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Visual grading regression: analysing data from visual grading
experiments with regression models
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ABSTRACT. For visual grading experiments, which are an easy and increasingly popular
way of studying image quality, hitherto used data analysis methods are often
inadequate. Visual grading analysis makes assumptions that are not statistically
appropriate for ordinal data, and visual grading characteristic curves are difficult to
apply in more complex experimental designs. The approach proposed in this paper,
visual grading regression (VGR), consists of an established statistical technique, ordinal

logistic regression, applied to data from single-image and image-pair experiments with
visual grading scores selected on an ordinal scale. The approach is applicable for
situations in which, for example, the effects of the choice of imaging equipment and
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post-processing method are to be studied simultaneously, while controlling for 2009

potentially confounding variables such as patient and observer identity. The analysis
can be performed with standard statistical software packages using straightforward
coding of the data. We conclude that the proposed statistical technique is useful in a

wide range of visual grading studies.

Visual grading experiments have recently increased in
popularity for studying image quality in medical
imaging systems [1-10]. With a limited amount of work,
requiring access only to images from the routine work-
flow, the rating by a number of experienced observers
may result in information that is highly relevant for
evaluating the diagnostic quality of an imaging proce-
dure to be used in clinical practice and for comparisons
between alternative techniques.

In a typical experiment, each image is graded in one or
more respects by a number of observers who select a
score reflecting the general quality of the image or the
fulfilment of a specific criterion such as the visibility of a
certain anatomical structure. Well-defined criteria, such
as the EU criteria [11-13], are often used, and the score is
typically set on a scale with a limited number of steps
where, for example, 0 denotes the lowest and 4 the
highest category. Although the values on the scale have a
natural ordering, there is no guarantee that the difference
between 0 and 1 is equivalent to that between 1 and 2 or
between 3 and 4. In statistical terms, the score is defined
on an ordinal scale.

A variant of the method, intended to increase the
sensitivity to small differences in image quality, involves
simultaneous viewing of two images, where the score is
meant to express a comparison of the two images, such
as —2 for “certainly better in left image than in right
image”’, —1 for “probably better in left image than in
right image”’, 0 for “equivalent”, +1 for “probably better
in right image than in left image” and +2 for ““certainly
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better in right image than in left image”. Again, this
judgement may refer to a general concept of image
quality or to a single well-defined criterion.

Both of these experimental set-ups present the obser-
vers with a simple and easily understood task. When it
comes to analysing the data, e.g. to compare two imaging
methods with each other, however, the task is less
straightforward. Applying common statistical methods
relying on least-squares estimation, such as t-tests or
analysis of variance (ANOVA), might be tempting, but
these techniques, which seek to minimise the sum of
squared distances between predicted and observed
values, assume that the dependent variable is defined
on an interval scale, so that a certain difference in score
always has the same meaning. From a statistical point of
view, it is not acceptable to use these methods on
ordinal-type data.

A way to overcome this problem has been suggested
by Béath and Mansson [14], who use a mathematical
formalism similar to that of receiver operating character-
istic (ROC) curves to create a visual grading character-
istic (VGC) curve. Assuming normal distributions of two
underlying (unobserved) variables, their method treats
the ordinal-scale data in an irreproachable manner and is
easy to apply in situations in which two procedures are
to be compared. However, in many situations, research-
ers may want to assess simultaneously the effect of
several factors potentially influencing the grading and
their interaction, e.g. to compare the relative importance
of the choice of imaging equipment and the choice of
post-processing method. In such situations, application
of the VGC approach is not straightforward.

