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Abstract Discrete windows of susceptibility to toxicants

have been identified for the breast, including in utero,

puberty, pregnancy, and postpartum. We tested the

hypothesis that polychlorinated biphenyls (PCBs) mea-

sured during the early postpartum predict increased risk of

maternal breast cancer diagnosed before age 50. We ana-

lyzed archived early postpartum serum samples collected

from 1959 to 1967, an average of 17 years before diagnosis

(mean diagnosis age 43 years) for 16 PCB congeners in a

nested case–control study in the Child Health and Devel-

opment Studies cohort (N = 112 cases matched to controls

on birth year). We used conditional logistic regression to

adjust for lipids, race, year, lactation, and body mass. We

observed strong breast cancer associations with three

congeners. PCB 167 was associated with a lower risk (odds

ratio (OR), 75th vs. 25th percentile = 0.2, 95 % confi-

dence interval (95 % CI) 0.1, 0.8) as was PCB 187 (OR,

75th vs. 25th percentile = 0.4, 95 % CI 0.1, 1.1). In con-

trast, PCB 203 was associated with a sixfold increased risk

(OR, 75th vs. 25th percentile = 6.3, 95 % CI 1.9, 21.7).

The net association of PCB exposure, estimated by a post-

hoc score, was nearly a threefold increase in risk (OR, 75th

vs. 25th percentile = 2.8, 95 % CI 1.1, 7.1) among women

with a higher proportion of PCB 203 in relation to the sum

of PCBs 167 and 187. Postpartum PCB exposure likely

also represents pregnancy exposure, and may predict

increased risk for early breast cancer depending on the

mixture that represents internal dose. It remains unclear

whether individual differences in exposure, response to

exposure, or both explain risk patterns observed.
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Introduction

Discrete windows of susceptibility to toxicants have been

identified for the breast, including in utero, during puberty,

and during pregnancy and postpartum [1–4]. Human

studies of breast cancer have not been able to assess the

effects of measured exposure to environmental chemicals

during windows of susceptibility for the breast [2, 5]. The

existing literature on polychlorinated biphenyls (PCBs) and

breast cancer typically has focused primarily on postmen-

opausal breast cancer [6–8]. In addition, exposure in prior

studies was largely measured in middle age or at time of

diagnosis, was variable on how PCBs were classified and
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whether individual congeners were considered, and was

based on samples obtained after PCB use was regulated [6–

8]. The literature on the pesticide DDT and breast cancer is

subject to similar limitations [9].

Findings on the relation of PCBs measured in middle

age to breast cancer are complex and have been reviewed

previously in detail (see Table 3, pp. 2872–2876 in Brody

et al. [8]). Briefly, some studies reported positive associa-

tions with individual congeners, others reported no asso-

ciations for total PCBs or any individual congeners, and

others reported negative associations with some tumor

types. The most consistent, positive findings were reported

where interaction between exposure and CYP1A1 gene

polymorphisms could be considered. Three studies found

higher PCB exposures with postmenopausal breast cancer

in combination with the CYP1A1 polymorphism, M2 type

[10–12] and another reported this association with pre-

menopausal breast cancer [13].

The present prospective study adds a unique perspective

by testing the hypothesis that exposure to PCBs, measured

during the early postpartum, is associated with increased

risk of early breast cancer. Because of the long half-life of

PCBs [14], early postpartum levels also reflect exposure

during pregnancy [15] and possibly during childhood and

adolescence. To our knowledge, this is the first study to

report on breast cancer associations in relation to measured

PCBs levels during critical periods of vulnerability for the

breast.

Materials and methods

Subjects

Subjects were participants in the Child Health and Devel-

opment Studies (CHDS), residents of the Oakland, Cali-

fornia area and members of the Kaiser Permanente Health

Plan who sought obstetric care between 1959 and 1967

[16]. Subjects voluntarily participated in the CHDS, giving

an oral informed consent for an in-person interview, col-

lection of blood specimens at several points in pregnancy

and the early postpartum, and permission for medical

record access. This study was reviewed and approved by

The Institutional Review Board of the Public Health

Institute and we have complied with all federal guidelines

governing use of human participants.

