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ABSTRACT. The huge amount of information that needs to be assimilated in order to
keep pace with the continued advances in modern medical practice can form an
insurmountable obstacle to the individual clinician. Within radiology, the recent
development of quantitative imaging techniques, such as perfusion imaging, and the
development of imaging-based biomarkers in modern therapeutic assessment has
highlighted the need for computer systems to provide the radiological community with
support for academic as well as clinical/translational applications. This article provides
an overview of the underlying design and functionality of radiological decision support
systems with examples tracing the development and evolution of such systems over the
past 40 years. More importantly, we discuss the specific design, performance and usage
characteristics that previous systems have highlighted as being necessary for clinical
uptake and routine use. Additionally, we have identified particular failings in our
current methodologies for data dissemination within the medical domain that must be
overcome if the next generation of decision support systems is to be implemented
successfully.
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What is a decision support system?

Decision support systems (DSS) are a set of manual or
computer-based tools that assist in some decision-making
activity. In today’s information-driven environment, DSS
are commonly understood to be a variety of computerised
information management systems, designed to help
resolve complicated problems and/or questions by
supporting the decision-making process. DSS are gaining
increasing popularity in various domains including
business, engineering, the military and medicine. These
systems are especially valuable in situations where the
amount of available information is prohibitive for the
intuition of a human decision maker and where precision
and optimal performance are of importance [1].

Medical decision support systems

The huge amount of information that needs to be
assimilated in order to keep pace with continued advances
in modern medical practice can form an insurmountable
obstacle to the individual clinician. In medical applications
decision quality is of crucial importance, whilst human
decision-making performance can be suboptimal and
deteriorate as the complexity of the problem increases.

For these reasons, the development of medical DSS is
becoming increasingly important [1] and the routine
uptake of these ‘‘intelligent’’ systems is becoming more
common [2]. One of the earliest rule-based expert systems,
DENDRAL [3], was implemented in the 1960s and was
designed to provide support to organic chemists. This was
further developed over the early 1970s by the same team at
Stanford University into arguably the first rule-based
medical DSS, MYCIN [4]. This system attempted to
identify bacteria causing severe infections and recommend
appropriate antibiotics. From these early DSS and the
subsequent development of knowledge engineering, we
now have DSS based on established architectures.

Specific radiological considerations

The development of DSS has received particular
attention in radiology in both diagnostic as well as
service-planning roles. Recent work has highlighted the
value of DSS to guide order entry on outpatient imaging
tests [5]. This article will focus on the application of DSS
aimed at improving clinical performance through the
provision of real-time diagnostic support.

Radiological practice has seen huge technical advances
from direct image visualisation on phosphor screens
through to the digital radiographic techniques we now
employ. More significantly, we now find ourselves
entering an era of advanced complex, computationally
intensive quantitative imaging techniques that are used
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as specific biomarkers of both disease and treatment
response. Unless we see the application of DSS to
facilitate the uptake of these techniques, these advances
will not be fully realised in the clinical setting. Indeed,
some of the authors have personal experience of fai-
lure when attempting translational development of
complex techniques developed in their own academic
practice [6–9].

The understanding of what functionality and archi-
tectures the next generation of DSS require will facilitate
their uptake in academic as well as clinical radiological
applications.

Computer-aided diagnosis vs decision support
systems

What is the distinction between computer-aided detec-
tion (CAD) systems, which have seen significant devel-
opment within radiological practice, and DSS systems?
Although in many instances they share common under-
lying architectures, their objectives differ significantly.
CAD systems are very successful at undertaking repeti-
tive tasks and tasks that suffer from a lack of interobserver
concordance, as well as performing well in domains
where there is a lack of trained domain experts [10]. CAD
systems are in effect autonomous image analysis and
processing systems tasked to specific roles within radi-
ological practice or indeed a series of complementary
processes [10] with minimal initial human interaction. At
a specific time in the CAD cycle the system will, for
example, prompt the human user into reviewing the
image through prompts highlighting specific regions of
the image, whereupon the cycle restarts. More advanced
systems also incorporate an element of image processing
to facilitate further this methodology [11].

In comparison, DSS aim to improve human clinical
performance or function as training systems through
their interaction with the user. They use prompts
designed to steer the operator through a diagnostic
conundrum providing information in an unsolicited and
structured manner. Such systems do not specifically
undertake any image processing or analysis functions,
rather relying on the operator passing imaging informa-
tion to the DSS itself.

In future applications this distinction will undoubtedly
become blurred as elements of DSS are incorporated into
CAD systems and vice versa; however, this review is
restricted purely to DSS applications.