A different statistical technique, designed to handle
situations with dependent variables defined on an
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Table 1. Data from a hypothetical single-image rating experiment with category label coding. Combining 2 types of imaging
equipment (Im), 3 post-processing methods (PP), 6 patients (P) and 4 observers (O) yields a data set with 2x3x6x4=144

observations

Observation no. Im PP P o Score
1 Im1 PP1 P1 o1 1
2 Im1 PP2 P1 o1 2
3 Im1 PP3 P1 o1 1
4 Im2 PP1 P1 o1 0
5 Im2 PP2 P1 o1 3
6 Im2 PP3 P1 o1 2
7 Im1 PP1 P1 02 1
8 Im1 PP2 P1 02 3
144 Im2 PP3 P6 o4 3

The score is defined on a scale ranging from 0 (worst) to 4 (best).

ordinal scale, is ordinal logistic regression [15, 16]. Ordinal
logistic regression models easily handle situations invol-
ving several factors potentially influencing the outcome
variable, and the technique now belongs to the standard
statistical armamentarium. We have, however, been able
to find only two publications in which it was applied to
visual grading studies of image quality [17, 18].
Occasionally, researchers have applied dichotomisation
of ordinal visual grading data prior to analysis with
binary logistic regression, i.e. recoding the scores into
two categories such as good and poor, and thus part of
the information has been discarded [19].

The purpose of this article, therefore, is to point out
how established statistical methods involving ordinal
logistic regression models may be applied to the analysis
of visual grading experiments. It is not, however, meant
to replace standard statistical textbooks.

Suggested approach

Consider a visual grading experiment in which a
number of patients (P) are examined with one of several
types of imaging equipment (Im) and the results are
processed with one of several post-processing methods
(PP) before being presented to a number of observers (O).
Methods for organising and analysing the data will differ
slightly between situations in which one image is assessed
at a time and those in which two images are compared,
and we will therefore treat the two cases separately, using
hypothetical data for illustration. (The reader not inter-
ested in the technical details of the method may prefer to
skip the two subsections entitled Analysis.)

Single-image rating

Data organisation

The most straightforward way to tabulate the collected
data from a single-image rating experiment is probably
to assign one column for each independent variable and
use suitable category labels for the different values that
the variable may assume, as illustrated with hypothetical
data in Table 1. This data set of 144 fictional observations
thus contains the results of visual grading by 4 observers
of 36 images (2 types of imaging equipment (Im1, Im2)
combined with 3 post-processing methods (PP1, PP2,
PP3) and 6 patients). An alternative way is to let each
variable to be studied correspond to several columns in
the table, one for each possible category, where the
values are restricted to take the value 1 in the column for
the actual category and 0 in the other columns (Table 2).
The resulting numerical variables are called dummy
variables and are closer to the internal representation in
the computer needed for the calculations. Most modern
software packages, however, make this conversion
automatically, and the choice between the two types of
coding is at the discretion of the researcher as they yield
identical analysis results.

Analysis

The basic assumption underlying logistic regression in
its simplest form (binary logistic regression) is that the ratio
of the probability of an event occurring to the probability of
the same event not occurring is multiplied by a certain
numerical constant if a risk factor is present, and that the
effect of several simultaneous risk factors is obtained by

Table 2. Data from the same single-image rating experiment as in Table 1 with dummy variable coding of factors Im and PP

Observation no. Im1 Im2 PP1 PP2 PP3 P (0] Score
1 1 0 1 0 0 P1 o1 1
2 1 0 0 1 0 P1 01 2
3 1 0 0 0 1 P1 o1 1
4 0 1 1 0 0 P1 o1 0
5 0 1 0 1 0 P1 01 3
6 0 1 0 0 1 P1 o1 2
7 1 0 1 0 0 P1 02 1
8 1 0 0 1 0 P1 02 3
124 0 1 0 1 PG 04 3
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multiplying sequentially by the corresponding constants.
The ratio between the two probabilities is called the odds
for the event. Transforming probability with the logistic
function (the logarithm of the odds)

logit (p)=log (p/(1 —p)) (1)

(log here denotes the natural logarithm) results in a
linear equation, which in the simplest case, with one
continuous independent variable, takes the form

logit (p)=ax+b )

where a=—1 and b=0. The explicit dependence of the
probability p on the independent variable x is given by

—p=1/[1+exp(—ax+Db)] 3)

where exp denotes the exponential function (see
Figure 1).

