
A method to produce and validate a digitally reconstructed

radiograph-based computer simulation for optimisation of chest

radiographs acquired with a computed radiography imaging

system

1,2C S MOORE, BSc, MSc, 1G P LINEY, BSc, PhD, 1,3,4A W BEAVIS, BSc, PhD and 1,3J R SAUNDERSON, BSc, MSc

1Radiation Physics Department, Queen’s Centre for Oncology and Haematology, Castle Hill Hospital, Hull & East Yorkshire

Hospitals, Castle Road, Hull, UK, 2Department of Computer Science, Faculty of Science, University of Hull, Cottingham

Road, Hull, UK, 3Postgraduate Medical Institute, University of Hull, Kingston Upon Hull, UK, and 4Faculty of Health and

Wellbeing, Sheffield Hallam University, City Campus, Howard Street, Sheffield, UK

Objectives: The purpose of this study was to develop and validate a computer model
to produce realistic simulated computed radiography (CR) chest images using CT data
sets of real patients.
Methods: Anatomical noise, which is the limiting factor in determining pathology in
chest radiography, is realistically simulated by the CT data, and frequency-dependent
noise has been added post-digitally reconstructed radiograph (DRR) generation to
simulate exposure reduction. Realistic scatter and scatter fractions were measured in
images of a chest phantom acquired on the CR system simulated by the computer
model and added post-DRR calculation.
Results: The model has been validated with a phantom and patients and shown to
provide predictions of signal-to-noise ratios (SNRs), tissue-to-rib ratios (TRRs: a measure
of soft tissue pixel value to that of rib) and pixel value histograms that lie within the
range of values measured with patients and the phantom. The maximum difference in
measured SNR to that calculated was 10%. TRR values differed by a maximum of 1.3%.
Conclusion: Experienced image evaluators have responded positively to the DRR
images, are satisfied they contain adequate anatomical features and have deemed
them clinically acceptable. Therefore, the computer model can be used by image
evaluators to grade chest images presented at different tube potentials and doses in
order to optimise image quality and patient dose for clinical CR chest radiographs
without the need for repeat patient exposures.
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Many publications [1–5] have shown that patient
anatomy is the limiting factor in the detection of lesions
in the chest, and the term ‘‘anatomical noise’’ was born
out of their work. Recently, a European wide study (the
RADIUS chest trial) examined various aspects of nodule
detection in digital chest radiology, such as the effects of
nodule location and system noise [6, 7], anatomical noise
and part of the image background acting as pure noise
[8, 9]. In the introductory paper, Bath et al [10] described
how projected anatomy in chest radiographs affect
pathological detection to a much larger extent than that
of system noise, and as such is the limiting factor for the
detection of lesions in chest radiographs. Since chest
radiography is now generally considered not to be
limited by quantum noise, images used to optimise any
digital X-ray system for chest radiography must contain
clinically realistic features. Typically, work reported in
the literature examining computed radiography (CR)

chest optimisation has used physical phantoms which
enable optimisation of individual parameters such as
signal to noise ratios (SNRs) and modulation transfer
function (MTF), but these do not necessarily contain all
the anatomical features (noise) required [11–15]. Indeed,
we have investigated optimising a CR imaging system
for chest radiography with a phantom containing little
anatomical detail [16–18] and were able to advise on
maximising contrast and spatial resolution, but how
those related to the diagnostic quality of the clinical
image was undetermined. More recently, computerised
voxel phantoms have been used in Monte Carlo studies
[19–23] in an attempt to model anatomical features.
However, the organs of the voxel phantom used in
these studies [24] are identified with only one of five
tissue types, namely soft tissue, bone, bone marrow, lung
tissue and air, possibly limiting the contribution of
anatomical noise, and the resolution of this voxel
phantom is relatively coarse (approx 4 mm long6 3 mm
wide6 3 mm thick). It is therefore likely to produce
images of much lower spatial resolution than a real CR
image (typical pixel pitch 0.176 0.17 mm). Another
consideration is that all of the Monte Carlo studies
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calculate energy imparted to the CR storage phosphor
only, and do not include system noise.

As discussed, although anatomy is the most important
factor in detecting lesions in a digital chest radiograph,
the radiation dose–image quality relationship must not
be ignored from a governance perspective. The necessity
to keep doses as low as reasonably practicable (ALARP)
is a recommendation by the International Commission
on Radiological Protection (ICRP) [25] and is a require-
ment in UK law under the Ionising Radiation (Medical
Exposure) Regulations 2000 (IR(ME)R 2000). For every
examination, doses to the patient must be kept ALARP
while obtaining the necessary level of image quality.
Bath et al [26] have suggested that clinical images should
be used to obtain the highest validity for optimisation,
and as such have described a method to simulate lower
exposures by adding frequency-dependent noise to an
original image [27]. This methodology only works for a
given X-ray beam quality, so full optimisation would still
necessitate repeat exposures of the same patient, thus
increasing the stochastic risk of inducing cancers.

Anatomical and system noise must feature in an image
to enable optimisation (as has been demonstrated in the
literature). This paper describes the development and
validation of a digitally reconstructed radiograph (DRR):
a computer simulation of a conventional two-dimen-
sional (2D) X-ray image created from CT data. Our
model includes realistic anatomical and frequency-
dependent system noise (including quantum noise) for
the purpose of optimising CR chest radiographs of
average size males. The model uses clinical chest CT data
sets to provide realistic anatomical features. To our
knowledge, DRR-generated images have not been used
for optimisation purposes. In our new model, a ray-
casting method of DRR generation was used, as this
method has been proven to produce superior quality in
the resultant images [28, 29] than those produced by
other methods such as splatting [30] (a method which
projects each voxel to the image plane and composites it
into an accumulated image). The X-ray spectra used in
the simulation are generated by the Institute of Physics
and Engineering in Medicine (IPEM) Report 78 software
[31]. Energy absorbed in the CR storage phosphor,
scatter and frequency-dependent noise are modelled
according to physical characteristics of the CR system. As
resulting images are computer generated using retro-
spective CT data sets, no extra exposure risk to patients
exists.

