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Abstract The main contribution of this paper is to use homogenization techniques to

compute diffusion coefficients from experimental images of microbial biofilms. Our

approach requires the analysis of several experimental spatial structures of biofilms in

order to derive from them a Representative Volume Element (RVE). Then, we apply a

suitable numerical procedure to the RVE to derive the diffusion coefficients. We show that

diffusion coefficients significantly vary with the biofilm structure. These results suggest

that microbial biofilm structures can favour nutrient access in some cases.

Keywords Homogenization technique · Diffusion process · Nutrient access ·
Bacterial biofilms

1 Introduction

In natural, industrial and clinical settings, bacteria predominantly live in surface-associated

communities called biofilms [1]. These biofilms, like other bacterial communities, play

a major role in many industrial processes such as wastewater treatment [2], biocorrosion

[3], biotechnology [4, 5] or medical science [6, 7]. In many of these processes, solute

transport in the biofilm is a key issue, because it drives the biofilm development. Solutes are

transported in bacterial biofilms by a combination of advection, convection and diffusion,

in which molecular diffusion dominates [8, 9]. Mathematically, a diffusion process can be

completely defined by the assessment of the effective diffusion tensor Def f that charac-

terizes the diffusion process in all directions, and the objective of this paper is to assess

such a diffusion tensor in bacterial biofilms, from the treatment of images.
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Several experimental studies have shown that different factors, for example the bacteria

strain, the reactivity of the solutes or the density of bacteria, directly influence the nutrient

diffusion. These studies use different bacteria strains such as Escherichia coli [10] or

Zoogloea ramigera [11]. The cell density varies from one bacteria strain to another and this

drastically affects the calculation of the effective diffusion. For instance, the cell density for

E. coli is lower than the cell density for Z. ramigera [12, 13] and leads to a lower value of

the effective diffusion. The reactivity of solutes has also been studied in order to evaluate its

influence on the diffusion process. Matson and Characklis [14] have studied the diffusion

of glucose through microbial aggregates under various experimental conditions. Methanol

solutes [15] or lactate solutes [16] have also been used to determine the effective diffusion of

biofilms. The main conclusion is that the reactivity of the solute has a significant influence

on the diffusion process because some solutes can cross cell membranes and be diffused

within the cells while others are excluded by the cell membrane (see [17] for a review of

the different experimental measurements of the effective diffusion coefficient).

Lamotta [18] has developed a theoretical model describing the diffusion of substrate

within the film matrix. He computed the effective diffusivity of glucose in biological

films and showed that the fraction of substrate consumed is directly proportional to the

film thickness, when the thickness is less than a critical value. These studies determine

the effective diffusion in biofilms and the influence of microscopic structures on biofilm

macroscopic properties [19–22]. The effective diffusion coefficient is generally assumed

to be a function of both the microscopic diffusions of the extra polysaccharide matrix and

the cell aggregates [23]. Therefore, effective diffusion within a biofilm is assumed to be a

function of both microscopic diffusion and microstructure [23, 24].

Bacterial biofilms show very complex heterogeneous structures [25, 26], which are

certainly related to their performances in different industrial processes. During the last few

decades, the use of confocal microscopes has given access to the 2D and 3D observations of

biofilm structures such as regular aggregates [27, 28], mushroom shapes [29, 30], holes or

labyrinths [31]. Moreover, new techniques have been coupled with the microscope such

as fluorescence microscopy [31] showing the location and evolution of bacteria strains

in the whole biofilm. The freeze substitution technique [32] also provides images of the

biofilm in its original state and with more precise structural details than a standard confocal

microscope. These techniques give new means for observing bacterial local behaviors, the

detachment process and bacteria competition.

In this paper, we show that the diffusion properties of bacterial biofilms can be derived

from the treatment of images taken from a confocal microscope, by using appropriate

homogenization techniques. The first part of the paper is dedicated to the description of

the experimental set-up from a previous study [31], providing the biofilm images. The

second part of the paper is devoted to the application of homogenization techniques to

these images and the derivation of the effective diffusion tensor, through the derivation of

a representative volume element and the use of finite element software. Finally, the paper

discusses the impact of the spatial structure on the effective diffusion.