In the case of several independent variables, we will
instead need a linear combination of the independent
variables, and the probability predicted by the model is
given by

p=1/[1+exp(—2)] 4)

where z is a weighted sum of independent numerical
variables (continuous or dummy variables). If all inde-
pendent variables are categorical, as is the case when a
limited number of components are compared, every
independent variable is represented by a term that takes
a separate value for each category. If the model includes
the two variables PP and Im, these will correspond to two
terms Ay, and Bpp, where, for example, A; characterises
equipment Im1 and A, equipment Im2. In most situations,
the researcher is not interested in differences between
specific patients or observers, but the corresponding
variables P and O should be introduced in the model
nonetheless, in order to handle the variation that arises
due to differences between patients and observers.
When the dependent variable y is defined on an
ordinal scale, as in our example, the probability of
obtaining a value not greater than n is given by

where Dp, Eo and C, have values specific for each
patient, observer and quality level, respectively. In most
modern software for ordinal logistic regression, such a
model is easily specified by declaring Im, PP, P and O as
independent nominal variables and y as the dependent
variable.

Using dummy variables for PP and Im, as in Table 2,
the same equation will take the form

logit [P(y=n)]=a;Im1 +a,Im2 +b;PP1+b,PP2+b;PP3 +
Dp+Eo—C, (6)

where Im1, Im2, PP1, PP2 and PP3 are dummy varia-
bles that can only have the values 0 or 1, and a4, a5, by
and b, are parameters to be estimated. This formu-
lation makes the similarity to linear regression more
obvious.

A model of this type can also easily be specified in
current software. However, as the algorithm requires
that the independent variables of the model not be
linearly dependent on each other, one cannot include
both Im1 and Im2 as independents (since Im1+Im2=1
always). Thus, one has to select one category as the
“reference category”’ against which the other values are
compared. In our example, if we should consider the
imaging method Im1 and the post-processing technique
PP1 as reference categories, we would specify Im2, PP2,
PP3, P and O as independent variables, and the program
would test Im2 against Im1, and each of PP2 and PP3
against PP1.

Image-pair rating

Data organisation

Data from a hypothetical image-pair rating experiment
are presented in Table 3. In this example, the first three
rows of the data set represent a comparison between
imaging methods, whereas rows 4-9 represent compar-
isons of post-processing methods. In total, this data set
contains 216 comparisons; 72 comparisons between
imaging methods and 144 comparisons between post-
processing methods (still with 6 patients and 4 obser-
vers). Although not included in this simple example, it is

IOglt [P(ysi’l)]:Z:AIm+BPP+Dp+ EO — Cn (5)
1.0+
Q 05+
0.0 +
=5

Figure 1. Probability (p) as a function of a single independent variable (x) according to a simple logistic regression model

(Equation (3).
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Table 3. Data from a hypothetical image-pair rating experi-
ment with category label coding

Observation Im-L Im-R PP-L PP-R P o Score
no.

1 Im1 Im2 PP1 PP1 P1 o1 0
2 Im1 Im2 PP2 PP2 P1 01 1
3 Im1 Im2 PP3 PP3 P1 o1 1
4 Im1 Im1 PP1 PP2 P1 o1 -2
5 Im1 Im1 PP2 PP3 PI1 o1 0
6 Im1 Im1 PP3 PP1 P1 o1 1
7 Im2 Im2 PP1 PP2 P1 o1 -2
8 Im2 Im2 PP2 PP3 P1 o1 1
9 Im2 Im2 PP3 PP1 P1 o1 1
10 Im2 Im1 PP1 PP1 P1 02 1
11 Im2 Im1 PP2 PP2 P1 02 0
12 Im2 Im1 PP3 PP3 P1 02 1
13 Im1 Im1 PP2 PP1 P1 02 1
216 Im2 Im2 PP1 PP3 P6 04 -1

Variable names ending in -L refer to the left image in each
image pair, and those in -R to the right one. The first 3
observations in the data set represent comparisons between
imaging methods, whereas observations 4-9 represent
comparisons of post-processing methods (PP).