Methods and materials

Practical methodology

The DRR simulation requires data derived from a CR
and CT system to enable adequate functionality. All
physical characteristics required of the X-ray and CR
system were measured in a general purpose X-ray room
equipped with a Philips Optimus Diagnost TH (Philips
Medical Systems, Surrey, UK) ceiling-suspended X-ray
system with total inherent filtration equivalent to 3.1 mm
of aluminium, and using an Agfa CR-85 reader with
MD4.0 plates (Agfa, Peissenberg, Germany) (356 43
cm, effective pixel pitch of 0.17 mm). All phantom

acquisitions (CR and CT) utilised the chest portion of
the Alderson RANDO anthropomorphic phantom, con-
sisting of a natural human skeleton embedded in a
synthetic isocyanate rubber with lung substitute and air
cavities, simulating the average male, approximately
70 kg. Although primarily used for radiation therapy,
RANDO has been shown to attenuate diagnostic energy
radiation similar to that of water, which in turn has very
similar properties to human muscle [32]. All phantom
images acquired on the CR system (at each tube potential)
were made with a focus to receptor distance of 180 cm
with the CR receptor placed 5 cm behind the phantom in
the cassette holder, and sufficient tube current–time
product (mAs) to produce a lgM value of 2.00¡0.05.
The lgM value is a receptor dose indicator displayed on
the CR system for every image acquisition, which Agfa
recommends should be approximately 2.00 for a correctly
exposed chest radiograph. The X-ray field was collimated
to the edges of the phantom and since different individual
receptors do not have exactly matching sensitivities, a
single CR cassette (digitised in the CR reader with a fixed
sensitivity of 400) was used throughout the study. The
cassette chosen demonstrated a median sensitivity (i.e. a
median lgM value compared with the other cassettes). No
clinical post-processing was applied. A Philips 16 slice
multidetector CT scanner was used to collect CT phantom
and patient data. It has been reported recently by Roberts
et al [33] that the use of antiscatter grids with digital
imaging is not justified because of the resulting increase in
patient dose without a corresponding increase in image
quality. In accordance with this, and the chest imaging
protocol in our radiology department, an antiscatter grid
was not modelled in our simulation.

Computer model

X-ray spectra
X-ray spectra were generated using the techniques of

Birch and Marshall as described in IPEM Report 78 [31].
The report generates spectra at 0.5 keV intervals from
0.5 keV up to the accelerating potential chosen by the
user. The spectral data is specified on a central axis
750 mm from the source (photons mm–2 mAs–1). As the
beam originates from a point source, the fluence used in
the simulator was corrected using the inverse square law
depending on the distance from the source to the virtual
patient. IPEM Report 78 calculates X-ray spectra for
tubes that are 100% efficient so the fluence was also
scaled to the measured air kerma of the X-ray tube used
in this work.

CT data preparation
Prior to DRR calculation, it was necessary to prepare

the CT data. CT images should have as little processing
applied as possible, so that pixel values (CT numbers)
correspond to the X-ray attenuation properties of the
particular tissue. As back-projected CT data are inher-
ently blurred, filtering must be applied. The Philips
scanner used in this study has a variety of filters, some of
which artificially sharpen the image (emphasise high
spatial frequencies), some of which smooth the image
(emphasise low frequencies). After discussion with
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Philips (Paul Klahr, personal communication, Philips
Medical Systems, 2008), filter (E) was identified as
providing minimum processing. This is the basic ‘‘ramp’’
filter that corrects the effect back-projection has on the
amplitudes of different spatial frequencies in the image.
On the scanner, CT data can be reconstructed with filter
(E) by reprocessing the raw data. The field of view (FOV)
and reconstruction matrix can also be altered, although
the FOV is somewhat dependent on patient size.

It is well understood that CT images contain noise due
to a number of sources, primarily electronic, quantum
and reconstruction filter. Typically, noise in CT images is
Gaussian and independent of tissue attenuation, as
discussed by Hilts and Duzenli [34]. To assess whether
this noise has any affect on the final characteristics of a
DRR image, a Gaussian noise-removing filter (mean
adaptive filter) with varying kernel sizes of 06 0 (i.e. no
filter applied), 76 7, 146 14 and 216 21 was applied to
the CT data prior to DRR calculation (see below).
Frequency-dependent noise (see below) was added to
the raw DRRs, and signal to noise ratio (SNR) and
dynamic range comparisons were made. CT images also
exhibit scattered radiation to some extent, but the
scanner used in this study utilises post-patient collima-
tion that minimises scatter detected (nominally only
1–2% of the signal is due to scatter) so no correction for
this was deemed necessary.