Route of analysis

We begin by examining the earlier rule-based expert
systems (ES) that were often designed to function in a
manner more akin to a domain expert replacement rather
than as a support system. We then review more recent
systems based around neural networks designed to
emulate human reasoning techniques. From there we
examine case-based reasoning, which emulates the
decision-making processes employed by physicians
themselves. Finally, we discuss DSS based on Bayesian
networks, which many consider to represent the ‘‘state-
of-the-art’’ in DSS design.

Although more recent systems have evolved towards a
Bayesian design, we envisage that new systems should
have architectural components best suited to the volume
and knowledge type available at the time of implemen-
tation. The objective is, through the analysis of the
evolution of such systems and of modern DSS imple-
mentations, to elicit the specific requirements for the next
generation of radiological DSS. In doing so, we hope to
identify the knowledge and technological gaps within
this specific and important branch of health informatics
and e-medicine that require resolution if such systems
are to gain the clinical uptake they deserve.

Fundamental characteristics of decision
support systems

The modern DSS should aim to facilitate optimal
human performance by harnessing the most efficient
features of the computer system for use in conjunction
with the end user’s own decision-making skills and
abilities. A most important feature of any DSS is the level
of its performance: the speed with which the system can
solve a problem and the accuracy and appropriateness of
the system’s result. These two facets are not mutually
exclusive, as even the most accurate diagnostic informa-
tion will have little value if it is available too late to be
effectively used. Conversely, no matter how fast a
system’s problem solving, the user will not be satisfied
if the result is incorrect.

In theory, conventional computer programs always
provide the same ‘‘correct’’ solutions, but in practice the
system can give appropriate support only if the data are
complete and exact. When the data are incomplete or
include errors, a conventional program will provide
either no solution or, more problematically, an incorrect
one. In addition, deterministic systems might be based
on domain-specific assumptions that oversimplify the
decision-making process (Figure 1).

Rule-based expert systems

Early medical DSS attempted to simulate the judge-
ment and behaviour of a human domain expert. A rule-
based ES has five main components (Figure 2) [12]. Such
systems would often attempt to replace the human user
and in doing so would often perform unsatisfactorily.
For any system to work effectively it must assimilate the
knowledge and decision-making framework of the
domain expert, as well as integrating new knowledge,
and display this knowledge in a form that is easy to
visualise and understand. In other words, the system
should be able to explain how it has reached its
particular conclusion.

Rule-based expert systems in radiology

RENEX [13], an ES for the diagnosis of renal obstruc-
tion from nuclear medicine scans, has been seen to
perform at a level approximating that of a domain expert
and is subject to further testing [14].
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The explanatory systems in this and other ES are of
particular benefit as training tools by explaining the
importance of findings to clinicians who do not hold the
domain experience to understand the implicit knowledge
inferred from the system’s recommendations [15–17]. The
importance of explanatory facilities in a rule-based ES was
first expounded within the domain of neuroradiology by
Teather et al [18] and du Boulay et al [19]. The BRAINS

expert system was able to give recommendations con-
cerning diagnosis and further imaging on the basis of
statistical data with explanatory features ‘‘of benefit to less
experienced radiologists’’ [18, 19]. This system used
language-based descriptive inputs from the reporting
radiologist. Teather et al [18] identified certain features
that were essential in providing a clinically acceptable
system, features that still hold true today:

Figure 1. The decision algorithms in modern decision support system (DSS) are commonly complex and designed with
recognition that the available information might be incomplete or poorly defined. For instance, in (A) if a choice algorithm
states ‘‘if a lymph node is .1 cm in short axis diameter then it is pathological’’ this decision will be subject to the same errors
whether it is applied by a human or is automatically implemented. For this reason, in (B) a modern DSS would assess a lymph
node as follows: ‘‘if a lymph node is .1 cm in short axis diameter and has a fatty hilum, is ovoid in shape and is unchanged over
2 years in a patient with no other tumour markers, then it is likely to be benign’’.

Figure 2. Diagrammatic representation
of the five components of a rule-based
expert system. (1) The knowledge base
contains information provided by the
domain expert and is used for problem
solving in the form of ‘‘rules’’ that usually
have a condition/action (if/then) structure.
(2) The database contains the facts that
have been provided to match against the
condition part of the rules. Using the
database, the system can search for the
appropriate ‘‘if’’ statement to be satisfied
before triggering the action structure. (3)
The inference engine carries out this
reasoning by linking the knowledge base
with the facts in the database. (4) The
explanation facilities enable the user to
query the system as to how a particular
conclusion was reached or why a specific
fact was/is needed. These facilities also
allow the user to interrogate the system as
to the rules and knowledge stored within
the database and knowledge base. (5) The
user interface is not only important in
facilitating accurate and easy information
provision, but is invaluable in determining
the accuracy and methodology of the data
visualisation provided to the end user.
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N The system must not usurp the radiologist’s position
and usual working practice.