Im, imaging equipment; P, patient; O, observer.

also possible to compare image pairs that differ in both
independent variables simultaneously. Image pairs, though,
never represent comparisons between patients or between
observers as these are not of interest to the researcher.

In situations with image-pair rating, it turns out that
the alternative type of coding, with dummy variables,
will facilitate the analysis. We therefore recommend
organising the data in the style of Table 4. The difference
compared with Table 2 is that the values of the
numerical variables corresponding to dummy variables
are no longer restricted to 0 and 1, but take the value 1
when a feature is present in only the left image, —1 when
the same feature is present in only the right image and 0
when the two images do not differ with respect to the
independent variable in question. For example, for
observation 1, only the left image was produced with
imaging equipment Im1 and only the right image with
Im2; hence the variable Im1 is given the value 1 and the
variable Im2 the value —1 with the dummy-style coding.
Variables not occurring in the comparisons, however (in
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this example P and O), may still be coded with category
labels.

Analysis
With category label coding, the equation correspond-
ing to Equation (5) would be

logit [p(y=n)]1=Aim-L. — Aim-r +Bpp-L. — Bpp.g + Dp+
Eo—Cy @)

Although mathematically correct, this equation is not
suitable for estimating the quality of images regardless of
their position (left or right). Thus, a different formalism
must be sought in order to make the problem solvable
with standard software.

If we instead use variables analogous to the dummy
variables above, we can again apply the familiar
regression given in Equation (6), the only difference
being that the “dummy variables”” now take the values 1,
0 and —1. This equation is easy to use with most software
for ordinal logistic regression. Again, one must consider
the requirement that the independent variables not be
linearly dependent on each other and, after selecting
reference categories, include “dummy variables” only
for the other categories of each factor in the model. With
the data in Table 4, we might thus specify Im2, PP2, PP3,
P and O as independent variables.

For numerical reasons, the accuracy of the estimated
parameter values (and thus of the significance levels
obtained) may depend on the appearance of the columns
containing the numerical dummy variables (in Table 4,
columns 2-6), which describe the design of the experi-
ment. How to optimally design an experiment is,
however, beyond the scope of this paper. For a pedago-
gical introduction to that subject, see Pocock [20].

Results

Different statistical programs provide the user with
varying amounts of numerical results of an ordinal
logistic regression analysis. To assess the value of a
logistic regression model applied to one’s data, the
researcher should both answer questions concerning the
effect of each independent variable on the dependent
variable and give some information on how well the

Table 4. Data from the same image-pair rating experiment as in Table 3 with dummy-variable-like coding of factors Im and PP

Observation no. Im1 Im2 PP1 PP2 PP3 P o Score
1 1 -1 0 0 0 P1 o1 0
2 1 -1 0 0 0 P1 01 1
3 1 -1 0 0 0 P1 o1 1
4 0 0 1 1 0 P1 o1 -2
5 0 0 0 1 =1 P1 o1 0
6 0 0 -1 (0] 1 P1 01 1
7 0 0 1 1 0 P1 o1 -2
8 0 0 0 1 -1 P1 o1 1
9 0 0 -1 0 1 P1 (0} 1
10 =1 1 0 0 0 P1 02 1
11 -1 1 0 0 0 P1 02 0
12 =1 1 0 0 0 P1 02 1
216 0 0 1 0 -1 P6 04 -1
770 The British Journal of Radiology, September 2010



Visual grading regression

model fits the data. Table 5 shows the result of applying
the ordinal logistic regression model described by
Equation (5) to the data in Table 1. In the lower part of
the table, significant results of the likelihood ratio y” test
are displayed for the independent variables PP and P,
but not for Im or O, i.e. in the hypothetical visual grading
experiment the perceived image quality was affected by
the choice of post-processing method, but not by the
choice of imaging equipment.