CT number to linear attenuation coefficient
conversion

The ray-casting DRR method requires each CT number
to be converted to its linear attenuation coefficient (LAC)
in order that one may calculate the outgoing photon
intensity from knowledge of the incoming photon
intensity. The Gammex RMI radiotherapy tissue equi-
valent phantom (model no. 467) (Gammex RMI,
Nottingham, UK) is a solid water cylinder that contains
17 inserts, the attenuation properties of which mimic the
range of attenuations of the various tissues found in vivo,
as shown in Figure 1. This phantom was scanned using
the parameters described in Table 1. These parameters
are standard for chest imaging in our radiology CT
department (tube current is typical for those of average
sized males). After the scan, raw data were reconstructed
with filter (E), matrix 1024 and slice thickness 0.8 mm
(the same reconstruction parameters to be used to
prepare clinical images for DRR calculation). The images
were transferred to a separate computer for analysis and
the mean CT number of each tissue substitute was
derived. We have assumed that beam hardening has
minimal impact on the results, as the CT scanner utilises
a ‘‘bow-tie’’ filter to conform the shape of the beam to the
body, and scanner software corrects for any further
artefact. Information from the user manual of the RMI
phantom provides the elemental composition of each
tissue substitute by weight (e.g. composition of lung by
percentage weight is H58.33, C560.32, N51.67, O5

17.38, Cl50.15, Si50.61 and Mg511.54). These data were
entered into the XCOM database [35] together with an
X-ray spectrum produced by IPEM 78. The database
calculates total attenuation (cm2 g–1) for each energy in
the spectrum, and assuming one knows the density
(g cm–3) of the substitute it is simple to convert to

LAC (cm21). To illustrate this point, Table 2 shows the
first five energies of a 50 kVp spectrum together with
total attenuation and LACs for the lung substitute (it
should be noted that the XCOM database gives a
maximum 10% error on the attenuation values). This
process was repeated for all tissue substitutes with all
virtual tube potentials used for this study (50–150 kVp in
steps of 10). Table 3 shows the first 3 energies of the
50 kVp spectrum with LACs for each substitute. Data
from Table 3 can then be used to derive linear relation-
ships between mean CT numbers and LACs. For
example, there is a linear relationship (r250.997) between
CT number and LACs from air (CT521) to LN450
(CT5443). The resulting linear equation is used to
convert those voxels in the CT data that range from 21
to 443 (all CT numbers lower than 21 were converted to
21) to their respective LACs. Moving down the table the
next linear relationship that exists with a high degree of
correlation (r251) is LN450 (443) to adipose (909). As
such, all voxel values that lie in the range 443–909 were
converted to their relevant LACs depending on the linear
relationship. This process was continued until all CT
voxel values were transformed to their respective LAC.
Very few CT voxel values existed above 2516 (cortical
bone), but those that did were converted using the linear
relationship for CB2-30% to cortical bone (i.e. the final
linear relationship derived from Table 3).

Figure 1. Gammex RMI tissue substitute phantom with each
insert visible.

Table 1. Scan parameters used to scan the Gammex RMI
phantom

CT scan parameter Value used

Resolution Standard
Collimation 166 0.75 mm
Pitch 1
FOV (mm) 350
Tube potential (kVp) 120
Tube current–time product (mAs) 175

FOV, field of view.
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DRR calculation
The DRR calculations were made using a ray-casting

method by summing CT attenuation data along a pencil
beam from the simulated X-ray source to each pixel in the
resultant image. Figure 2 shows a pencil beam entering a
voxel in the first slice of the 3D CT data set. Each voxel is
0.86 0.346 0.34 mm in size (height6width6depth),
because the CT data were flipped to a posteroanterior
(PA) orientation (simulating the patient in an erect
position). As such, each voxel height, width and depth
is the same dimension as the CT slice thickness, and CT
pixel resolution in x and y respectively. One pencil beam
per ‘‘first PA slice voxel’’ (Figure 2 shows only one beam)
was used in the model, and each is the size of a voxel.
There is very little increase in size of each pencil beam as it
moves through the CT data set (mean increase of 7%), so
no correction was applied for this. The projection function
uses a 1:1 mapping between pixels on the DRR and voxels
on the front face (first PA slice) of the CT data set,
resulting in a simulated image with a pixel density
700 rows6 1024 columns (i.e. no. of CT slices6CT
resolution), and resolution of 0.86 0.34 mm. This is
smaller than a CR image (28006 2300, pixel pitch
0.176 0.17 mm), but is discussed under ‘‘Energy
absorbed in CR phosphor’’. The fluence of X-ray photons
impinging the face of each voxel in the CT data set as well
as the entrance angles of elevation (w) and longitude (h)
are calculated. We have assumed the central axis of each
pencil beam impinges the centre of the voxel in the first
PA CT slice. As such, no portion of the beam enters

neighbouring voxels. However, this is not the case for
subsequent PA slices. For example, Figure 3 shows the
front face of nine voxels together with a pencil beam
impinging the central voxel. Notice that the central axis of
the beam does not impinge the centre of the central voxel.
The dark square in Figure 3 represents the area of pencil
beam impinging not only the voxel in which the central
axis impinges, but also the neighbouring voxels. The
respective areas of beam in the incident, bottom (or top),
right (or left), and corner voxels are calculated and found
as a ratio of the whole beam area (RATIO_AREA). The
effective LAC is then found by weighting the LAC of the
relevant voxel to the RATIO_AREA of beam in the voxel,
and summing them together:

LACeff~ RATIO AREAincident | LACincidentð Þz

RATIO AREAright | LACright

� �
z

RATIO AREAbottom | LACbottomð Þz

RATIO AREAcorner | LACcornerð Þ

ð1Þ

This is performed in each PA slice in the CT data set
until the pencil beam exits. We have used area to correct
for partial voxel sampling, which assumes using an area
ratio to represent a volume ratio. However, as ray casting
is a perspective projection, this assumption is not entirely
accurate, since this is a method of mapping 3D (volu-
metric) points to a two-dimensional plane. Nevertheless,
for a given increase/decrease in area of beam in a voxel,
the volume of beam in a voxel would approximately
increase/decrease proportionally. Using area ratios is for
calculation of weighted linear attenuation coefficients
only, and as this applies to the whole 3D pencil beam, one
is not moving away from a volumetric calculation and as
such this method is valid. Other ray-casting methods,
such as that described by Siddon [36], simply use rays
(rather than pencil beams) to calculate the path of a
radiological beam through CT data. Voxel density is
weighted to the length of ray in each voxel. In reality,
fluence of X-ray photons impinging on voxelated arrays
are not simply rays, rather beams that diverge through the