Breast cancer cases were identified by linkage to the

California Cancer Registry, and the California Vital Status

Records [17]. All names for each CHDS subject are sub-

mitted for cancer linkages using fixed (i.e. birth date, sex,

race, and name) and changeable (i.e. address and patient

record number) identifiers. A rigorous protocol is used to

verify cases, comparing fixed versus changeable identifiers

by manual review. The California Cancer Registry is

reported to be [99 % complete after a lag time of about

2 years [18].

Cases were defined as women with incident invasive or

non-invasive breast cancer diagnosed before age 50, or

deaths due to breast cancer before age 50, obtained from

linkage conducted in early 1998. There were 133 cases who

met study criteria. All members of the CHDS cohort are

additionally linked to the California Department of Motor

Vehicles (DMV) files on a regular basis to determine res-

idence history allowing us to assess their control status and

to update any name changes. All names registered with the

DMV are used in establishing a match. Simultaneous

linkage of multiple family members enhances matching.

The regular DMV matching provides a history of location

for each subject which is used to determine the population

at risk for cancer, corresponding with geographic surveil-

lance by California’s cancer registries. Subjects who can-

not be located are considered lost to follow-up at the date

of their last definitive classification as a California resident.

One control, matched exactly on birth year, was selected at

random for each case from those who were under cancer

surveillance and known to be free of breast cancer at the

age of diagnosis for the matching case. The median time to

diagnosis for cases was 17 years. The mean age at diag-

nosis was 43 years.

Serum assays

Exposure to PCBs was measured by assays of serum

samples drawn during the early postpartum period, within

1–3 days of delivery. Postpartum samples were used to

conserve valuable archived serum samples drawn in each

trimester for future studies where timed samples are

essential. PCBs have a long half-life and prior work has

established stability of organochlorine levels assayed

across all trimesters of pregnancy and the early postpartum

[15]. For this reason, postpartum levels of PCBs may

accurately rank women on their pregnancy exposure,

covering two potential vulnerable periods of susceptibility

of the breast to toxicants.

PCBs were assayed in the laboratory of Dr. Mary Wolff

[19] using modifications of methods developed previously

by Brock et al. [20]. Briefly, a polar extraction of serum

lipids is followed by a column chromatographic clean-up

and enrichment step, with analysis by gas chromatography

with electron capture detection. Limits of detection were

approximately 0.07 ng/mL for individual compounds

based on three times the standard deviation of the levels

found in the lowest quality control plasma pool [21]. When

the serum pool and blanks were considered together [22],

the limit of detection was 0.01–0.1 ng/mL; the instru-

mental limit of detection based on a peak-to-noise ratio of
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3 was 0.01–0.03 ng/mL for tetra- through hepta-chlorobi-

phenyls, using 1–1.5 mL plasma. As described previously

[23], we used all observed positive values of PCBs in

analyses, even those reported to be below the limit of

detection.

We were able to assay archived serum samples for the

PCB congeners which are shown in Table 1. These cong-

eners include those most commonly reported in prior

studies, comprised the congeners with highest concentra-

tions, or grouped by potential biological activity as previ-

ously recommended [24]. We randomly assigned the order

of samples within and across batches and analyzed case–

control pairs in the same batches to minimize differences

due to laboratory drift. The laboratory was blind as to case

or control status of the samples. Intra-batch coefficients of

variation ranged from 5 % for PCB 180 to 18 % for PCB

101. Total cholesterol and total triglycerides were mea-

sured enzymatically on the Hitachi 911 analyzer (Roche

Diagnostics, Indianapolis, IN) in a lab certified by the

Centers for Disease Control and Prevention and the

National Heart Lung and Blood Institute Lipid Standardi-

zation Program.

