Table 1.
№ | Example no. |
Noise level |
Number of noisy spikes |
Classification errors |
|||||
---|---|---|---|---|---|---|---|---|---|
SPC |
K-means |
FSPS |
|||||||
Spike Shape |
PCA |
Wavelets |
PCA |
Wavelets |
PSVD |
||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
1. |
1 |
[0.05] |
2729 |
0 |
1 |
1 |
0 |
0 |
0 |
2. |
[0.10] |
2753 |
0 |
17 |
5 |
0 |
0 |
0 |
|
3. |
[0.15] |
2693 |
0 |
19 |
5 |
0 |
0 |
1 |
|
4. |
[0.20] |
2678 |
24 |
130 |
12 |
17 |
17 |
47 |
|
5. |
[0.25] |
2586 |
266 |
911 |
64 |
68 |
69 |
157 |
|
6. |
[0.30] |
2629 |
838 |
1913 |
276 |
220 |
177 |
221 |
|
7. |
[0.35] |
2702 |
1424 |
1926 |
483 |
515 |
308 |
354 |
|
8. |
[0.40] |
2645 |
1738 |
1738 |
741 |
733 |
930 |
462 |
|
9. |
2 |
[0.05] |
2619 |
2 |
4 |
3 |
0 |
0 |
0 |
10. |
[0.10] |
2694 |
59 |
704 |
10 |
53 |
2 |
2 |
|
11. |
[0.15] |
2648 |
1054 |
1732 |
45 |
336 |
31 |
27 |
|
12. |
[0.20] |
2715 |
2253 |
1791 |
306 |
740 |
154 |
48 |
|
13. |
3 |
[0.05] |
2616 |
3 |
7 |
0 |
1 |
0 |
0 |
14. |
[0.10] |
2638 |
794 |
1781 |
41 |
184 |
850 |
0 |
|
15. |
[0.15] |
2660 |
2131 |
1748 |
81 |
848 |
859 |
17 |
|
16. |
[0.20] |
2624 |
2449 |
1711 |
651 |
1170 |
874 |
22 |
|
17. |
4 |
[0.05] |
2535 |
24 |
1310 |
1 |
212 |
686 |
0 |
18 |
[0.10] |
2742 |
970 |
946 |
8 |
579 |
271 |
7 |
|
19. |
[0.15] |
2631 |
1709 |
1716 |
443 |
746 |
546 |
51 |
|
20. |
[0.20] |
2716 |
1732 |
1732 |
1462 |
1004 |
872 |
195 |
|
Average | 2663 | 874 | 1092 | 232 | 371 | 332 | 81 |
Noise level is represented in terms of its standard deviation relative to the peak amplitude of the spikes. All spike classes had a peak value of 1. The absolute number of false matching spikes is shown in the column 8 as the outcome of our algorithm corresponding to the datasets containing noisy spikes (column 2).