Table 2. First five photon energies in a virtual 50 kVp
spectrum together with their respective total attenuation
and linear attenuation coefficient

Photon energy
(keV)

Total attenuation
(cm2 g–1)

Linear attenuation
coefficient (cm21)

13.0 2.49 0.747
13.5 2.24 0.672
14.0 2.03 0.609
14.5 1.84 0.552
15.0 1.68 0.504

Table 3. First three energies of a virtual 50 kVp spectrum together with the linear attenuation coefficient (LAC) and mean PV of
each tissue substitute

Tissue substitute Mean CT number 13 keV LAC (cm21) 13.5 keV LAC (cm21) 14 keV LAC (cm21)

Air 21 0.000289 0.00026 0.000235
LN300 282 0.0747 0.0672 0.0609
LN450 443 0.11205 0.1008 0.09135
AP6, adipose 909 0.13708 0.1242 0.11316
Polyethylene 911 0.09568 0.087492 0.080224
Breast 970 0.18216 0.16434 0.14949
CT solid water 1016 0.153 0.13872 0.12648
CB3 resin 1027 0.230945 0.207955 0.1881
Brain 1029 0.159355 0.14413 0.130935
Liver 1113 0.17135 0.1541 0.1403
IB1, inner bone 1114 0.29268 0.26244 0.2376
B200, bone mineral 1143 0.1888 0.1711 0.15576
CB4 resin 1228 0.3744 0.33813 0.30537
CB2-10% (CaCO3) 1301 0.5544 0.4984 0.45024
Acryilc 1329 1.06485 0.958365 0.864475
CB2-30% (CaCO3) 1571 0.90852 0.8174 0.73834
CB2-50% (CaCO3) 2034 1.6224 1.45704 1.31508
SB3, cortical bone 2516 2.484 2.2448 2.024
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array. As such, Siddon’s and other techniques using rays
are prone to aliasing in the final DRR [37].

The intensity of X-ray photons exiting is calculated
with the following formula:

I~I0exp {pathlength
�

| LACeff slice1zLACeff slice2::::::zLACeff sliceN

� �� ð2Þ

where I0 is the intensity of the X-ray photons impin-
ging on the first PA slice of the CT data set derived from
IPEM Report 78, path length is the length travelled by the
beam in each PA slice (irrespective of the number of

voxels traversed) and LACeff_sliceN is the effective linear
attenuation coefficient for slice N. Equation 2 is applied
for each pencil beam impinging on the PA CT data for all
energies present in the virtual X-ray spectrum. It should
be noted that each DRR generation takes 45–90 min (on a
computer with a modern processor).

Energy absorbed in CR phosphor
The X-ray energy absorbed by the layer of phosphor

was calculated with

A~

ðEmax

0

E I Eð Þ 1{exp
{men Eð Þ

r
rx

� �� 	
 �
dE ð3Þ

where men/r is the mass energy-absorption coefficient of
the phosphor; rx the mass loading of the phosphor (weight
per unit area of phosphor; g cm22); I(E) the photon spec-
trum incident on the CR phosphor (derived via Equation 2
for all pencil beams); and E the photon energy. The
elemental composition of Agfa CR phosphor, BaSrFBrI:Eu
was used to calculate men/r for each photon energy using
the XCOM database. The value of rx used was 0.08 g cm22

(personal communication, Mark O’Herlihy, Agfa, 2009).
Increased photon absorption owing to the k-edges of iodine
and barium (33.2 and 37.4 keV, respectively) were included
in the calculation. All subsequent DRR images were
calculated as energy absorbed by the CR phosphor. As
discussed under ‘‘DRR calculation’’, each DRR is smaller
than a real CR image. As such, the final DRR was resized
(to match that of a CR image) using bicubic interpolation
(the output pixel value is a weighted average of pixels in
the nearest 4-by-4 neighbourhood). We tested the accuracy
of image resizing by comparing SNRs and dynamic ranges
of original and resized images. All SNRs (lung, spine and
diaphragm) agreed to within 2%, minimum pixel values
were always the same, and maximum pixel values agreed
to within 3%. This is not surprising since no noise is
contained in a raw DRR. Although this adds a systematic
error, we felt it small enough to continue and see if it
affected the subsequent validation results.

Figure 3. Pencil beam impinging on neighbouring voxels in
a posteroanterior (PA) slice subsequent to the first.

Figure 2. Pencil beam entering a
voxel in the first posteroanterior
(PA) slice of the CT data set.
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Linearisation of pixel value data
To measure scatter and scatter fractions (SFs), and add

frequency-dependent noise to a DRR, images must be
collected from the CR system. DRR images are displayed in
terms of energy absorbed by the CR phosphor and are
linear (DRR pixel values increase linearly with mAs).
Because of this, images collected from the CR system must
also be linear. However, CR systems are seldom linear, as is
the case with the Agfa system used in this study. Pixel
values of images acquired on the CR system were line-
arised by measuring the system transfer function (detector
response). This was done by obtaining a series of six
uniform open field exposures at each tube potential (50–
150 kVp in steps of 10 kVp) covering an exposure range of
approximately 1–15 mGy air kerma at the cassette mea-
sured with the cassette removed and replaced with a
calibrated 6 cc ionisation chamber (Radcal Corporation,
Monrovia, CA). Patient attenuation was approximated
using 20 cm of polymethyl methacrylate (PMMA) at the
tube port with a focus to cassette distance of 180 cm
(PMMA used as a result of its similar X-ray absorption
properties of water). For each tube potential used prac-
tically, the energy absorbed in the CR phosphor was
calculated using the method described under ‘‘Energy
absorbed in CR phosphor’’ (measurement of air kerma here
was not used for calculation of energy absorbed in the
phosphor, but to ensure exposure factors used were in
the correct diagnostic energy range, i.e. 1–15 mGy). The
relationships between pixel value and energy absorbed in
the phosphor for each tube potential were used to linearise
all images acquired on the CR system (i.e. pixel values were
converted to energy absorbed by the CR phosphor).