Statistical analysis

This report is based on 112 case–control pairs, matched on

year of birth, after excluding 2 pairs with insufficient serum

for lipid assays, 2 pairs with missing data on body mass

index, and 17 pairs where one or more member of the pair

was missing information on PCB 167, which was not

quantified in one of the assay batches. In a sensitivity

analysis, we imputed missing PCB 167 by matching on

case status and date of blood draw and assigning a PCB

value for the missing individual based on a random pick of

all matches. Results were similar (associations were of a

similar magnitude with overlapping 95 % confidence

intervals and all associations remained statistically signif-

icant, defined as p \ 0.05) whether or not the individuals

with imputed values were included. We present findings

only for individuals with non-missing data on all study

Table 1 Distribution of PCBs in breast cancer controls and cases

Classification [24] PCB Controls (N = 117) Cases (N = 123) Difference within

matched pairs

(case–control, N = 112)

Percent [ LOD

Percentile (mmol/l) Percentile (mmol/l)

25th 50th 75th 25th 50th 75th Mean (mmol/l) p value

Estrogenic 101 0.37 0.74 1.07 0.34 0.55 0.92 -0.06 0.19 89

187 0.38 0.48 0.66 0.38 0.48 0.63 -0.07 0.30 100

201 0.09 0.23 0.33 0.14 0.23 0.30 -0.01 0.71 71

Anti-estrogenic

A. Non-ortho, mono-ortho,

dioxin-like

66 0.89 1.34 1.78 0.96 1.47 1.95 0.10 0.17 99

74 0.62 0.89 1.23 0.62 0.86 1.27 0.01 0.54 95

105 0.25 0.40 0.64 0.25 0.43 0.61 -0.01 0.92 81

118 1.19 1.62 2.02 1.19 1.53 2.11 -0.03 0.94 100

156 0.11 0.28 0.42 0.11 0.28 0.39 -0.03 0.68 64

167 0.08 0.19 0.30 0.08 0.14 0.25 -0.03 0.12 49

B. Di-ortho, limited

dioxin activity

138 1.58 2.05 2.55 1.50 2.02 2.77 -0.09 0.56 100

170 0.30 0.46 0.66 0.35 0.48 0.63 -0.01 0.74 97

Phenobarbital, CYP1A,

and CYP2B inducers

99 0.28 0.58 0.80 0.25 0.52 0.86 -0.04 0.30 83

153 1.88 2.38 3.08 1.86 2.43 3.08 -0.08 0.40 100

180 0.89 1.21 1.54 0.94 1.21 1.57 0.01 0.63 100

183 0.13 0.23 0.35 0.10 0.23 0.33 -0.03 0.32 66

203 0.21 0.30 0.42 0.23 0.35 0.47 0.02 0.20 90

203/167 ? 187 0.34 0.43 0.52 0.38 0.50 0.63 0.09 NA NA

Variable number of subjects in each group is due to missing data on one or more of the PCB congeners shown. The PCB score (PCB 203/(PCB

187 ? PCB 167)) was based on the best fitting model as described in the text, and is provided to describe the distribution of the mixture of

significant PCB predictors. p values are not presented for the PCB score because the score was created after analysis, as described in text.

p values shown are for Wilcoxon Signed Rank Test of differences (case–control) within age-matched case–control pairs

LOD limit of detection
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variables, as this is a conservative choice based on

observed values.

We performed data analysis using age-matched condi-

tional logistic regression as in our prior study of DDT and

breast cancer in this same population [25]. We began with

a full model, entering all PCBs classified by Wolff et al.