N The system must have an adaptable, clinically
orientated user interface with help on demand.

N Diagnostic advice must be given in a probabilistic
form in terms of likely incidences of errors with
explanation and justification of conclusions available.

N The above features must be available independently
of diagnostic advice.

They found that the BRAINS system demonstrated an
unexpected lack of decisiveness in the diagnosis of
certain pathological processes. This finding was partly
related to the fact that variations in the language used for
radiological descriptors meant that users had difficulty
entering image description data in a reliable, consistent
and repeatable manner [20].

The problem of implementing formal image description
and underlying statistical granularity became even more
manifest in the follow-up system that was designed to aid
in MRI of the brain [21]. This difficulty was compounded
by the variations in imaging parameters that introduced
further statistical variation. Despite these shortcomings,
both systems are good examples of the radiological
reporting process driving an ES or DSS. In addition, as
we shall see later, the application of standardised imaging
descriptors has been seen to significantly improve the
overall performance of modern DSS.

Lejbkowicz et al [17] developed Bone Browser, a
diagnostic ES for bone tumour diagnosis. This system uses
a rule-based ES along with a probabilistic inference engine
to assess data entered by the radiologist reporting the
examination. Data are entered in the form of radiological
features, such as the size of the lesion or presence of soft-
tissue involvement, as well as patient data such as relevant
medical history or symptoms. This system performed as
well as the expert; indeed it often improved the expert’s
performance. However, it did identify another shortcom-
ing of ES design, namely it tended to produce differential
diagnoses of twice the length! Further improvements in the
system’s diagnostic capacity were not thought possible
owing to the disparity in imaging characteristics of the
same pathological process in different parts of the skeleton
and the paucity of data on certain rare conditions.

Summary: rule-based expert systems

Early implementations attempted to replace the
clinician, but this has now been seen to be both an
unrealistic as well as an undesirable aim. Recent systems
perform well when the clinical question is well defined
and relatively narrow. As the complexity of the clinical
domain increases, so the ability of such systems to
supply results with sufficient statistical power becomes
less feasible. In general, rule-based ES do not have the
ability to learn from experience. Unlike a human expert,
who knows when to ‘‘break the rules’’, an ES cannot
easily modify its knowledge base. The inability of such
systems to learn from new supplied data negates their
use in settings where the acquired domain knowledge is
incomplete at the time of design.

Such systems introduced the concept of using the DSS
as teaching tools by offline searching and analysis of the

DSS knowledge base. In this context, rule-based ES can
perform poorly because, although individual rules can
be relatively simple, their interactions within a larger set
of rules might be opaque. Rule-based ES make it difficult
to observe how individual rules serve the overall
strategy [12].

BRAINS and MRI advisor [18–21] highlighted two
important concepts. Firstly, DSS perform better with
standardised descriptor inputs. Hence, restrictive lan-
guage entry can improve DSS function, a feature that is
now seen to be important in the majority of DSS
implementations irrespective of domain [22]. Secondly,
advanced imaging was seen to suffer from differing
implementations of the same underlying technique (e.g.
different scan parameters in MRI to produce generically
similar T2 weighted images). This implies that the next
generation of DSS needs to inform and take into account
similarities and differences between generically similar
imaging processes. This is of particular importance with
regards to advanced imaging techniques, such as
perfusion imaging [23], which have high variance in
how they can be performed and interpreted.

Artificial neural networks

Neural networks are designed to model the human
reasoning process and in particular its ability to process
information in a parallel fashion [24]. The network is
composed of a series of ‘‘nodes’’ interconnected by
axonal equivalents known as ‘‘arcs’’ (Figure 3). The
nodes are the sites of processing with the arcs affecting
a node by positively or negatively weighting its outcome
[12, 24]. This statistical weighting has the effect of
influencing both the input to a node as well as its output
and hence its influence on ‘‘downstream’’ nodes [25].

Neural networks do not use domain expertise but are
‘‘trained’’ using known input and resultant output
variables. This establishes the ‘‘arcs’’ and sets the values
for these internodal connections. When subsequent new
cases are presented to the system it uses these trained
arcs and nodes to give its output and can ‘‘learn’’ from
new cases, which is the greatest strength of this approach
[24].

Neural network decision support systems in radiology

Neuroradiology
Erol et al [26] used a neural network with input

parameters of patient age, sex and data from ultrasound
Doppler studies of the carotid arteries and the middle
cerebral arteries to aid in the assessment of intracerebral
haemodynamics following minor head injuries. They
found this technique to be as effective a support aid as
direct vascular studies without the comorbidity asso-
ciated with angiography.

