of spatial locations (Silver & Kastner, 2009; Szczepanski et al.,
2010) which direct spatial attention to important locations via feedback to visual cortex.
Such findings support the theoretical proposal of the priority maps (Itti & Koch, 2001; Koch
& Ullman, 1985; Wolfe, 1994), which encode the distribution of attentional resources in
space. Although the notion of attentional priority map can accommodate a large number of
findings in spatial attention, it does not explain how selective attention can operate on more
abstract dimensions such as perceptual objects.

In this study, we found object-specific neural patterns in dorsal frontoparietal areas,
suggesting these areas represent priority information for selected objects. We suggest these
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object-specific priority signals form the neural substrates for top-down modulation that
highlight which particular object to attend. Such top-down modulation can select and sustain
distinct neural activity patterns in the visual cortex to serve behavioral goals, reflected by the
observed significant classification in visual areas. Thus neural signals in the dorsal
frontoparietal areas seem to be sufficiently abstract to represent the current focus of
attention, when attention needs to select an object which shares similar location and feature
as a distracter.

We can only speculate about the format of such object-level priority signals. Because
neurons in frontoparietal areas have spatial selectivity, one possibility is that priority is
represented by assembly of neurons whose spatial receptive fields coincide with the attended
object. This is essentially the implementation of the “grouped array” account of object-based
selection in high level cortex. An alternative is that neurons in these areas develop genuine
selectivity for whole objects or complex features that can bias attentional selection. This
latter scenario is consistent with recent findings of feature-specific responses in selection
tasks (Liu et al., 2011; Serences & Boynton, 2007) and findings that implicate these areas in
other non-spatial tasks (e.g., Bichot, Schall, & Thompson, 1996; Konen & Kastner, 2008;
Oristaglio, Schneider, Balan, & Gottlieb, 2006). Indeed, the posterior parietal cortex has
been shown to represent abstract rule-based categorical distinctions in visual category
learning tasks (Fitzgerald, Swaminathan, & Freedman, 2012), suggesting a possible
multiplexed representation of both spatial and non-spatial properties. These additional
considerations lead us to favor the interpretation of selectivity for object identity, not its
location, that underlies our results, but more research is needed to further characterize the
nature of attentional priority signals in dorsal frontoparietal areas.

5. Conclusions
Using multi-voxel pattern classification, we found distinct patterns of neural activity
associated with attending to different objects in both the visual cortex and frontoparietal
regions. We further ruled out explanations based on spatial attention effects and sensory
effects of the cue. These results suggest that neural activity in early visual cortex can be
modulated by object-based attention and the dorsal frontoparietal network contains priority
information for object-specific top-down modulation.
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Highlights

• Object-based attention is manipulated using dynamic superimposed stimuli.

• MVPA is employed to classify content-specific attentional state.

• Significant classification is found in early and intermediate visual areas.

• Significant classification is also found in dorsal frontoparietal areas.
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Figure 1.
Schematic of experimental task and behavioral results. (A). A trial in the attention task. (B).
Behavioral data in the scanner. The number of reported target is plotted as a function of
number of targets in the cued object (solid lines) and number of distracters in the uncued
object (dashed lines). Error bars indicate ±1 s.e.m. across participants. (C). Eye tracking data
outside the scanner. Average horizontal (x) and vertical (y) eye positions across trials and
participants are plotted for T1 (red) and T2 (green) trials. Light red and light green denote
95% confidence interval across participants.
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Figure 2.
Group r2 map and averaged task-defined brain areas. (A). Grouped averaged (N=6) r2 map
in the object-based attention task, shown on an inflated Caret atlas surface. The approximate
locations of the six task-defined areas (FEF, MFG, M1, PCG, IPS, and mSFG) and localizer-
defined LOC are indicated by the arrowheads. Color bar indicated the scale of r2 value.
Maps were thresholded at a voxelwise r2 value of 0.09, corresponding to an estimated p-
value of 0.005, and a cluster size of 12 voxels. This corresponded to a whole-brain corrected
false positive rate of 0.004 according to AlphaSim (see Methods). (B). Visualization of task-
defined areas on the atlas surface. The union of each individually defined area is shown in
the atlas space.
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Figure 3.
Mean time course (N=6) of 16 regions of interest (8 in each hemisphere). The horizontal bar
in the lower left panel indicates the duration of a trial. Error bars denote ±1 s.e.m. across
participants.
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Figure 4.
Multi-voxel pattern classification results. (A). Mean classification accuracy across
participants (N=6) for each brain area. Horizontal line indicates 50% accuracy, the
theoretical chance level. (B). Average percentile ranks that the observed classification
accuracy fell in the null distribution of chance performance, obtained by permutation test.
Horizontal dashed line indicates 5% tail in the null distribution. The vertical dotted line
separates areas with significant vs. non-significant classification accuracies as assessed by
the permutation test. (C). Average size of the classifier (number of voxels) for each brain
area corresponding to the maximum classification accuracy (plotted in A). Error bars are ±1
s.e.m. across participants.
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Figure 5.
Results of the control analyses. (A). Mean classification accuracy using the first and second
half data within a trial. (B). Mean classification accuracies of analysis with original ROIs
(Original) and with reduced ROIs excluding voxels corresponding to the cues (Reduced).
Error bars are ±1 s.e.m. across participants. Results are shown only for areas that showed
significant classification performance; results for other areas were similar.
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Figure 6.
Control experiment: task and results. (A). Schematic of a trial in the control experiment. (B).
Mean time course (N=4) of two regions (IPS and FEF) in each hemisphere. The horizontal
bar in the lower left panel indicates the duration of a trial. Error bars denote ±1 s.e.m. across
participants.
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