[24]. as potentially relevant to human health: Group 1

consisted of congeners detected in the CHDS serum sam-

ples that were considered to be potentially estrogenic and

persistent (PCB 101,187, 201). Group 2 consisted of

congeners detected in the CHDS serum samples that were

considered to be potentially antiestrogenic, immunotoxic,

dioxin-like: Group 2A which are non-ortho or mono-ortho

in their structure (PCB 66, 74,105,118,156,167) and Group

2B which are di-ortho and have more limited dioxin-like

activity (PCB 138 and 170). Group 3 consisted of pheno-

barbital, CYP1A and CYP2B inducers (PCB 99, 153,180,

183, 203). Congeners that had individual p [ 0.20 were

tested for removal as a group, based on a likelihood ratio

test (p \ 0.15 as the criterion). At the next step, we used a

more stringent criterion, eliminating remaining PCB terms

with individual significance probabilities [0.05. In addi-

tion to using the likelihood ratio test to test the hypothesis

that the coefficients for these terms were each 0 using the

criterion, p \ 0.15, we also examined the sign and size of

coefficients of remaining predictors before and after elim-

ination to rule out major confounding by the eliminated

predictors. Our goal was to identify the minimal number of

PCBs that predicted risk. Once the best PCB model was

identified, we examined whether further adjustment for

blood lipids (total cholesterol, total triglycerides), parity,

year of blood draw, body mass index (lower tertile, upper

tertile vs. middle tertile as the reference category) and

breast feeding following the current pregnancy altered PCB

associations with breast cancer.

To describe the net effect of PCB exposure on breast

cancer, we constructed a post-hoc score that consisted of

the ratio of the sum of PCB congener(s) associated with

higher risk of breast cancer to the sum PCB congeners

associated with lower risk as in a previous report on health

effects of PCB exposure in this population [26]. We then

examined the variation in the post-hoc score and described

its association with breast cancer in this population.

Results

Table 1 shows the distribution of PCB congeners and a

post-hoc PCB score based on the final model shown in

Table 2. In this study population, PCB congener concen-

trations and the distribution of the PCB score were highly

variable. The comparisons between cases and controls in

Table 1 show no remarkable, statistically significant

associations between single PCB congeners and breast

cancer risk, in the absence of control for other congeners.

This observation suggests that confounding would play a

role in any associations observed in multivariate models.

There were no associations between the sum of total

PCBs or with PCB groups (groups shown in Table 1) and

risk of breast cancer (data not shown). Table 2 shows

results of multivariate conditional logistic regression

models for individual PCB congeners. PCB 203 is the only

congener with a consistent and statistically significant

positive coefficient, indicating that it was associated with

increased risk of breast cancer (Table 2, both models). In

contrast, PCB 167 and PCB 187 were inversely associated

with risk of breast cancer (Table 2, both models). To check

for dose response, we also estimated associations for these

PCBs by quartile shown in Table 3. Results were largely

consistent with a monotonic trend for each congener.

Table 2 Associations of individual PCB congeners with breast can-

cer diagnosed before 50 years of age

Classification

[24]

PCB Model with all PCBs Final model

Coefficient p value Coefficient p value

Estrogenic 101 0.39 0.41

187 -4.18 0.03 -2.07 0.02

201 -2.70 0.23

Anti-estrogenic

A. Non-

ortho, mono-

ortho, dioxin-

like

66 0.11 0.61

74 0.36 0.53

105 1.37 0.19

118 -0.82 0.07

156 -0.42 0.61

167 -2.50 0.17 -2.88 0.03

B. Di-ortho,

limited

dioxin

activity

138 0.10 0.87

170 -1.45 0.34

Phenobarbital,

CYP1A, and

CYP2B

inducers

99 -0.45 0.56

153 0.10 0.91

180 1.26 0.28

183 1.15 0.48

203 6.17 0.01 4.36 0.001

In the column labeled, ‘‘Model with all PCBs’’, congeners were

entered into a single model as the first step in model selection.