Sinha et al [27] developed a neural network DSS to aid
in determining whether to subject paediatric patients to a
CT scan following closed head injury. The system
performed with a sensitivity of 82.2% compared with
the physician’s 62.2% for predicting intracranial abnorm-
alities in closed head injury with similar specificities of
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96%. Use of this DSS would have prevented six CT scans
from being performed out of a total group of 382
patients, reducing radiation exposure in this very
radiation-sensitive group.

Finally, Fukuda et al [28] used a neural network with
input parameters of patient age and sex, as well as six
morphological details of the intracranial ventricular
system obtained from CT scanning, to design a neural
network for the prediction of ventricular enlargement.
The system gave a concordant result with four radiolo-
gists in over 90% of patients. This is a good example of a
DSS using input data obtained directly from the
radiologist who reported the CT scan.

Cardiovascular/thoracic radiology
Mobley et al [29] have demonstrated a neural network-

based DSS that has been used to predict the necessity for
cardiac catheterisation using 11 input variables in
patients who presented for the first time with cardiac
chest pain. The system had a sensitivity of 100% and,
despite its poor specificity (26%), it is thought it could be
of benefit in reducing unnecessary cardiac catheterisa-
tions [29, 30].

Swietlik et al [31] discussed the use of neural networks
in both cardiac and pulmonary embolic disease estima-
tion and found their performance similar to that of the
radiologist when functioning in isolation; however, they
identified improvements in performance when the
systems were used as decision support aids as opposed
to radiologist replacement systems.

Breast radiology
Breast radiology has seen the largest acceleration in the

uptake, use and evaluation of not only neural networks
but almost all forms of DSS. In 1993, Wu et al [32]
identified the ability of neural networks to cope with
relatively poor input data, giving relatively robust results
in the output nodes. They applied this to the reading of
mammograms [32] using input features extracted from
mammograms by experienced radiologists. Initially, 43
features were used, but this was reduced to 14 with no
degradation in performance. These features were all
morphological, such as the length of spiculations or the
presence of similar patterns elsewhere. The system was
seen to outperform attending and resident radiologists
and even experienced mammographers. Even greater
performance gains were possible when the diagnosis of
the decision system and of the radiologists were used in
conjunction. Of great importance is the fact that the
authors acknowledged that performance is determined
to some extent by the ability of the radiologist reading
the images to reliably extract the correct data. They felt
that the ‘‘community of radiologists’’ can extract imaging
features as reliably as an experienced mammographer,
even if they might not be able to merge those features
into a diagnosis without the aid of a DSS.

In 1995, Suryanarayanan et al [33] were aware of the
success of neural networks in predicting malignancy
using inputs in the form of imaging data from
experienced mammographers. The authors took this a
step further by using the Breast Imaging Recording and

Figure 3. Example of a typical neural
network; in this case the network is
used for the diagnosis of interstitial
lung disease. The network shows
multiple input nodes with two hid-
den nodes. These hidden nodes act as
a form of feature analysis and detec-
tion system; they exert both positive
and negative effects on the output
diagnosis nodes dependent on their
inputs. (Figure reproduced with per-
mission from Asada et al [25].)
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Data System of the American College of Radiology (BI-
RADS). This had the effect of standardising the inputs
between radiologists and in doing so was able to
improve the specificity for biopsy of malignant lesions
from 30% to 62% for radiologists alone when the
sensitivity was set to 95%. They went on to analyse for
intra- and interobserver variability and found no
significant difference when the lexicon was used to
define the data inputs to the neural network [33].

Summary: neural networks

A major advantage of neural networks is their ability
to learn from new information as it is presented to the
network. Although this process necessitates retraining
the network, it is much easier to implement than re-
writing the whole of a rule-based ES decision tree.
Additionally, such updating of the underlying domain
knowledge does not necessitate radiologist expert inter-
vention, but can be achieved by the computing expert
responsible for maintaining the network.

This highlights one of the major failings of neural
networks; however, unlike rule-based systems, it has
traditionally been thought that neural networks cannot
produce meaningful explanations of how they came to
their conclusion, being unable to explain their rationale
in a comprehensible manner. Physicians generally will
not accept and act on the advice of a decision system
without knowing the basis for the system’s diagnosis [18,
19, 34]. However, recent work has enabled rule genera-
tion from neural networks, so this shortcoming might be
overcome in the future [35].

The advantages of implementing standardised inputs
by using a restrictive data entry terminology first saw
significant success in neural network implementations.
As we shall see, this concept of restrictive language entry
has also seen success in other DSS design architectures
such as Bayesian systems.