In the upper part of the table, information is given on
how well the model explains the studied data. The
software chosen for this example (JMP 7.0.1; SAS, Cary,
NC) gives a value of R?, analogous to the result of a linear
regression analysis. This measure, however, is not the only
possible choice. As explained by Long and Freese in [21], a
plethora of different parameters describing goodness of fit
are available.

The middle part of the table contains the estimated
values of the parameters included in the model, i.e. the
coefficients in Equation (5). The degree of uncertainty in
these estimates is indicated by the standard errors and
the confidence limits in the last two columns. For each

parameter, a significance test is carried out to test if the
parameter differs from O or not. The parameter estimates
can be used for interpretation of the results if one is
interested in just one particular type of imaging equip-
ment or post-processing method. In this example, the
confidence intervals indicate that both PP1 and PP2
differ significantly from PP3 (the reference category), but
in different directions. Most statistical software also
includes methods for performing post hoc tests, i.e. tests
to calculate the probability of whether the difference
between the estimates is likely to be caused by chance.
For a graphical presentation of the results, the cumu-
lative probabilities of different outcomes, p(y=n), pre-
dicted by the ordinal logistic model can be plotted against
the linear combination of independent variables, z, which
is used in the model (Figure 2a). The horizontal axis of this
diagram can be thought of as a “risk score’”” obtained by
summing “‘risk scores” for every factor potentially
affecting the visual grading score. With the numerical
example from Table 1, the imaging method Im1 was given
a risk score of —0.12%, the post-processing method PP2 a
risk score of 3.15, and patient P1 and observer O3 risk

Table 5. Result of applying the logistic regression model described by Equation (5) to the data in Table 1

Ordinal logistic fit for score

Model —Log Likelihood DF Ve Prob>y?

Whole model test

Difference 77.995 11 155.99 <0.0001

Full 146.207

Reduced 224.202

R% (U) 0.3479

Observations (or sum Wats) 144

Converged by objective

Term Estimate SE Ve Prob>y? Lower 95% Upper 95%
Parameter estimates

Intercept [0] —4.52 0.48 90.36 <0.0001

Intercept [1] —1.40 0.28 24.19 <0.0001

Intercept [2] 0.50 0.27 3.47 0.0626

Intercept [3] 2.86 0.35 68.02 <0.0001

Im [Im1] 0.12 0.16 0.57 0.4489 -0.20 0.45
PP [PP1] 3.23 0.37 77.64 <0.0001 2.54 4.00
PP [PP2] —3.15 0.36 77.60 <0.0001 —3.89 —2.48
P [P1] 0.98 0.37 7.09 0.0077 0.24 1.72
P [P2] 0.07 0.36 0.04 0.8383 —0.64 0.78
P [P3] 0.61 0.36 2.84 0.0919 —0.09 1.31
P [P4] —1.57 0.41 14.52 0.0001 —2.40 -0.79
P [P5] 0.85 0.36 5.40 0.0202 0.15 1.56
0O [01] 0.39 0.28 1.93 0.1648 -0.15 0.95
0 [02] 0.06 0.28 0.05 0.8245 —0.50 0.63
0O [03] —0.52 0.29 3.17 0.0748 -1.1 0.06
Effect likelihood ratio tests

Source Nparm DF L-R Prob>,*

Im 1 1 0.57 0.4489

PP 2 2 144.81 <0.0001

P 5 5 29.15 <0.0001

(e} 3 3 3.82 0.2812

Output from JMP 7.0.1 (SAS, Cary, NC, USA).
DF, degrees of freedom; Wgts, weights; Prob, probability; SE, standard error; L-R, likelihood ratio; Nparm number of parameters.