Congeners PCB 203, 187, 167 118, and 105 were initially retained

based on the criterion of p \ 0.20. PCB 118 and 105 were then

removed either one at a time or together. They were deleted from the

final model by applying the likelihood ratio test where v2 = 3.81, 2df,

p = 0.15 for the test to retain both PCB 105 and PCB 118 in the

model. Both were tested for removal simultaneously because deleting

either PCB 118 or PCB 105 alone greatly affected the size of coef-

ficient for the other. There were N = 112 age-matched case–control

pairs for all models shown and all models tested. Coefficients are

reported per 1 mmol/l
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Based on the results in Tables 2 and 3, a PCB score was

constructed as the ratio of PCB 203 (positively related to

risk) to the sum of PCBs 167 and 187 (each negatively

related to risk). The PCB score was highly variable in the

cohort, ranging from 8 % PCB 203 (compared to the sum

of PCBs 187 and 167) to 131 % PCB 203. Overall for cases

and controls combined, the median of the 4th quartile

(0.67) was 2.3 times higher than the median of the 1st

quartile (0.30). Among controls, the median of the 4th

quartile of the PCB score (0.61) was 2.5 times higher than

the median of the 1st quartile of the PCB score (0.25).

Among cases, the median of the 4th quartile of the PCB

score (0.71) was 2.2 times higher than the median of the 1st

quartile of the PCB score (0.32).

Table 4 shows the net effect of exposure based on the

proportion of PCB 203 compared to the sum of PCBs 167

and 187. Women in the top 25 % of the PCB score had

nearly three times the risk of breast cancer as women in the

bottom 25 % of the PCB score. Adjustment for lipids or

other breast cancer risk factors had little effect on this

result (Table 4), nor did adjustment for the denominator of

the PCB score or adjustment for p,p0-DDT, o,p0-DDT, and

p,p0-DDE (data not shown).

Figure 1 shows the actual distribution of the within-pair

differences for the PCB score for cases versus controls in

this study sample. In the majority of case–control pairs

(62 %), the PCB score was higher among the woman who

subsequently developed breast cancer. Pairs where the case

had a higher PCB score also showed greater differences on

the PCB score than pairs where the control had a higher

score (seen in Fig. 1; compare the right side of the Y-axis

(center axis) which shows pairs where cases within the pair

had a higher PCB score to the left side of the Y-axis which

shows pairs where controls had a higher PCB score). Fig-

ure 1 is consistent with the modeling results shown in

Tables 2, 3 and 4.

Discussion

The net effect of PCB exposure in this study population

was nearly a threefold increase in breast cancer risk among

women who had a higher proportion of PCB 203 in relation

to the sum of PCB 167 and PCB 187 (75th percentile vs.

25th percentile). These results are novel, but not incon-

sistent with the prior literature on PCBs and breast cancer.

Three comprehensive reviews concluded previously that

human studies of PCBs and breast cancer, which measured

exposure in midlife, had variable findings [6–8]. Most prior

studies reported primarily on total PCBs, which are largely

determined by the PCBs found in highest concentration in

humans (PCB 153, PCB 138, PCB 118, and PCB 180). We

too found no associations for total PCBs, high

Table 3 Associations of PCB 167, 187, and 203 with breast cancer

diagnosed before 50 years of age

PCB Quartile Odds ratio (95 % CI) p value for linear trend

167 Q1 1.00 \0.04

Q2 1.09 (0.48, 2.47)

Q3 0.70 (0.27, 1.78)

Q4 0.24** (0.07, 0.79)

187 Q1 1.00 \0.02

Q2 0.94 (0.41, 2.17)

Q3 0.92 (0.36, 2.38)

Q4 0.35* (0.11, 1.14)

203 Q1 1.00 \0.001

Q2 1.21 (0.46, 3.18)

Q3 2.89** (0.98, 8.55)

Q4 6.34� (1.85, 21.73)