Scatter measurement and addition to DRR
Scattered photons do not contain clinically useful

information and degrade the image quality of chest
radiographs by creating a non-uniform background that
reduces image contrast. The scatter fraction (SF) is
defined as the ratio of the intensity of scattered radiation
to that of total (scattered plus primary) radiation
recorded on the image. Niklason et al [38] and Floyd
et al [39] measured average scatter fractions of 0.55, 0.81
and 0.91 in the lung, retrocardiac and mediastinum
regions of chest radiographs, respectively. Scatter in
chest radiography is therefore not negligible and must be
present in images produced for optimisation.

Our DRR images do not compute any scatter from the
CT data, and therefore it must be added post calculation.
To do this we made measurements of scatter and SFs
across the whole chest radiograph using an array of 224
lead beam stops, each of 6 mm in thickness and diameter,
25 mm apart from one another, suspended on a 1 mm
thick PMMA sheet. Measurements were made for a range
of diagnostic tube potentials (50–150 kVp in steps of
10 kVp), using the chest portion of RANDO with the lead
stop array positioned in front of the phantom. Images
were acquired on the Agfa CR system discussed under
‘‘Practical methodology’’. As primary X-radiation is
absorbed by the lead stops, their shadows in a radiograph
provide an estimate of scatter. An image of the beam stops
with and without the phantom was acquired at each tube
potential with a sufficient tube current–time product,
mAs, to provide a lgM of 2.00¡0.05. Each image was

linearised in terms of energy absorbed by the CR
phosphor and the mean pixel value in the shadow of
each lead stop was calculated. Each mean pixel value is a
measure of scatter (in terms of energy absorbed in the
phosphor). Similarly, the total energy absorbed (primary +
scatter) was measured in each image without the lead
stops present. Scatter and SFs (all linear in terms of energy
absorbed by CR phosphor) were subsequently measured
at the position of each lead stop, and a 2D interpolation
program written in Matlab (bicubic interpolation that fits
a bicubic surface through existing data points) was used to
calculate the values of scatter and SFs across the entire
image. Since each DRR is already linear one can define the
total energy absorbed by the CR phosphor as DRRtotal (as
scatter does not exist in the simulator, energy absorbed in
the CR phosphor from all pencil beams is not simply
primary absorption, but total). The amount of primary
absorption (DRRP) can then be calculated by removing a
portion of the signal from DRRtotal by applying linear SFs
measured experimentally using the following equation

DRRP ~ DRRtotal | 1 { SFð Þ ð4Þ

Linear scatter (measured experimentally) can then be
added to DRRp. The following equation was used

DRRPzS~DRRPzscatter ð5Þ

where DRRP+S is the primary DRR with linear scatter
(measured experimantally) added. Scatter and SF masks
here have been derived with the RANDO phantom and so
easily fit over raw DRR images of RANDO. However,
although only average size males have been identified in
this study (of which RANDO is modelled), anatomy
differs slightly patient to patient and as such scatter and
SF masks do not always fit accurately over raw patient
DRRs. To overcome this, scatter and SF masks intended
for patient DRRs were registered to them using the Matlab
image registration function. This function uses a linear
conformal transform which assumes the basic shapes of
both images are the same (as in this case), but one image is
distorted by some combination of translation, rotation and
scaling. The registration methods available in Matlab have
been validated by Goshtasby [40, 41].

Addition of frequency dependent noise
Noise was added to each DRRP+S using a slightly diffe-

rent method described by Bath et al [27]. They argue that an
image simulating an original image but at a lower dose
(dose of the simulated image, Dsim , original image),
Imsim, is given by Im(x,y)sim 5 Im(x,y)orig scaled down +
Im(x,y)noise, where Im(x,y)orig scaled down is the original linear
image scaled down to the simulated dose (Dsim), and
Im(x,y)noise is an image containing the noise which will re-
sult in the equality noise power spectrum (NPS) (u,v)Imsim 5

NPS(u,v)Dsim. However, because the original image is not
noise free, the 2D NPS of the noise image is given by

NPS u,vð ÞImnoise~NPS u,vð ÞDsim{NPS u,vð ÞDorig

Dsim

Dorig

� �2

ð6Þ

Our work differs in that the original image contains no
noise, as such the second term in Equation 6 becomes zero.
Because of this, NPS(u,v)Imsim 5 NPS(u,v)Dsim suggesting
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a uniform linear noise image acquired on the CR system
at a given dose level (effectively Dsim) will contain the
correct frequency dependence required. This method
assumes that the noise power spectrum (NPS) is a suf-
ficient descriptor of the noise and that detective quantum
efficiency (DQE) is constant over the dose variations that
exist within the image. However, CR systems tend to have
a decreasing DQE with dose but Bath et al argue that their
method is sufficient for doses used clinically. A series of
uniform noise images were collected from the CR system
using the same experimental set-up described under
‘‘Linearisation of pixel value data’’. Images were acquired
at tube potentials 50–150 kVp in steps of 10 kVp across a
range of clinically relevant mAs values. Each noise image
was linearised and the DC signal (mean value) set to zero
(the addition of the noise image must not alter the mean
pixel value of the simulated image). As each DRRP+S is an
inhomogeneous image, corrections to the uniform noise
image must be made since the noise in the low dose areas
of a CR image would in reality be lower than that in the
high dose areas. To take these local dose variations into
account, the following correction is applied to the uniform
noise image:

