Skip to main content
. 2012 Aug 8;13:96. doi: 10.1186/1471-2202-13-96

Table 1.

Number of classification errors and noise levels, obtained using FSPS, SPC and K-means, in all simulated examples

Example no. Noise level
Number of noisy spikes
Classification errors
SPC
K-means
FSPS
Spike Shape
PCA
Wavelets
PCA
Wavelets
PSVD
1 2 3 4 5 6 7 8
1.
1
[0.05]
2729
0
1
1
0
0
0
2.
[0.10]
2753
0
17
5
0
0
0
3.
[0.15]
2693
0
19
5
0
0
1
4.
[0.20]
2678
24
130
12
17
17
47
5.
[0.25]
2586
266
911
64
68
69
157
6.
[0.30]
2629
838
1913
276
220
177
221
7.
[0.35]
2702
1424
1926
483
515
308
354
8.
[0.40]
2645
1738
1738
741
733
930
462
9.
2
[0.05]
2619
2
4
3
0
0
0
10.
[0.10]
2694
59
704
10
53
2
2
11.
[0.15]
2648
1054
1732
45
336
31
27
12.
[0.20]
2715
2253
1791
306
740
154
48
13.
3
[0.05]
2616
3
7
0
1
0
0
14.
[0.10]
2638
794
1781
41
184
850
0
15.
[0.15]
2660
2131
1748
81
848
859
17
16.
[0.20]
2624
2449
1711
651
1170
874
22
17.
4
[0.05]
2535
24
1310
1
212
686
0
18
[0.10]
2742
970
946
8
579
271
7
19.
[0.15]
2631
1709
1716
443
746
546
51
20.
[0.20]
2716
1732
1732
1462
1004
872
195
Average 2663 874 1092 232 371 332 81

Noise level is represented in terms of its standard deviation relative to the peak amplitude of the spikes. All spike classes had a peak value of 1. The absolute number of false matching spikes is shown in the column 8 as the outcome of our algorithm corresponding to the datasets containing noisy spikes (column 2).