2 Materials and methods

2.1 Experimental set-up

We use the biofilm images from Xavier et al. [31], devoted to the development of

Pseudomonas aeruginosa. Experimental details are available in [31]. The typical spatial
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Fig. 1 Example of spatial patterns in biofilms of Pseudomonas aeruginosa. Biofilms are cultivated on glass

coverslips. The spatial structures are obtained from the same biofilm at different times by a variation of the

nutrient concentration

structures of biofilms obtained are represented in Fig. 1. Three types of structures can be

distinguished: “worm-like” (Fig. 1a), “labyrinth” (Fig. 1b) and “dense” (Fig. 1c).

These images represent the same biofilm at different times, when varying the nutrient

concentration. The “worm-like” configuration is obtained when the substrate concentration

is low, which leads to an intense competition for the nutrient. When the substrate concen-

tration increases, this competition decreases, and the circular colonies are deformed due to

fingering [31, 33] leading to the “labyrinth” configuration. If the nutrient concentration is

saturated, all bacteria have nutrient access, the nutrient competition becomes negligible and

the biofilm growth rapidly reaches the “dense” configuration.

We consider these spatial structures as typical examples of the diversity observed in

biofilms, and for testing our approach.

2.2 Homogenization techniques

2.2.1 Principle
The main purpose of homogenization techniques is to derive macroscopic properties

from data at microscopic scale. These techniques have been successfully used in several

applications, especially in mechanics of continuous materials [34–37]. The first step of

the homogenization approach is computing a representative volume element (RVE) which

must be an infinitesimal part of the considered system but still large enough for capturing

the geometric and physical properties of the system. More precisely, if we denote d, the

characteristic length scale of the local heterogeneities, typically the cell size in a bacterial

biofilm, the size l of the RVE should fulfill the condition d << l to ensure that the

elementary volume is representative. In summary, the two conditions on the size of the

RVE are (L being the size of the considered system, see Fig. 2):

d << l << L (1)

Relation (1) is often referred to as the scale separation condition, which is a necessary condi-

tion for the RVE to be valid. In order to compute appropriate values of l, we perform a con-

vergence study by calculating the homogenized quantities according to several RVE sizes.
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Fig. 2 Schematic description of the homogenization process. This upscaling method allows us to pass from

the microscopic scale to the macroscopic scale thanks to the study of a representative volume element

The Wood and Whitaker approach, which requires the resolution of the closure problem

to solve the upscaling problem, is commonly used in order to investigate the effective

diffusion of substrate into a bacterial biofilm [38, 39]. Wood and Whitaker need to solve this

closure problem because they work at the bacteria scale. We work at the colony scale and

applying suitable boundary conditions allows us to solve the upscaling problem. Figure 3

illustrates this difference of scale between Wood and Whitaker’s approach and ours.

Fig. 3 The hierarchy of scales associated with a bacterial biofilm
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2.2.2 Theoretical background

In this study, the biofilm images are in two dimensions. We therefore model the stationary

diffusion process with Fick’s first law in two dimensions:

F = −D∇c (2)

where F corresponds to the diffusive flux vector expressed in mol.μm
−2

.s
−1

, D to the

diffusion tensor expressed in μm
2
.s

−1
and ∇c to the concentration gradient vector expressed

in mol.μm
−4

. In this study, we have considered a two-phase system consisting of the

bacteria colony (the σ -phase) in domain �σ and the bulk liquid (the β-phase) in domain

�β (see Fig. 4). At the microscopic scale, the first Fick’s law writes:

Fσ = −Dσ ∇cσ in �σ (σ − phase) (3)

Fβ = −Dβ∇cβ in �β (β − phase) (4)