Case-based reasoning
Case-based reasoning (CBR) is the process of solving

new problems based on the solutions of similar past
problems, for example a doctor who instigates a
particular treatment based on his experience with
previous patients who exhibited similar clinical findings
or symptoms. In effect, CBR is a type of evidence-based
analogy making. CBR is not only a powerful method of
computer reasoning, but is a ubiquitous behaviour in
everyday human problem solving. CBR can be broken
down into a four-step process for the purposes of
implementation [36]:

N Retrieval: given a target problem, previous cases are
retrieved from memory that are thought to be relevant
to solving the problem. The cases themselves consist
of the previous problem, how it was solved and
details on how the solution was reached.

N Re-use: the solution from the retrieved case needs to be
mapped to the new target problem and might involve
adaptation of the solution to fit the new situation.

N Revision: the process by which, having mapped the,
previous solution to the target situation, the new

solution is tested in the real world (or a simulation)
and, if necessary, revised.

N Retain: the final process whereby after the solution
has been successfully adapted to the target problem,
the resulting experience is stored as a new case in
memory.

Case-based reasoning applications in radiology

CBR has been applied in a system called ISIS
(Intelligent Selection of Imaging Studies) [37]. This was
a development of the ordering system protoISIS, which
was trained using 200 previous radiology requests to
select the appropriate ultrasound or CT imaging test
based on the requesting data [37]. The designers realised
that for the system to be clinically useful it had to have
enhanced explanatory features and the ability to critique
its user’s actions and requests.

CBR has also been applied in the field of CT reporting,
assessing the features of previous reports and comparing
them to a current case [38]. This has enabled the
extraction from store of previous images that the system
thought relevant to a current case with an accuracy of up
to 95.6%.

Once again, breast imaging has made significant
inroads into the use of CBR. An example of this was
developed by Bilska-Wolak and Floyd [39, 40], which
used the BI-RADS lexicon as the basis for 1443 biopsy-
proven mammographic cases. The system reduced benign
breast lesion biopsies by 27%. As approximately 66–90%
[39, 40] of breast biopsies are on benign lesions, this is a
significant reduction. It is interesting to note that this CBR
system was initially driven by 10 features identified from
the BI-RADS lexicon to describe each case. These features
were then reduced to a subset of the most influential
features by performing an exhaustive feature search of all
possible feature combinations and picking those combi-
nations with the highest partial receiver operating
characteristic (ROC) areas (area under the curve 0.9).

Summary: case-based reasoning

As described above, a requirement for any medical
DSS is the explanatory features with regards to how a
particular diagnosis was reached. This requires knowl-
edge of the users’ level of knowledge and an ability to
find alternative explanatory mechanisms to justify
themselves, much like a human expert does. In a CBR
system this cannot be achieved, as by definition there
will only be a single reasoning paradigm [41]. Addi-
tionally, one can say that the CBR approach will make
use of the domain expert’s anecdotal evidence, as its
underlying operating principle has no underlying
statistically relevant data. As discussed above with
regards to Teather et al’s general rules for DSS accep-
tance [18], ‘‘diagnostic advice must be given in a pro-
babilistic form in terms of likely incidences of errors with
explanation and justification of conclusions available.’’

However, in situations where domain knowledge is
too scarce for statistical relevance, clinicians’ own
performance is inherently based on anecdotal evidence,
and for this reason CBR is often used where experts find
it hard to articulate their thought processes when solving
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problems. Knowledge acquisition for say a Bayesian
network (see below) would be extremely difficult in such
domains, and is likely to produce incomplete or
inaccurate results. Additionally, CBR allows the case
base to be developed incrementally, while maintenance
of the case library is relatively easy and can be carried
out by domain experts with little necessity for non-
domain intervention or interpretation.

Bayesian networks

Bayesian networks and probability

Bayes’ theorem, developed by the Reverend Thomas
Bayes, an 18th century mathematician and theologian,
was first published in 1763 [42]. We are all familiar with
Bayesian network DSS even if we might not realise it. The
Microsoft Office (Microsoft Corporation, Redmond, WA)
help wizard, most notably visualised as a ‘‘talking paper
clip’’, uses a Bayesian network to underpin its actions. In
fact, Microsoft considers Bayesian network development
to be a vital component of artificial intelligent learning
support systems and one that will underpin most system
development in its future systems [43].

A Bayesian network has a graphical structure similar
to that of a neural network with nodes and arcs.
Typically, one specific node is termed the ‘‘root’’ node,
and in medical DSS this is often the disease process of
interest (e.g. breast disease). For example, in Figure 4 we
see the way in which patient age, family history (FHx)
and hormone replacement therapy (HRT) affect the
probability of breast disease [44].