Each of the three PCBs is coded as quartiles, based on the distribution

in controls. Quartile 1 is the reference category and quartiles 2, 3, 4

are entered as dummy variables for each PCB shown. Associations

shown are based on a single model where quartile terms for all PCBs

are entered. P value for trend is estimated from a linear model where

all three PCBs are entered as continuous variables. N = 112 case–

control pairs

CI confidence interval, p significance probability

* p B 0.10

** p B 0.05
� p B 0.01

Table 4 Estimated net effects of PCB exposure on risk of breast

cancer before 50 years of age

Level of adjustment Quartile of PCB

scorea
Odds ratio

(95 % CI)

Unadjusted Q1 1.00

Q2 1.26 (0.53, 3.00)

Q3 1.52 (0.64, 3.62)

Q4 3.01 (1.34, 6.78)

Cholesterol and

triglycerides

Q1 1.00

Q2 1.23 (0.53, 3.07)

Q3 1.53 (0.64, 3.68)

Q4 3.09 (1.34, 7.16)

Cholesterol, triglycerides,

race, parity, lactation,

body mass index,

and year of blood

sampling

Q1 1.00

Q2 1.36 (0.53, 3.52)

Q3 1.78 (0.70, 4.55)

Q4 2.81 (1.11, 7.09)

CI confidence interval
a A post-hoc PCB score was defined to describe the net effect of PCB

exposure in this study sample (described in text). PCB 203 was

associated with increased risk, while PCBs 167 and 187 were asso-

ciated with decreased risk (see final model, Table 2). Therefore, the

PCB score was defined as the proportion of PCB 203 relative to the

sum of PCBs 167 and 187: PCB 203/(PCB 167 ? PCB 187).

N = 112 age-matched case–control pairs for all models shown
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concentration PCBs or sums of PCBs in functional

groupings previously proposed by Wolff et al. [24]. No

prior studies reported on the independent contribution of

the three lower concentration congeners that predicted

breast cancer in this study.

It is notable that prior studies did not measure exposure

in young women, during windows of susceptibility during

early life, when the breast might be more susceptible to

endocrine disruption, including in utero, puberty, preg-

nancy, or the postpartum [1–3]. Our ability to directly

measure exposure during the early postpartum is a partic-

ular strength of this study. A recent meta-analysis of

pregnancy-associated breast cancer outcomes found that

women diagnosed with breast cancer in pregnancy, and

particularly women diagnosed postpartum, had poorer

survival [4], providing further evidence supporting the

hypothesis that pregnancy and the postpartum period are

vulnerable periods for the breast.

As PCBs are highly persistent, it is likely that post-

partum levels also reflect pregnancy levels, as suggested by

one longitudinal study that reported high correspondence

between early postpartum levels and levels across all three

trimesters of pregnancy [15]. As women were young at the

time of blood collection, it is also possible that the early

postpartum levels of PCBs reflect exposure even prior to

pregnancy, possibly during puberty, as well. This might

explain the strength of the association observed for PCB

203, a higher chlorinated compound, as compounds with

this structure tend to have longer half-lives [14].

Other strengths of this study include prospective

assessment of exposure an average of 17 years before

diagnosis, simultaneous consideration of individual PCB

congener effects, and the opportunity to observe a popu-

lation during active exposure because blood samples were

obtained before PCBs were restricted.

Our focus on breast cancer at a young age is an addi-

tional strength. Molecular studies strongly suggest that pre-

menopausal breast cancer may not share the same features

or risk factors as breast cancer diagnosed in middle age and

older [27, 28]. Our findings could lead to better under-

standing about etiology, prevention, and treatment of early

breast cancer, if the mechanisms for the associations we

observed can be validated and investigated by experimental

toxicology and molecular studies.