The idea is to calculate the effective diffusion Def f on the domain � defined as follows:

F� = −Def f∇c�. (5)

We define the volume average theorem considering that Def f is independent of the location:

< F >= −Def f < ∇c > (6)

where < F > and < ∇c > are the spatial average flux and concentration gradients, which

are the sum of the superficial average flux and concentration gradients of the two phases,

respectively:

< F >= 1

�

∫
�β

Fds + 1

�

∫
�σ

Fds (7)

< ∇c >= 1

�

∫
�β

∇cds + 1

�

∫
�σ

∇cds (8)

Fig. 4 Definition of the two phases associated with the average domain
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Then, we consider concentration gradients ∇cmac
at the boundary δ� (see Fig. 4). Using the

gradient theorem
∫
�

�∇adx = ∫
δ�

a.�n.dS, we obtain the following relation:

∫
�

∂c
∂xj

dx =
∫

δ�

cn j dS = (∇cmac)i

∫
δ�

xin j dS (9)

∫
δ�

xin j dS =
∫

�

∂xi

∂xj
dx = |�|.δij (10)

where δij is the Kronecker delta.

We finally obtain:

∫
�

∂c
∂xj

dx = |�|.∇cmac. (11)

It yields the following relationship between the microscopic concentration gradient ∇c and

the macroscopic concentration gradient ∇cmac
with the average operator:

< ∇c > = 1

|�|
∫

�

∇c (x) d� = ∇cmac. (12)

Finally, Def f is identified:

∇cmac Def f = − < F > . (13)

In the current approach, we consider a two-dimensional problem depending on the x- and

y-directions. In this case, the effective tensor Def f is:

Def f =
(

dxx
ef f dxy

ef f

dxy
ef f dyy

ef f

)
. (14)

Note that in the case of an isotropic behavior, this tensor is diagonal, with dxx
ef f = dyy

ef f . How-

ever, in general, some couplings between the x- and y-directions may occur and it is

necessary to calculate the complete effective diffusion matrix. Some analytical solutions

have been developed in the literature in some simple cases (see Section 2.3). These

analytical solutions will be used as reference solutions in the following but, in general,

it is not possible to apply them and we use a numerical procedure instead.

2.2.3 Numerical procedure

The size of the biofilm images is 360 × 360 μm
2
. Biofilm images have been imported into

Inkscape. The resolution of the images is 750 × 750 pixels and they have been converted

into .dxf format. We have adopted the thresholding process by brightness cutoff with a

single path from biofilm images. It has been used to create binary images in order to

export them to the Finite Element software Comsol 3.3. The Inkscape software uses the

vectorization engine Potrace (potrace.sourceforge.net). The geometry is then discretized

with 2D triangular elements (see Fig. 5). In order to determine Def f (see Eq. 13), it is

necessary to perform two tests for the assessment of the effective diffusion coefficients (see

file:potrace.sourceforge.net
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Fig. 5 Description of the numerical method. The experimental images are thresholded in order to export

them to the finite element software. Then, the geometry is meshed in order to apply the homogenization

method

Fig. 6). For this purpose, we consider a square RVE (with the length of the side equal to l).
For the first test, we impose: c (L1) = 0, c (L2) = c (L4) = a×x

l , c (L3) = a, leading to:

∇cmac
test1 =

⎛
⎝

a
l
0

⎞
⎠ . (15)

For the second test, we impose: c (L1) = c (L3) = a×y
l , c (L4) = a, c (L2) = 0. It leads to:

∇cmac
test2 =

⎛
⎝ 0

a
l

⎞
⎠ . (16)

From these tests and using Eq. 13, the components of the effective diffusion matrix are

calculated as follows:

dxx
ef f = l < Fx

test1 >

a

dyy
ef f = l < Fy

test2 >

a

dxy
ef f = l < Fy

test1 >

a
= l < Fx

test2 >

a

(17)

Fig. 6 Boundary conditions are

imposed on different edges L1,

L2, L3 and L4 of the considered

RVE
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< Fi
testk > corresponds to the numerical integration of the component i of the vector F for

the kth test. These numerical tests enable us to assess the effective diffusion matrix. In

order to validate the current procedure and to highlight the influence of the spatial structure,

analytical solutions are now presented.