Bayes’ theorem

Examining Table 1, we see that the probability of a
disease being present (prob dis) is calculated by F/I. The
probability of a particular diagnostic test being positive
(prob test) is given by H/I. In addition, Bayes’ theory
works on the probability of a particular test finding being
positive given a particular disease state (prob test|

|dis).
The post-test probability (which underpins Bayesian

theory) is the probability of a pathology being present
given that a certain test finding is positive or (prob
dis|

|test), which is calculated by E/H. Bayes’ formula
enables one to calculate the probability of a disease state
on the basis of the probability of the presence of the
disease, the probability of a particular test finding and
the probability of the disease in the face of a particular
finding using the following formula [44]:

prob dis j
j
testð Þ~ prob test j

j
disð Þ prob disð Þ

prob testð Þ

We can further examine this using the worked example
of the simple Bayesian network shown in Figure 5, which
relates the probabilistic relationship between subarach-
noid haemorrhage and a CT scan of the brain. Examining
Table 2, we see that the probability of a subarachnoid
haemorrhage in a patient who has been referred to the
hospital with a headache is:

(prob dis) 5 f/I 5 105/1474 5 7%

The probability of a positive CT scan of the brain is:

(prob test) 5 128/1474 5 9%

The post-test probability of a subarachnoid haemor-
rhage given a positive CT scan of the brain is therefore:

(prob dis|
|test) 5 102/128 5 80%

Each node within a Bayesian network contains specific
probabilities related to all the possible states of the node
dependent on the findings in the surrounding nodes.
This list of probabilities is termed a conditional prob-
ability table (CPT). In the example given above, the node
‘‘subarachnoid haemorrhage’’ is the parent node and has
two possible states, which in this case are mutually
exclusive, a haemorrhage is either present or absent.
Using data from previous studies, the CPT for this node
can be calculated as well as the CPT for the child node,
which is the CT scan (Table 3). This table reflects not
only the possible outcomes of the CT scan, but the
outcomes in conjunction with the parent node.

One can see that as the number of nodes increases the
CPT can become very large and, as each value within the
contingency table needs to be populated when building
the network, problems occur when data are not available
for each relationship. There are several approaches to
overcome this: the probabilities can be obtained from
domain experts, data from the literature or from trial
data. Alternatively, a large data set of cases can be used
to train the probabilities.

Bayesian inference

Inference, or model evaluation, is the process by which
Bayes, theorem underpins the function of a Bayesian
network. Considering Figure 4 [44], one can see a

Figure 4. Example of a complex Bayesian network for
mammography. All nodes can be thought of as representing
specific variables relating to the root node such as diagnostic
tests, patient demographics, clinical findings and so on. Each
node is connected to the other nodes over which they exert
influence by arcs that depict the fact that the nodes can affect
the probability of the nodes to which they are connected.
Ca++, calcifications; FHx, family history of breast cancer; HRT,
hormone replacement therapy; LN, intramammary lymph
node; mass P/A/O, mass present, absent or partially obscured.
(Figure reproduced with permission from Burnside [44].)
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complex network where each node is associated with its
own CPT. To begin, the CPT reflects the prior prob-
abilities derived by the network creators. This is often
obtained from the ‘‘beliefs’’ of the domain experts who
have been tasked with facilitating the network design.
They are known as prior probabilities as their value
reflects probabilities derived before any data concerning
the current problem have been entered.

When data are entered into the network (e.g. informa-
tion on the degree and type of calcification on a mam-
mogram or patient demographic data), values within
specific nodes are ‘‘clamped’’ to that specific value related
to the observation made by the user. At this point the
mathematical process is undertaken whereby the prob-
abilities of all the connected nodes are recalculated to
represent the new evidence available to the network. This
process is referred to as inference, and following this
procedure the new probabilities are referred to as poster-
ior probabilities, as they now reflect to some degree the
computed beliefs in light of new evidence. These posterior
probabilities now reflect the new probabilities of all the
possible outcomes in the model based on new evidence
and the original probabilities within the model derived
from the network creator.

Bayesian decision support systems in
mammography

As discussed earlier, breast radiology has been at the
forefront of DSS use for many years. One hypothesis for
this is that in the multidisciplinary setting of the ‘‘breast
clinic’’ the radiologist is often the lead clinician for both
screening and diagnostic work and as such is responsible
for clinically complex diagnostic and predictive tasks.
Bayesian networks have been used to predict the
probability of cancer using the probabilistic relationships
between breast disease and mammographic findings and
in so doing have been used to estimate the risk of
malignancy [45, 46]. A Bayesian system has been used to
improve the positive predictive value of breast lesion

biopsy, a goal that was started through earlier work with
neural networks [32, 33, 47]. The system performed as
well as the breast radiologist in not missing a cancer
(p,0.001) and improved the positive predictive value of
biopsy from 21.6% to 31.2%.