Im noise x,yð Þcorr~Im noise x,yð Þunif

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRRPzS

PVmean

r
ð7Þ

where Im_noise(x,y)corr is the corrected noise image, Im_
noise(x,y)unif is the uniform noise image, DRRP+S is the
primary DRR with scatter added and PVmean is the mean
pixel value of Im_noise(x,y)unif. For the derivation of these
this formula the reader should refer to Bath et al [27]. Each
corrected noise image acquired with a given incident air
kerma at the CR cassette was added to the DRRP+S

corresponding to the same level of air kerma incident
(7.0¡0.4 mGy at each tube potential for a lgM52.00) at the
CR cassette through the lung region of each DRRP+S. This
air kerma value was established using a pixel value to air
kerma relationship derived previously for this CR system
(i.e. the mean pixel value in the lung region was measured
and converted to air kerma).

Phantom and patient image acquisition
To test and validate the DRR simulation, the chest

portion of the RANDO phantom was scanned and
reconstructed using the scan protocol and reconstruction
parameters discussed in under ‘‘CT data preparation’’. CR
images of the phantom were also acquired at tube
potentials 50–150 kVp (in steps of 10 kVp) with a sufficient
tube current–time product (mAs) to provide a lgM of
2.00¡0.05. Half and double mAs values were also used at
each tube potential to assess the effects of dose reduction
and escalation in the results of the computer model. All
images were subsequently transferred to a separate com-
puter. CT images are inherently of lower resolution than
CR images. Therefore, one would expect the resulting DRR
image to have a resolution inferior to that of a CR image.
We felt it prudent to measure this quantitatively. As such,
the MTF of a DRR image derived using a Teflon edge
phantom was compared with the MTF of a CR image.

Further validation was performed with clinical images
so local research ethics committee approval was obtained
to allow the use of retrospective clinical CT and CR
images. This study was concerned with optimising CR

chest imaging for average size males, so image data of
suitable patients (weight approximately 70¡10 kg identi-
fied by the expertise of the examining radiographer) were
identified on the CT scanner and CR system. For the
former, data were reconstructed as per the parameters
discussed under ‘‘CT data preparation’’ prior to transfer to
a separate computer. For the latter, beam quality, mAs and
focus to detector distance used for their exposures were
recorded. Images were transferred to a separate computer
after Agfa-specific post-processing (MUSICA) was removed.

Results and discussion

CT data preparation

SNRs in the lung, spine and diaphragm regions of
DRRs reconstructed without a noise removal filter, and
with filters of size 76 7, 146 14 and 216 21, respec-
tively, demonstrated ,0.5% change. There was no
difference in the dynamic range of the images. This
demonstrates that quantum noise added to the resulting
DRR images dominates over any noise present in the CT
data. This is probably due to the averaging and summing
process of X-ray pencil beam ray casting (averaging and
summing causes all the voxels intersected by each pencil
beam to tend to their true value). Because of the minimal
effect on image quality in the resulting DRRs, no noise
removal filter was applied to the CT data prior to DRR
calculation.

DRR calculation

Figure 4a,b shows raw DRR images (no scatter or noise
present) of the RANDO phantom reconstructed with
tube voltages of 50 and 150 kVp respectively (matched
lgM52.00¡0.05). It can be seen in Figure 4a,b that
contrast decreases as the tube voltage increases. This is
because there is a decrease in differences between the
linear attenuation coefficients of different human tissues
with an increase in voltage, since the photoelectric cross-
section varies with energy as approximately E23. In this
way, the photoelectric effect plays a dominant role in
producing subject contrast at diagnostic energies.

Linearisation of pixel value data

The relationship between energy absorbed by the CR
phosphor and pixel value were all found to be
logarithmic (loge, all r2 .0.9995) and demonstrated slight
dependence on tube potential. To account for this all
image data were linearised using the resulting equations
for each tube potential.

Scatter measurement and addition to DRR

Images of the RANDO phantom with the beam stops
and subsequent scatter fraction mask are shown in
Figure 5a,b. SFs were derived at each tube potential
investigated and ranged from 0.4–0.65 in the lung region,
0.7–0.8 in the mediastinum region and 0.8–0.85 in the
heart region. As can be seen, the widest variation for SFs
is in the lung, which is in general agreement with SFs
measured by Floyd et al [42].
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Addition of frequency-dependent noise

Figure 6 shows an example of a corrected noise image.
The noise image in Figure 6 shows the effect of local dose
variations. The added noise in the diaphragm and spine
regions is lower than that in the lung regions. The noise
in the lower dose regions would be overestimated (and
underestimated in the higher dose regions) if no
correction was applied.

Validation

Resolution of DRR compared with CR
The limiting spatial resolution of a DRR image

measured from the MTF curve at the 2% level was
1.5 lp mm–1 and 0.6 lp mm–1 in the y and x directions
respectively. This compares with 3 lp mm–1 for CR.
Obviously, the resolution is poorer in the reconstructed

(a) (b)

Figure 5. Radiograph of the RANDO phantom with (a) lead stops visible and (b) the resulting scatter mask.