* To maintain the desired orientation of the horizontal axis in the figures, the sign of each risk score has here been inverted relative to Table 5.
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scores of —0.98 and 0.52, respectively. For the combination
of Im1, PP2, P1 and O3, the combined risk score will thus
be (—0.12+3.15)+(—0.98+0.52)=2.57. The vertical axis
represents the probability of obtaining at least a certain
visual grading score, and the horizontal locations of the
curves correspond to the values of the parameters C, in
Equation (5). For each value of z, i.e. for each combination
of factor values, the predicted probability for a given
outcome corresponds to the height between two of the
curves in the graph. For the combination mentioned above,
the model predicts a probability close to 0% for a visual
grading score of 0, and probabilities of approximately 2%,
9%, 46% and 43% for visual scores of 1, 2, 3 and 4,
respectively, as can be seen by following a vertical line
above the value 2.57 on the horizontal axis. For a certain
subpopulation defined by the value of some independent
variable, the heights seen in the logistic regression plot can
easily be compared with the empirical frequencies
displayed in the bar graph in Figure 2b. For example, for
the 48 observations representing the post-processing
method PP1, the model predicts probabilities of approxi-
mately 26%, 56%, 14%, 3% and 0% for the visual grading
scores 0, 1, 2, 3 and 4, respectively, not differing too much
from the observed frequencies of 27%, 54%, 15%, 2% and
2% (see Figure 2b).

Analogous results for the image-pair data in Table 4,
analysed with the model described by Equation (6), are

1.00

ty

.75

Cumulative probabil
o
[43)
o
1

0.254

0.00

O Smedby and M Fredrikson

shown in Figure 3a,b. In this case, strongly significant
differences were found between all pairs of post-processing
methods, but not between Im1 and Im2, and the R for the
model was 0.388.

A different way of presenting the results of a logistic
regression analysis that is sometimes used is illustrated
by Table 6. It indicates how each observation was
actually scored, as well as what would have been the
most probable scoring according to the model. It should
be noted that the uncertainty inherent in the statistical
model (see Figure 2a) is not reflected in this type of table.

Finally, it should be noted that binary logistic regres-
sion can also be used with ordinal outcomes. The usual
approach is then to create several binary variables from
the ordinal variable, studying, for example, Score 0 vs 1-
4 in the first analysis, Score 0-1 vs 2—4 in the second run,
and so on. An example of this approach can be found in
Bing et al [22].

Discussion

Although studies with an independent reference (gold
standard), often using ROC methodology, are generally
accepted as the most reliable way of evaluating the
diagnostic value of medical imaging techniques [23],
the practical difficulties associated with such studies

100% 1

90% 1

80% 1

70% 1

60% 1

50% 1

40%

30% 1

20% A

10%

0%

PP1 PP2 PP3
(h=48) (n=48) (n=48)
(b)

Figure 2. (a) Graph of predicted cumulative probabilities (P(y=n)) according to an ordinal logistic regression model applied to
the single-image grading experiment in Tables 1 and 2. The dashed vertical lines represent the predictions for each of the two
types of imaging equipment (Im) and the three post-processing techniques (PP), and the solid vertical line refers to a numerical
example in the text. The length of every vertical line segment between two curves corresponds to the predicted probability for a
particular score. (b) Observed relative frequencies of scores 0-4 for each of the three post-processing techniques.
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Figure 3. (a) Graph of predicted cumulative probabilities according to an ordinal logistic regression model applied to the
image-pair grading experiment in Tables 3 and 4. The dashed vertical lines represent the predictions for each pair of imaging
equipment (Im) and post-processing techniques (PP). The length of each vertical line segment between two curves corresponds
to the predicted probabilities for a particular score. (b) Observed relative frequencies of scores for each pair of post-processing
techniques. In cases with opposite order of the two images within the pair (left and right exchanged), the sign of the score has

been inverted to ensure consistent meaning of each score.

make complementary ways of evaluating image quality
indispensable. Visual grading studies are an alternative
solution, simple to carry out with clinically available
images and not requiring any external ground truth. But
in order for these studies to gain general acceptance, the
data analysis methods must be appropriate.