The same system had its Bayesian probabilities
updated with data from 92 pathology-proven biopsies
and correlation to the BI-RADS descriptors of mammo-
graphic findings. This modification gave a sensitivity of
100% and specificity of 91%, with the potential to alert
the radiologist to biopsy results that were discordant
with mammography findings and to discover cases
where biopsy sampling errors might have occurred [48,
49]. A similar system was trialled as far back as 1995 by
Kahn et al [50, 51], who used input parameters including
5 patient history findings, 2 patient physical findings and
15 mammographic features that were extracted from the
images by an experienced radiologist. This system was
again used to offer predictive information on the
probability of malignancy vs benignity of breast biopsies
giving invaluable decision support.

Bayesian network summary

A potential problem highlighted by, but not specific to,
Bayesian networks is related to end users making
information requests in a manner not anticipated by
the network’s design. Such queries not covered by the
network’s priors illustrate a failing of the network design
related to deficiencies within the domain of knowledge
underpinning the system. This often relates to knowl-
edge that exists but has not been ‘‘discovered’’ for
representation at the time of network creation, or
alternatively to knowledge that has been ‘‘guessed’’ by
the domain expert at the time of DSS development.

This leads us to a significant problem in DSS
development that relates to the quality and domain-
specific volume of data used for prior belief calculation
and network representation. For a clinical Bayesian
network to function appropriately, the prior knowledge
must be reliable otherwise the prior beliefs will distort
the entire network and invalidate the results.
Additionally, methodologies are needed to correlate all
data within a domain and to enable network update as
new knowledge becomes available from recent peer-
reviewed publications, which remain the cornerstone of
medical knowledge validation and dissemination.

Discussion

We have thematically examined the main techniques
that have been developed and implemented to provide

Table 1. A 262 contingency table illustrating the relationship between disease status and a single associated test

Diagnostic test Cell Finding

Negtive Positive

A True negative

Disease
Negtive A B C B False positive

Positive D E F D False negative

G H I E True positive

Figure 5. Simple Bayesian network relating subarachnoid
haemorrhage to associated CT scan of the brain. In this case
the parent node (as well as the primary node) is subar-
achnoid haemorrhage with its arc pointing to CT brain (the
child node).
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radiological DSS; namely, rule-based expert systems,
neural networks, case-based reasoning and Bayesian
networks. In doing so we have reviewed the differing
approaches that can be employed to provide DSS to the
clinical radiologist. Table 4 lists these differing techni-
ques and their main features and differences.

This review has identified certain aspects of DSS design
that must be avoided in future applications and highlights
other features that are, if not a definite requirement,
certainly desirable in the next generation of DSS.

Firstly, the most successful DSS must not attempt to
replace the radiologist. Rather, they should harness the
excellent skills and abilities of humans in image
assessment and feature extraction; these data are then
passed on to the DSS. In some instances, users are not
necessarily radiology domain experts, but can include
students, interns and non-radiologists. Through the
symbiotic interaction between user and DSS, overall
performance has been seen to be elevated beyond that of
even domain experts alone [27, 47].

This finding highlights a further important feature that
must be implemented in the next generation of DSS, the
symbiotic relationship with the user. By passing to the
user requests for image feature extraction and its
characteristic appearances, users are prompted to search
for imaging findings that provide maximal statistical
power with regards to outcome prediction for input into
the support system. This directs users to refine their
search patterns looking for findings of importance, even
if they themselves are not immediately aware of the
significance of these findings. In this way the user
interface of the DSS must include a feedback mechanism
giving statistical prediction on the basis of information
already in the system and explaining why new informa-
tion being sorted is of importance and how it will affect
outcome prediction.

The underlying design of CBRs, which function
without complete domain knowledge using ‘‘anectodal
evidence’’, is functionally successful but highlights a
requirement for future DSS design such as Bayesian
systems. We require new mechanisms for domain
knowledge acquisition and storage, such that data from
multiple sources and of different types can be assimi-
lated to create a more complete knowledge representa-
tion within specific branches of radiology. For example,
we require systems to assimilate prospective and retro-
spective studies, review articles, meta-analyses and case

reports into single data repositories. Ideally, these
repositories need to sit beneath the DSS such that, as it
is updated with new knowledge, the overlying DSS will
seamlessly update itself. We also propose that the next
generation of DSS should be able to integrate with the
world knowledge-base held in such repositories: data
from local or distant centres regarding individual
patients who have been run through the system would
augment the world knowledge-base in real time as the
systems are in use. The internet and the development of
grid based computing means that change to a distributed
model for data acquisition is indeed now a reality. In
improving our understanding of domain-specific knowl-
edge acquisition, assimilation, storage and searching, we
will be able to overcome one major failing of DSS design:
the problem of passing data from a domain expert to a
knowledge engineer for creation of a DSS. With a
Bayesian network without such complete knowledge
discovery, the priors will be inaccurate and the network
itself incomplete.