2.3 Analytical solutions

As explained in the Introduction, different models have been developed in order to calculate

the effective properties through heterogeneous media. These models are essentially based

on the assumption of a uniform distribution of bacteria or charged spheres for example.

The influence of the spatial structure is neglected in this type of model which uses a mean

field approximation of the effective properties. For example, Maxwell’s solutions have been

already used in order to calculate the effective conductivity of a two-material conductor or

the effective diffusion coefficient for multiphase systems. Indeed, in the following, we used

Maxwell’s solution [40] which takes the form:

Def f = 2 × Dσ + Dβ + ρ × (
Dσ − Dβ

)
2 × Dσ + Dβ − 2 × ρ × (

Dσ − Dβ

) × Dβ (18)

with

ρ = Sσ

Stot
. (19)

Sσ is the surface of the σ -phase and Stot is the total surface of the domain. We can also refer

to the solution obtained by Chang [41] for calculating effective diffusion and conduction

in two-phase media. Chang has solved the effective diffusion and conduction in a two-

dimensional square unit cell with a circular particle. The effective diffusion takes the form:

Def f = (1 − ρ) × Dβ + (1 + ρ) Dσ

(1 − ρ) × Dσ

Dβ
+ 1 + ρ

. (20)

Both analytical solutions can be used in order to calculate effective properties in two-phase

media. They have been already used as reference solutions for effective diffusion in the case

of bacterial biofilms [22, 38, 39].

3 Results

3.1 RVE convergence

We perform a convergence study to determine the suitable size of the RVE. Moreover,

we investigate the variation of the homogenized parameter, here, the effective diffusion,

according to different RVE sizes. In Fig. 7, we can see different sizes of RVE that we

tested. The different RVE sizes are: RVE 1: 44 μm × 44 μm, RVE 2: 93 μm × 93 μm,

RVE 3: 143 μm × 143 μm, RVE 4: 206 μm × 206 μm, RVE 5: 240 μm × 240 μm.

The results obtained in the case of the labyrinth configuration are presented in Fig. 8 as an

example. It shows the evolution of dxx
ef f following the surface of the RVE. The “min/max”

bar enables us to characterize the scattering of the results which is directly linked to the

representativeness of the RVE. Indeed, if the minimum value is close to the maximum value
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Fig. 7 A convergence study has

been performed on different RVE

sizes. It allows us to define a

suitable RVE size in order to

apply the homogenization

technique

computed by the current procedure, all RVEs lead to the same result. In this case, we can

conclude that the RVE leads to a good representation of the volume. This phenomenon is

clearly shown in Fig. 8. The “min/max” bar is significant for small surfaces of RVE, and

decreases with respect to the RVE surface. For small surfaces, it means that all RVEs with

this area have homogeneous properties. Moreover, the mean value converges for an RVE

area greater than 40000 μm
2
. In this configuration, i.e., the labyrinth configuration, we can

conclude that a domain with a size of 200 μm by 200 μm is representative. In the following,

we therefore perform calculations with an RVE area of 48400 μm
2

in order to completely

minimize the scattering of the results. We have also carried out the same study on the two

Fig. 8 This graph represents the calculation of the homogenized parameter dxx
ef f according to the RVE

size. There is a high degree of scattering (high gap between the minimum and the maximum values of

homogenized rigidity) for small surfaces of RVE. This study allows us to conclude that an RVE with a size

of 200 μm by 200 μm is representative of the full domain
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other configurations (dense and worm-like configurations) and we have concluded that the

RVE with an area of 48400 μm
2

for both configurations is also representative.