For analysing data from visual grading experiments,
the visual grading regression (VGR) approach proposed
in this paper has certain advantages. First, the ordinal
nature of the grading data is correctly handled with
ordinal logistic regression. This is in contrast to visual
grading analysis methods treating the dependent vari-
able as an interval variable and employing t-tests or
analysis of variance. The potential bias arising from
differences between individuals (patients or observers) is
also taken into account in an appropriate way. Second,
the models can simultaneously include several factors
that might influence the perceived image quality. In
addition to the choice of imaging equipment and post-
processing method, a medical imaging researcher may
be interested in interactions between these two factors:
for images from a certain apparatus, but not for other
image types, a certain type of post-processing may be
most appropriate. Including interaction terms in the
statistical model may solve this problem, analogous to
what has been done in areas other than visual grading

The British Journal of Radiology, September 2010

[24, 25]. More complete information from experiments
with complex design can be obtained by expanding the
model further.

The dummy variable-like coding introduced in Table 4
also makes ordinal logistic regression applicable in
situations where pairs of images are compared and
graded on an ordinal scale. To our knowledge, this
approach has not been used before.

The regression model framework also allows for
continuous independent variables. In order to study
the effect of, for example, the kVp and mAs settings in

Table 6. Observed scores vs most likely scores according to
the logistic regression model applied to the data in Table 1

Observed score

Most likely 0 1 2 3 4 Sum
score

0 2 1 0 0 0 3
1 11 26 9 0 1 47
2 0 10 9 9 0 28
3 0 1 7 18 12 38
4 0 0 2 8 18 28
Sum 13 38 27 35 31 144

The predicted score coincided with the observed score in
2+26+9+18+18=73 cases out of 144 (51%).
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radiography and CT, or of various image acquisition
parameters in MRI, one can vary the relevant parameter
systematically across a certain interval and then include
the corresponding variable in the VGR model. To find an
optimal setting, it might be advantageous to use a
quadratic term rather than a linear one.

The most important assumption of the ordinal logistic
model is the proportional odds assumption (or parallel
regression assumption), which states that the odds
predicted by the model of obtaining at most a given
outcome 1, i.e. P(y=n)/(1 — P(y=n)), is proportional to the
corresponding odds for a different outcome m for all
combinations of independent variables. This means, for
example, that exchanging one type of imaging equipment
for another will always affect the odds by multiplication
with the same factor. Another way of stating this
assumption is to require that the different curves in the
logistic regression plot be identical except for a transla-
tion in the horizontal direction. This is in contrast to the
VGC analysis [14], which assumes that there exist two
underlying variables that are normally distributed.
However, for our approach, the validity of the assump-
tion can readily be tested formally [21] or illustrated
graphically by comparing theoretical logistic regression
plots (Figure 2a) with empirical distributions (Figure 2b).
This is considerably more difficult for the unobserved
variables underlying VGC.

If the main purpose of the investigation is to
discriminate between, for example, some post-processing
methods, the easiest way is to look at the parameter
estimates. The coefficients can also easily be interpreted
as odds ratios (ORs) by applying the exponential
function to the parameter values. As many researchers
are familiar with ORs, these might be easier to under-
stand. For example, for PP1 vs PP3 in Table 5, an OR of
exp(3.23)=25.3 means that on the average over the 5
values of the score (the dependent variable) the OR is
25.3 for PP1 vs PP3. In this case, this indicates a dramatic
difference between PP1 and PP3.

A situation that might cause a problem, however, is
when the number of parameters (degrees of freedom) in
the model is too great in relation to the number of
observations. There is a certain risk that the flexibility of
such a model will make it fit the data “too well”
(overfitting), resulting in parameter estimates that will be
strongly dependent on the observed data, so that minor
changes to the data can result in large changes to the
estimates. Statisticians usually advise against using
logistic regression models when the number of para-
meters approaches the number of observations in the
data set divided by 10 [26]. This should be borne in mind
when visual grading experiments are designed. In
image-pair rating experiments, the number of observa-
tions can be increased without increasing the number of
parameters in the model if the same images are
compared in more combinations. In studies with few
observations, or where one of the score values is attained
in a small number of cases, it might also be desirable to
replace the standard ordinal logistic regression algo-
rithm, which includes certain large-sample assumptions
in the maximum likelihood estimation, with exact
logistic regression [27].