(a) (b)

Figure 4. The RANDO phantom reconstructed (a) with a tube potential of 50 kVp, (b) with a tube potential of 150 kVp.
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images; therefore, object information will always be
presented at a lower resolution and a DRR image will
never look exactly the same as a CR image of the same
object. This may be a limiting factor (see ‘‘Qualitative
validation via expert evaluation’’).

Validation with RANDO phantom
Initial validation was carried out with real CR and

simulated DRR-generated images of the RANDO phan-
tom. Figure 7a,b show a DRR (with scatter and noise
added) and a real CR image of RANDO simulated and
acquired at 60 kVp respectively. As can be seen in
Figure 7a,b, both DRR images correlate visually with the
real one. Quantitative validation was carried out by
plotting histograms of pixel values and calculation of
SNRs and tissue-to-rib ratios (TRRs). It is important to
compare SNRs as the level of both signal and noise in a
digital image affect the visualisation of pathology. The

TRR is a metric that calculates the mean region of interest
(ROI) pixel value of soft tissue to that of rib. As ribs cover a
large area of a chest radiograph and can interfere with the
detection of soft tissue lesions, it is important that a good
agreement should exist between calculated DRR and
acquired CR images. SNRs were measured in the hilar,
spine and diaphragm regions of each image using ROIs
consisting of approximately 2500 (506 50) pixels. TRRs
were measured in the lateral pulmonary region. As
discussed under ‘‘Methods and materials’’, each raw
DRR (no noise or scatter added) was resized to match
that of a real CR image. The impact on signal and dynamic
range in doing this was small (,2%). As such, the resized
DRR pixel area matches that of CR. Figure 8 compares real
(CR) and simulated (DRR) histograms of pixel values
acquired and reconstructed at a tube potential of 60 kVp,
respectively. It can be seen in Figure 8 that the histogram
produced from the simulated DRR image is very similar in
shape to that produced from the real CR image (other tube
potentials not shown but follow the same trend). However,
the DRR histogram exhibits a reduced dynamic range
relative to the CR histogram, possibly due to reasons
discussed under ‘‘Validation with clinical images’’.

Figure 9a,b show histograms of real CR and simulated
DRR images acquired and reconstructed with exposure
factors 90 kVp, 1 and 4 mAs, respectively. Histograms
produced from simulated images are similar shape to
those produced from real CR images, and although their
dynamic range is slightly smaller, they are shifted to the
correct positions on the pixel value axis. This is
encouraging, as it demonstrates the simulator correctly
increases/decreases pixel values according to increased/
decreased exposure to the detector, and as such can be

Figure 6. Corrected uniform linear noise image.

(a) (b)

Figure 7. (a) Digitally reconstructed radiograph (with scatter and noise) of the RANDO phantom; (b) computed radiography
image of the RANDO phantom.
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used for dose escalation/reduction studies, assuming
levels of noise are also correct.

Table 4 compares SNRs of real CR images to that of
DRR images in the lung, spine and diaphragm (matched
lgM52.00¡0.05). It is clear from Table 4 that all DRR-
calculated and CR-measured SNR values are in good
agreement, the maximum deviation being 10% (mean5

5%). The addition of frequency-dependent noise does

have its limitations since NPS does not give a complete
description of the noise properties of the system.
However, this is often neglected because dose levels used
clinically produce stochastic noise that dominates over
structure noise. For a description of how the tolerances
were estimated, the reader is referred to [16].

Table 5 shows the effect increasing and decreasing the
dose has on subsequent SNR calculations and measure-
ments with a tube potential of 90 kVp. Table 5 clearly
shows a good agreement in SNRs measured in the CR
and DRR images respectively. All other tube potentials
tested produced similar results, and as such show that
the model can reproduce images acquired with decreases/
increases in dose.

Table 6 demonstrates TRRs calculated and measured
in DRR and CR images, respectively. As seen in Table 6,
all TRRs are in good agreement. The maximum dif-
ference in measured (CR) and calculated (DRR) is 1.3%.
It can be seen that TRR decreases with increasing tube
potential. This is due to the ribs attenuating a higher
percentage of incident photons at lower potentials than
soft tissue, thus forcing up the TRR.

Validation with clinical images
Validation with real patient data was carried out with

10 average male CR chest images all acquired with
exposure factors 70 kVp, 5 mAs unless otherwise stated.
Figure 10a,b compares an image of one of these males to
that of a DRR-simulated image (both typical of their
cohort). As with the RANDO images, the simulated DRR
patient image correlates visually with the real one. The
mean (¡SD) of the minimum and maximum histogram
values for 10 real CR images were 1690¡280 and
3080¡260, respectively. For 10 DRR images, these values

Figure 8. (a) Computed radiography histogram of pixel
values of the RANDO phantom at 60 kVp 10 mAs; (b)
digitally reconstructed radiograph histogram of pixel values
of the RANDO phantom at 60 kVp 10 mAs.

(a) (b)

Figure 9. Real computed radiography and simulated digitally reconstructed radiograph (DRR) histograms acquired and
simulated with exposure factors 90 kVp, 1 (a) and 4 mAs (b), respectively.
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were 1750¡270 and 2820¡290. The calculated (DRR)
measure of dynamic range is smaller than that measured
(CR). This is to be expected because although many
tissue types have been modelled (using the RMI
Gammex phantom), we are nevertheless limited to those
contained within the phantom (Sandborg et al [20]
reported similar findings with their Monte Carlo
computer model). Also, the voxel size (0.346 0.346
0.8 mm) is probably larger than some of the smaller
structures within the body. There is typically a slight
shift of the histogram peak to the lower pixel values for
CR images. This is probably due to slightly more scatter
recorded in the images acquired with real patients
because of the presence of more fat than the RANDO
phantom.