3.2 Calculation of the effective diffusion

Homogenization techniques are now applied to the three biofilm spatial structures that can

be observed in Fig. 1. For the tests described in Section 2, we have used a = 10 and l =

220 μm. The value of a has no influence on the results because of the linearity of the Fick

equation (see Eq. 2). The length l is directly deduced from the convergence study of the

RVE, described in the preceding section.

Then, we have to choose the diffusion coefficient of the colony and of the bulk liquid.

Experimental studies have shown that, in all cases, the biofilm diffusion coefficients were

lower than the diffusion in the bulk liquid solution, denoting a degree of hindered diffusion

in the biofilm [42–44]. We have decided to impose a value Dσ of the diffusion within

the colony equal to 1 μm
2
.s

−1
and a value Dβ of the diffusion in the bulk liquid equal to

100 μm
2
.s

−1
. These values are on the same order of magnitude as the different experimental

values presented in the literature [42–44]. The ratio between these two coefficients plays a

major role and is analyzed in Section 3.3.

The idea is to perform the calculation in the case of a negligible diffusion within colonies.

In the following, the calculations depend on the ratio ε between the area occupied by the

colonies and the total area:

ε = Sσ

Stot
. (21)

In this study, this ratio varies according to the spatial configuration. Indeed, it is equal to

0.97, 0.33, 0.17 for dense, labyrinth and worm-like configurations, respectively.

We have obtained the following diffusion tensor for the dense configuration:

Def f =
(

1.13 0.015

0.017 1.13

)
μm2.s−1

(22)

For the labyrinth configuration, calculations lead to:

Def f =
(

38.13 0.15

0.18 32.26

)
μm2.s−1

(23)

Finally, for the worm-like configuration, we have:

Def f =
(

71.89 0.89

1.12 67.05

)
μm2.s−1

(24)

In the “dense” configuration case, the nutrient concentration is high. Since there is no

nutrient competition between cells, the biofilm growth is therefore significant and leads

to a dense biofilm. Indeed, bacteria fill the whole domain, and the ratio ε (equal to 0.97) is

almost maximal. Consequently, the effective diffusion is low and the diffusion process has

a minor role. Note that the value of effective diffusion is close to the parameter of diffusion

in the colony (Dσ = 1 μm
2
.s

−1).

In the case of “worm-like” configuration, the nutrient concentration is limited. The

nutrient competition between cells is very high and the growth condition is therefore

unfavorable; thus, small colonies form the biofilm. The colony density is low and leads

to the highest value of the effective diffusion.
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The “labyrinth” configuration is an intermediate case between both previous cases. The

nutrient concentration is higher than in the “worm-like” case, there is a competition for

nutrient, but the growth is heterogeneous in space. The value of effective diffusion is

between the previous values. This configuration may be due to the phenomena of fingering

and mechanical pushing. The substrate diffusion is facilitated along the direction created

by both phenomena. However, the substrate diffusion remains lower than in the case of the

worm-like configuration because of the spatial structure and the higher ratio ε.

It is interesting to note that for the three spatial structures, non-diagonal terms (dxy
ef f and

dyx
ef f) can be neglected in comparison with the diagonal terms. In the case of the “dense”

configuration, diagonal terms are equal (dxx
ef f = dyy

ef f). We can consider that the biofilm

presents an isotropic behavior in this case. In the case of “labyrinth” (respectively “worm-

like”) configuration, the biofilm presents an orthotropic behavior with an orthotropic

coefficient equal to
dxx

ef f

dyy
ef f

= 1.10 (respectively 1.08). This orthotropic behavior can also be

explained by mechanical pushing in the flow direction. Note that the diffusion in the x-

direction is higher than the diffusion in the y-direction, expressing a higher diffusion in

the direction of the flow. However, these off-diagonal terms may also be due to an artifact

caused by the image analysis procedure.