There are also a number of methods that should be
used to check problems other than overfitting regarding
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the validity of the model. These can be found in the
manual of the statistical software used.

An alternative, non-parametric approach that has been
suggested involves calculating the measure relative
position (RP) based on the change of a categorical or
continuous variable between two measurements [28].
The RP can have a value between —1 and 1, and it is also
possible to calculate a confidence interval. This method is
used in Geijer et al [10], which, however, also includes
results from a linear regression model. The advantage of
the RP method is that it gives a measure that is as easy to
interpret as the Pearson or Spearman correlation coeffi-
cient. The method involves several computational steps,
and most of them are not available in standard statistical
software. The RP also shares a problem of interpretation
with the correlation coefficient — whether a certain value
of the estimate should be considered to be good or not is
a somewhat arbitrary decision.

Practical suggestions when using the VGR approach
include the following. Different software packages cap-
able of performing ordinal logistic regression should be
equally useful, including current versions of JMP (SAS),
SAS (SAS), SPSS (SPSS, Chicago, IL), Stata (Stata Corp LP,
College Station, TX), and Statistica (StatSoft, Tulsa, OK).
For image-pair studies, the data should be organised with
dummy variable-like coding of the variables for which
comparisons are made (as in Table 4). When reporting the
results, both results of the significance tests and informa-
tion on the goodness of fit should be included. Stacked bar
graphs such as Figures 2b and 3b can serve both to
illustrate the fit of the theoretical model to the empirical
data and to give an intuitive presentation of the strength
of the relationship. This, however, presupposes a
balanced experimental design, such that all subpopula-
tions defined by one factor have the same composition in
terms of the other factors included in the model. The use
of agreement between predicted and observed values (see
Table 6) as a measure of fit is not encouraged, as it fails to
take into account the degree of uncertainty incorporated
in the predicting model.

In ordinary linear least-squares regression, the most
common measure of the goodness of fit is R?, which is
usually interpreted as the percentage of variance
explained by the model, thus varying between 0 and 1.
There are, however, a number of alternative interpreta-
tions, since R? can be calculated in a number of ways, all
yielding the same numerical result for linear regression.
The R* measure has counterparts for other generalised
linear models, sometimes called “pseudo—Rz”, but their
interpretation is less straightforward, as various formu-
las for R? result in different numerical results [29]. Thus,
the interpretation will depend on which formula was
used, which must be specified; in some cases the result is
more like a deviance measure or a squared correlation
measure between the dependent and the independent
variables. Despite these drawbacks, the pseudo-R* can be
used as a measure when the purpose is to compare
different models, e.g. when deciding whether or not to
include a new variable in the model.

The model should always be reported with the
relevant variables included, i.e. the variables that were
the reason for carrying out the analysis; in our exam-
ple, imaging equipment and post-processing method.
Confounding variables, such as those identifying
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observers and patients, also need to be included since the
model is based on repeated measures on the same
observer and patient. The ideal solution would be to
perform an analysis conditional on observer and patient,
as can be done in binomial logistic regression [30].
Unfortunately, this option is not available for ordinal
logistic regression. It is not clear whether the recently
proposed technique of composite logistic regression may
change this situation [31].

A general problem when fitting statistical models to
data is the recommendation that the model should be
created with one set of data and then tested with another
data set. The data used to create the model usually give
better predictions than any other data set. In the case of
visual grading experiments, researchers rarely have the
possibility of using more than one data set, but it should
be borne in mind that the goodness-of-fit measures may
give deceptively high values.

Conclusion

We have presented a framework for analysing visual
grading data with ordinal logistic regression that takes
into account the ordinal character of data and allows for
studying several factors at once. It should be useful for a
wide range of visual grading studies of image quality.
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