Complete knowledge discovery within a domain will
also facilitate data entry into the next generation of
‘‘ideal’’ DSS, where the inputs are standardised and
limited to those of maximal statistical outcome prediction.
Indeed, the most successful systems have all incorporated
standardised descriptive terms as their inputs, be they
descriptors originated by the group who devised the DSS
or commonly used descriptors in a certain field such as
the BI-RADS lexicon. These descriptive terms are used to
prompt the user into feature identification from the
imaging series with the additional benefit of explanatory
facilities to highlight the importance of the features being
searched for. Only when the whole domain has been
mapped can these terms be discovered and applied. In
some respects this would represent domain-specific
ontologies, where the ontologies have been reduced to a
specific subset of terms with maximal statistical predictive
power to a defined outcome. This is in effect a form of
controlled language data entry [22, 52] implemented not
only to facilitate search within the DSS data repository,
but also to guide the radiologist to the imaging features
statistically likely to improve the diagnostic performance
of the system.

Many groups have recognised that the most efficient
and successful use of a DSS is one where the system
gives feedback to the user in the manner of appropriate
statistics to act as a second opinion for consultation by

Table 2. A 26 2 contingency table relating CT scan of the brain to subarachnoid haemorrhage

CT brain scan

Negative Positive Total

Subarachnoid haemorrhage Negative 1343 26 1369
Positive 3 102 105

Total 1346 128 1474

Table 3. Conditional probability table for subarachnoid haemorrhage and CT brain nodes in Bayesian network (e.g. Figure 5)

Subarachnoid haemorrhage Probability (%) Subarachnoid haemorrhage CT brain scan Probability (%)

Present 7 Present Positive 97
Absent 93 Present Negative 3

Absent Positive 2
Absent Negative 98

S M Stivaros, A Gledson, G Nenadic et al
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the user. It has also been shown that for reasonable
uptake and use of a system, access to the underlying
statistical proofs and methodology is preferred even
when the system is not being used to assess a particular
case. This further enhances the value of any DSS by
additionally allowing its use as an aid for training and
teaching. As long as the DSS is kept up to date with the
relevant medical literature, then the system can be used
with training data sets to highlight the importance of
specific imaging features, as well as providing the trainee
with the underlying background data on the importance
of the features being searched or prompted for.

The use of DSS in clinical radiological practice is set to
continue and increase as we see an explosion in health
informatics and e-science. However, further work is
required to look at outcome indicators, determinant
features and the integration of improved techniques for
feature identification (e.g. formalised ontologies and
natural language models) as further improvements in
DSS design and implementation are sought. This will only
be achievable with a move towards more quantitative
knowledge discovery techniques; the development of new
methods will allow for the assimilation, integration and
storage of data [22] from disparate sources that can then
be analysed and used to underpin DSS design, specifically
Bayesian systems built upon such data repositories. These
necessities are as true today as they were when first
expounded by Russ Altman of Stanford University, who
in 1997 stated that ‘‘There is a need to develop methods
for representing biological knowledge so that computers
can store, manipulate, retrieve, and make inferences about
this information in standard ways’’ [2].

As radiologists we are moving towards quantitative
imaging techniques that are difficult to apply and cer-
tainly complex to interpret; consequently, we require and
should be at the forefront of DSS uptake. Radiologists
have need of real-time systems to guide them through the
implementation and analysis of advanced imaging tech-
niques. Without such systems, these new methodologies
will not find clinical acceptance through translational
application and we will be significantly underperforming
with regards to what can and should be achieved in
clinical practice.

The United States National Academy of Engineering
has stated that the provision of health informatics systems
to provide ‘‘just in time just for me’’ support at the point of
care is one of the great engineering challenges of the 21st
century [53]. To paraphrase Altman, ‘‘the primary goals of
any medical informatics project’’, such as the DSS
discussed here, ‘‘as for any other branch of biomedical
research, are to improve the overall health of patients

by combining basic scientific and engineering insights
with the useful application of these insights to impor-
tant problems’’ [2]. It is understanding these DSS, their
underlying design and architecture, and how they should
function and be implemented that will guide their
deployment and future development, not only in radi-
ology but in the wider realm of advanced modern clinical
and academic medical practice as a whole.
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