Mean SNRs (¡SD) in the lung region of 10 real patient
images and 10 simulated DRR images were 123.1¡18.8
and 124.1¡18.1, respectively. All images were chosen at
random, since it was not possible to simulate a DRR
image of a given patient and obtain a CR image of the
same patient. Both mean values are the same given the
standard deviations (SDs). The differences in SNRs are
most likely due to differences in patient size (although
they are ‘‘average’’, a weight range of 70¡10 kg was
chosen) leading to changes in X-ray absorption and
scatter. Mean (¡SD) DRR and CR SNR values for the
spine region were 61.9¡7.6 and 60.3¡4.5. This again
shows good similarity. Mean (¡SD) DRR and CR SNR
values for the diaphragm region were 31.4¡2.0 and
24.7¡3.1. The mean SNR value for the diaphragm is
lower in the real CR images than that of the simulated
DRR images. This is probably due to more fat surround-
ing the abdomen of the patients relative to that of
RANDO. This will increase the amount of scatter
reaching the CR phosphor and hence noise, thus for-
cing down the SNR. However, image quality in the
diaphragm is of limited importance in chest radiography
[4], so this difference is likely to be of no significance.

This process was repeated for 10 average patient chest
images acquired with 85 kVp and 4 mAs. Mean (¡SD)
DRR and CR SNR values for the lung region were
104.0¡17.7 and 101.6¡19.2, respectively, for the spine
39.7¡4.7 and 44.7¡7.1, respectively, and for the dia-
phragm region 24.8¡2.4 and 22.8¡3.2, respectively.

As per the SNR measurements, 10 random real and
simulated patients were used to measure the mean TRR.
Mean (¡SD) DRR and CR TRR values were 1.071¡
0.005 and 1.075¡0.004. The difference is probably due to
varying rib thicknesses in the patients chosen.
Nevertheless, there is a satisfactory agreement.

Qualitative validation via expert evaluation
4 independent experienced image evaluators (2 radi-

ologists and 2 reporting radiographers) have seen a sam-
ple of 50 simulated images on calibrated PACS monitors
and their opinions were very positive. All remarked that
although image resolution was not as good as real
radiographs, each contained sufficient clinical detail, were

Table 4. Comparison of signal-to-noise ratios (SNRs) measured in the lung, spine and diaphragm (diap) regions in digitally
reconstructed radiograph (DRR) and real computed radiography (CR) images

RANDO SNR (all¡30)

Tube potential (kVp) DRR lung CR lung DRR spine CR spine DRR diap CR diap

50 200 195 104 108 82 78
60 199 199 112 112 83 81
70 194 208 115 108 92 87
80 192 194 92 95 72 76
90 215 208 125 124 105 103

100 214 208 126 117 94 98
110 214 221 138 137 103 109
120 204 210 115 118 100 99
130 203 199 118 111 81 88
140 199 209 120 119 89 88
150 203 202 94 97 89 90

Table 5. Comparison of signal-to-noise ratios (SNRs) measured in the lung, spine and diaphragm (diap) regions in digitally
reconstructed radiograph (DRR) and real computed radiography (CR) images with varying mAs

RANDO SNR (all¡30)

mAs DRR lung CR lung DRR spine CR spine DRR diap CR diap

1 179 185 119 115 90 91
2 215 208 125 124 105 103
4 266 263 130 128 116 119

Table 6. Comparison of tissue-to-rib ratios (TRRs) measured
in digitally reconstructed radiograph (DRR) and real com-
puted radiography (CR) images

TRR RANDO (all¡0.005)

Tube potential (kVp) TRR DRR TRR CR

50 1.060 1.069
60 1.044 1.052
70 1.039 1.044
80 1.031 1.032
90 1.032 1.034

100 1.029 1.032
110 1.030 1.031
120 1.028 1.030
130 1.027 1.027
140 1.026 1.026
150 1.023 1.025
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definitely representative of chest anatomy and suitable for
optimisation studies requiring anatomical noise.

Limitations of the simulation system
There are numerous limitations to this system. We

believe the ones of most relevance are noise addition
(due to DQE dependency with dose variations in an
image) and poorer inherent resolution of CT data than
that of CR images (although still much better than
voxelated phantoms used in Monte Carlo studies). This
has led to DRR images exhibiting lower resolution than
desired. This problem will not be an issue in future if CT
scan resolution improves and approaches that of CR.
However, the prime objective of this work was to
develop a simulation system that produces chest images
adequately simulating anatomical noise and features.
Radiologist comments are favourable, so spatial resolu-
tion of these DRR images is not a limiting factor.

Conclusions and future work

Our DRR calculator scheme provides a realistic model of
the Agfa CR digital imaging system for chest radiography
(of average size males). Anatomical noise is adequately
simulated using human chest CT data sets. Scatter and
system noise have been successfully added post-DRR
calculation, resulting in SNRs, TRRs and pixel value
histograms that are in good agreement with those
measured in CR-acquired images. Although DRR resolu-
tion is not as good as real CR images, four independent
expert image evaluators believe DRR images adequately
simulate real radiographs and provide realistic anatomical
features. Therefore, this computer model provides us with

a tool that can be used by radiologists to grade quality for
images derived with different X-ray system parameters,
without the need to perform repeat exposures on patients.
We intend to use it for optimisation of clinical chest
imaging with this Agfa CR system. The simulator can be
adapted to include other digital detector technologies if X-
ray photon absorption, noise and scatter properties of the
system in question are measured and incorporated into the
simulation.

Future work will include adding pathology (and
validating) to the CT data to simulate lesions in the
resulting DRR, modelling antiscatter grids and air-gap
techniques for scatter reduction investigations, and
simulating large/obese patients.
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