Our choice to estimate the net effect of exposure to

observed PCB mixtures found in our study participants is

an additional strength. While our approach will likely be

improved upon as the methods for analyzing mixed expo-

sures advances; here, we applied an empirical approach to

describe more than individual congener associations. It is

of interest that the protective associations for PCBs 187

and 167 did not overcome the stronger, deleterious asso-

ciation observed for PCB 203. There are several specula-

tive explanations for this finding, the first being that PCB

203 is a particularly strong risk factor, as evidenced by its

point estimate. Alternatively, as the higher chlorinated

PCBs are eliminated more slowly, it is possible that post-

partum levels of PCB 203 more accurately reflect exposure

even earlier in life, including accumulations in utero,

childhood and during puberty, periods of susceptibility for

the breast in addition to pregnancy and postpartum.

Limitations of our study include the possibility of

unmeasured confounding by other exposures. In particular,

we were unable to measure dioxin exposure or activity,

raising the possibility that this or other unmeasured con-

founders could have masked or accounted for the associ-

ations we report here. However, as we observed dose

response, unmeasured confounding would have to follow

the same pattern, making this alternative explanation of our

findings less likely. It is also possible that host factors that

influence the metabolism or selective excretion of various

PCB congeners underlie the associations we observed. We

used early postpartum samples to save valuable timed

serum samples during pregnancy for other studies in the

cohort. However, prior studies conducted in serum samples

of the same age found good correspondence of these per-

sistent organochlorines across all trimesters and the early

postpartum [15], suggesting that postpartum PCB levels
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Fig. 1 Cumulative distribution of case–control differences for the

PCB score (N = 112 age-matched case control pairs). Each point

represents one case–control pair. The points on the right side of the y-

axis (center axis) are positive values that represent pairs where the

woman who developed breast cancer had a higher PCB score

postpartum than her matched control. In a majority of pairs (62 %),

the woman who subsequently developed breast cancer had a higher

PCB score. The differential for the PCB score was also greater for

pairs where the case had a higher score than her matched control

(compare points on the right of the y-axis to points on the left of the y-

axis)
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may also reflect pregnancy exposures. Still our study can-

not establish the age or developmental period when PCB

exposure was acquired, other than establishing that expo-

sure preceded the mean age of blood collection (age

26 years). Storage of serum samples is unlikely to have

biased study results, as all samples were similarly stored.

Randomization of samples within and between batches and

inclusion of controls and cases in the same batches mini-

mized inter- and intra-batch laboratory error.

Interpretation is limited by a lack of understanding about

the potential mechanism for PCB associations observed.

The direct association between PCB 203 and early breast

cancer was sizable and significant. However, the mode of

action for PCB 203, classified as a phenobarbital (PB)

inducer [24], is unknown. A PubMed search for ‘‘PCB

203’’ returned no citations, compared to 589 citations for

‘‘PCB 153,’’ for example. The Agency for Toxic Sub-

stances and Disease Registry report on the toxic effects of

PCBs makes no specific mention of PCB 203 effects [29].

PCB 187 has been classified as potentially estrogenic

[24], but it is unclear how postpartum or pregnancy

exposure might be associated with a lower risk of breast

cancer. This study provides little information regarding the

validity of the classification of PCB 187 as estrogenic. In

our previous report on the relation of prenatal PCB expo-

sure to time to pregnancy in daughters in this same cohort

[26], we found that a longer time to pregnancy in daughters

was associated with prenatal exposure to PCB 187. The

significant associations observed for breast cancer in

mothers and time to pregnancy in daughters following

prenatal exposure to PCB 187 deserves additional study,

perhaps in experimental models or in vitro systems. It

could be of interest to characterize PCB 187 effects in the

case of low versus high endogenous levels of estrogen and

during pregnancy and postpartum in particular.

We were unable to investigate gene/PCB interactions in

this study. The absence of associations for some of the

PCBs investigated might be explained by failure to identify

susceptible sub-populations of women. Previously, asso-

ciations were more consistently observed in sub-popula-

tions characterized by variant alleles for enzymes that

metabolize PCBs (Cytochrome P4501A1 variants) [10–13].