3.3 Sensitivity analysis of the ratio of the microscopic diffusions

In the preceding calculations, we have chosen Dσ = 1 μm
2
.s

−1
and Dβ = 100 μm

2
.s

−1
. As

explained above, it is very difficult to know these values exactly. Since the gap between

the different diffusion values is high, we have therefore decided to perform a sensitivity

analysis. In order to analyze the influence of these values, we perform these analyses on

the ratio of the subcellular parameters (Dσ /Dβ). We have computed the effective diffusion

dxx
ef f for four values of Dσ (0.1; 1; 5; 10) leading to four values of the ratio

Dσ

Dβ
(0.001;

0.01; 0.05; 0.1). The results are presented in Fig. 9. This analysis confirms the results

previously obtained, i.e., the effective diffusion of the “dense” configuration is lower than

the effective diffusion of the “labyrinth” configuration, which is lower than the “worm-like”

configuration. Indeed, the ratio ε of the “dense” configuration is higher than the ratio ε of the

“labyrinth” configuration, which is higher than the ratio ε of the “worm-like” configuration.

In the “dense” configuration case, the numerical results are very close to the Maxwell’s

model and to the Chang unit cell because the spatial structure is very close to a uniform

distribution, which is the main hypothesis of these analytical solutions (see Section 2.3).

Moreover, the effective diffusion is very close to the colony diffusion Dσ because of a high

value of the ratio ε.

The numerical results for the “worm-like” configuration are close to the results of the

Chang model, which are higher than the ones of the Maxwell model. The three curves are

linear with the same slope. This can also be explained by the fact that, in this case, the

distribution of the colonies is almost uniform.

When computed numerically, the effective diffusion dxx
ef f of the “labyrinth” configuration

is nonlinear with respect to the ratio
Dσ

Dβ
. Indeed, this configuration presents privileged

directions due to fingering and mechanical pushing which facilitate the substrate diffusion

and create orthotropic behavior. These directions drastically affect the calculation of the

effective diffusion coefficients. This phenomenon is accentuated for low ratios correspond-

ing to a high diffusion process. On the contrary, when the ratio
Dσ

Dβ
increases, the curve
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Fig. 9 Influence of the ratio
Dσ

Dβ
on the homogenized parameter dxx

ef f with different spatial configurations.

The numerical results have been compared with the analytical solutions of Maxwell and Chang

becomes linear because the effect of privileged directions decreases. Indeed, a ratio close to

1 leads to a homogeneous diffusion in the domain.

Note also that when the ratio
Dσ

Dβ
, tends to 1, all curves reach a value of dxx

ef f equal to

100 μm
2
.s

−1
because the diffusion tends to be homogeneous, which decreases the effect of

the spatial structure.

These results show that the spatial structure influences the nutrient diffusion. However,

the reaction has to be considered to analyze the competition between growth and nutrient

access. Indeed, the nutrient concentration widely influences the spatial structures [31]. The

next section focuses on substrate consumption using the Monod equation.

3.4 Calculation of the substrate consumption ratio

As explained above, experimental spatial structures have been obtained by varying the

nutrient concentration [31]. In this section, we investigate the influence of the solute

concentration c0 on the Damköhler number which is associated with the reaction. For this

purpose, we consider that diffusion-reaction phenomena are present in the bacterial clusters.

There is no reaction term elsewhere. Considering the reaction term R leads to:

∇. (Dσ ∇cσ )︸ ︷︷ ︸
diffusion

= R︸︷︷︸
reaction

, in �σ (25)

and

∇.
(
Dβ∇cβ

)
︸ ︷︷ ︸

diffusion

= 0, in �β (26)
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The reaction term R (mol.μm
−3

.s
−1) is expressed following a Monod equation [45–47]:

R = μ ∗ ρσ ∗ cσ

cσ + ks
(27)

where μ = 1 s
−1

and ks = 0.5 mol.μm
−3

. The coefficient μ represents the maximum growth

rate coefficient expressed in s
−1

, ρσ the biomass density expressed in mol.μm
−3

and ks
is the Monod coefficient expressed in mol.μm

−3
. This is also called the half-saturation

coefficient because it corresponds to the concentration which is one-half of its maximum.