We were also unable to characterize the receptor status of

the breast tumors in our study. We cannot account for

lactation in subsequent pregnancies. However, breast

feeding following the current pregnancy did not predict

breast cancer in this sample and was not a confounder of

PCB associations. There was no correlation between breast

feeding following the observed pregnancy and PCB 203,

187, or 167. These findings may be explained by the low

frequency of long-term breast feeding in our cohort. Rates

of lactation in this sample were low (34 %) and among

those who did breast feed, most (60 %) breast fed for

\4 months [25]. We suggest that it is unlikely that lacta-

tion in subsequent pregnancies explains our results, as

lactation behavior is highly correlated among pregnancies

[30], but this remains a possibility.

The variable distribution of PCB congeners observed in

study subjects is to be expected as the distribution of

congeners depends on source of exposure which is influ-

enced by the chemical structure of each congener. Expo-

sure also depends on the fate of the congener in the

ecosystem which ultimately forms the source of human

exposure and on the individual response to the exposure.

All these factors contribute differently to the measured

serum level [31]. In a previous report on in utero PCB

exposure and daughter’s time to pregnancy, we also found

considerable variability in the mixture of PCB congeners in

CHDS mothers [26]. In the US, total PCB levels in adipose

tissue declined steadily after 1972 when restrictions were

implemented. A decline in PCBs was also observed in

archived blood samples in Norway during the same period

[32] and in human adipose tissue in the United States [33].

However, secular trends in the mix of congeners are

unknown [33]. As the fate of individual congeners in the

environment depends on their structure, environmental

topography, and climate, and because individual charac-

teristics may determine routes of exposure, and metabolic

fate, it is unlikely that trends for individual congeners are

the same over time, or within individuals, or across geo-

graphic areas [14]. There is little human data on this topic,

but results of repeated blood sampling in a Danish cohort

provides limited support for the concept that congener

proportions vary over time: over a 5-year period

(1976–1978 vs. 1981–1983) median concentration of total

PCBs declined 11 %, but median concentration of PCB

118 declined 34 %, PCB 180 declined 4 %, and PCB 153

declined 9 %.(adapted from Hoyer, et al., Table 1, p. 179)

[34]. If congener mixture is the underlying risk factor, then

we might expect different results for epidemiological

studies, depending on place, time, age, and other individual

characteristics that might alter external and internal dose to

these compounds.

Given the variability of congener mixtures observed in

our cohort, we speculate that an underlying host factor

related to metabolism of these compounds might contribute

to the PCB associations with breast cancer that we have

observed in this study. These data do not allow us to

determine whether PCB exposure would be necessary to

trigger an effect, or whether some host factor might be

sufficient to increase breast cancer risk. Our analysis does

indicate that PCB associations observed in this study are

independent of DDT associations previously observed in

this cohort [25]. Mechanistic studies in experimental

models, or in vitro are likely to be very important to

explaining the associations we report here, and for
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explaining the human breast cancer associations previously

reported for CYP1A1 polymorphisms in relation to PCB

exposure in middle-aged women [10–13].

In summary, in this study, the mixture of PCB congeners

predicted the estimated effect of PCB exposure on risk of

breast cancer. Overall, women in this study showed a variable

distribution for the three PCB congeners that predicted breast

cancer. Women with a high proportion of PCB 203 (top 25 %

of the study population) relative to PCBs 167 and 187 had a

nearly threefold increase in subsequent risk of breast cancer,

compared to women with a lower proportion of PCB 203

(bottom 25 % of the study population). The relation of PCB

exposure to breast cancer might be clarified by additional

laboratory, experimental and human population studies that

account for timing of exposure in relation to windows of

susceptibility for the breast and for concomitant host factors.

It is likely to be particularly important to study congener

mixtures and individual response to multiple exposures. It

remains unclear whether individual differences in exposure,

response to exposure, or both explain risk patterns observed.
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