Furthermore, the Damköhler number Da is the ratio between the reactive and the

diffusive effects. The dimensionless Damköhler number is defined as follows:

Da =
∫
�

Rd�∫
�

Fd�
× V (28)

where R is the reaction term, F the diffusive flux and V the volume of the full domain. It

has been extensively used to characterize the mass transport (with a reaction term) within

bacterial biofilms [48, 49].

The diffusion parameters are the same as the parameters used in Section 3.2. Boundary

conditions are: c (L1) = c (L2) = c (L3) = c (L4) = c0. Figure 10 presents the evolution

of the Damköhler number with respect to the solute concentration c0 for the three

configurations.

For c0 < 1 mol.μm
−3

, Da is less than 1, the reaction is the limiting factor because

the nutrient concentration is low and the competition between bacteria is therefore very

intense. The transport is the major factor and the “worm-like” configuration presents the

higher value of diffusion, and is therefore the most appropriate configuration. Moreover,

the “dense” configuration has the lowest Damköhler number. It also corresponds to the

results observed in experimental studies where the growth is limited by the nutrient access.

0

5

10

15

20

25

0,000001 0,0001 0,01 1 100 10000 1000000

C0(mol.µm-3)

Da
(-)

worm-like
labyrinth
dense

Fig. 10 Evolution of the Damköhler number as a function of nutrient concentration
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For 1 < c0 < 100 mol.μm
−3

, Da is higher than in the previous case; this is an inter-

mediate stage where the nutrient concentration is too low to generate a dense biofilm but

high enough to heterogeneously feed bacteria. In this range of values of c0, the “labyrinth”

configuration is the most appropriate. It is the optimal organization when the competition

between growth and nutrient access is high.

For c0 > 100 mol.μm
−3

, Da is high. In this case, the transport is the limiting factor. The

substrate concentration is high, and there is no competition between cells. The concentration

c0 is sufficient to feed all bacteria. The Damköhler number is therefore the highest with the

“dense” configuration. We can conclude that, with a saturated substrate concentration, the

biofilm growth is maximal with a “dense” configuration.

These results are in full agreement with the experiments of Xavier et al. [31] and explain

the evolution of spatial structures obtained by increasing the substrate concentration (see

Fig. 1).

4 Conclusion

The competition for nutrient access plays a major role in the emergence of various spatial

structures which influence the physical properties of the biofilm. In order to explore more

deeply this phenomenon, we propose a numerical procedure investigating the impact of

spatial structures on the effective diffusion and on the substrate consumption ratio. We have

applied this procedure to three kinds of spatial structure. The results show that the effective

diffusion depends on the spatial structure, the subcellular-scale parameters (Dσ and Dβ) and

also the ratio ε between the area occupied by the colonies and the total area of the RVE.

In the “dense” configuration case, the nutrient concentration is significant, there is no

competition between growth and nutrient access, and the diffusion process has therefore a

minor role. In this case, results are very close to the analytical solutions.

The calculation of effective diffusion coefficients shows an orthotropic behavior of the

structures in the “worm-like” and “labyrinth” configurations. In these cases, mechanical

pushing and fingering lead to a configuration with privileged directions and to higher

values of effective diffusion in the direction of the flow. This orthotropic behavior explains

the nonlinear evolution of the effective diffusion following the microscopic diffusion

coefficients.

It is interesting to note that the conclusions of Xavier et al. [31] about competition

for nutrient and biofilm growth clearly correspond to these results of effective diffusion

and substrate consumption ratio. We provide a link between nutrient competition, biofilm

growth and effective diffusion within bacterial biofilms. Moreover, this study shows the

importance of the ratio ε on the calculation of effective diffusion coefficients and the

substrate consumption ratio.

In the future, it will be particularly interesting to compare the value of effective diffusion

of spatial structures with the same ratio ε in order to clearly distinguish the effect of the

spatial structure from the one of the density.
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