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ABSTRACT. Advances in imaging, including multivoxel spectroscopy, tractography,
functional MRI and positron emission spectroscopy, are being used by neurosurgeons
to target aggressive areas in gliomas, and to help identify tumour boundaries,
functional areas and tracts. Neuro-oncological surgeons need to understand these
techniques to help maximise tumour resection, while minimising morbidity in an
attempt to improve the quality of patient outcome. This article reviews the evidence
for the practical use of multimodal imaging in modern glioma surgery.
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What are the aims of glioma surgery? Despite exciting
advances in MRI biomarkers, surgery is still needed to
provide representative specimens for histological and
molecular examination, for tumour debulking and some-
times chemotherapeutic access. Multimodal MRI can have
a role in all surgical aspects of tumour management.

Gliomas are heterogeneous tumours that can lead
to inaccuracies in diagnosis [1]. Areas of normal brain,
inflammation, oedema, necrosis and active tumour of
varying grades may coexist in a single patient [1–3].
Appropriate treatment requires representative sampling of
the most aggressive part of the tumour. In enhancing
tumours on CT or MRI, a portion of the contrast-enhanced
section is targeted, whereas in unenhancing lesions perfu-
sion, diffusion and spectroscopy can aid objective selection.

There continues to be debate regarding the role of
debulking surgery for glioma [4–15]. There is Class 2
evidence that resectional surgery (as defined on post-
operative MRI) in high-grade glioma correlates with
improved prognosis [4–9]. In low-grade gliomas, the
evidence is less convincing, but many authors contend
that macroscopic resection does provide benefit [10–12].
A significant reduction in tumour burden without
morbidity is the surgical aim.

Tumour boundaries are not clearly demonstrated by
current clinical imaging techniques. McKnight et al [2]
studied 68 patients with high-grade glioma using mag-
netic resonance spectroscopy (MRS) and targeted biop-
sies, and suggested that between one-third and one-half
of the altered T2 weighted signal seen on MRI is tumour.
Price et al [16] have shown that tumour is present out-
side the T2 weighted boundary. Silbergeld and Chicoine
[17] were able to culture malignant glioma cells from
histologically normal brain taken 4 cm from the contrast-
enhancing edge of high-grade gliomas. Spectroscopy,
perfusion, diffusion and positron emission tomography
(PET) imaging can help define tumour presence not seen
on conventional imaging [2, 3, 16, 18].

Compounding factors for surgery include anatomical
functional variability and, the distorting and infiltrating
effects of tumours. The surgical procedure produces
distortions. Coenen et al [19] demonstrated up to 12 mm
of brain shift during surgery. Image guidance, with pre-
operative conventional MRI, can be helped by tracto-
graphy, functional MRI and intraoperative real-time
ultrasound or MRI.

Conventional MRI has superseded CT as the investi-
gation of choice for operative planning and for aiding
intra-operative resection. Multimodal MRI [diffusion,
perfusion, spectroscopy and functional MRI (fMRI)] and
PET imaging provide significant advantages over con-
ventional MRI. Pre-operative imaging assessments allow
informed decisions on operative planning and the role of
surgical resection. Each technique has specific advan-
tages over standard imaging.

Multivoxel spectroscopy

Spectroscopy can be used to aid biopsy target
identification and to help define tumour boundaries.
Croteau et al [3] looked at 31 patients and correlated
MRS Choline with biopsy samples and showed ratios
comparing choline on the tumour side with choline or
creatine levels on the contralateral normal side correlated
with the degree of tumour infiltration in both high- and
low-grade gliomas. McKnight et al [2] used three-
dimensional spectroscopy on 68 patients and found a
Cho/N-acetylaspartate ratio .2.5 correlated with
tumour on co-registered biopsy samples with a sensitiv-
ity of 0.9 and a specificity of 0.86. McKnight et al [2]
suggested that tumour was present in 30–50% of the T2

signal abnormality outside the contrast-enhanced area. A
normal spectroscopic pattern could be seen if only small
islands of tumour were present within normal brain
tissue. Croteau et al [3] felt that MRS was more accurate
than conventional MRI in defining tumour boundaries.
Limiting factors of spectroscopy-aided surgery include
the relatively large voxel size (16161 cm), the asso-
ciated difficulties with co-registration and intra-opera-
tive shift.
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Perfusion

Perfusion imaging has been used to identify biopsy
targets and provide indices of histologically aggressive
activity. Maia et al [20] examined 21 patients and used
relative cerebral blood volume (rCBV) maps to target
sample collection. Maia et al [20] found that high rCBV
correlated with histological findings of oligodendro-
glioma or anaplastic astrocytoma, with oligoastrocyto-
mas having intermediate values. When compared with
the contralateral side, a rCBV ratio $1.2 was 80%
sensitive and 100% specific for these tumours [20].
Maia et al [20] concluded rCBV improves selection of
targets by reducing sampling error. Sadeghi et al [21]
looked at 14 patients with MRI, PET and co-registered
biopsy and found that both MR-derived CBV and
methionine PET gave similar information and correlated
with endothelial proliferation and mitotic activity (p,

0.01), suggesting they both provide indices of focal
malignant activity. The limiting factors with perfusion
imaging are similar to those encountered with spec-
troscopy, and include the relatively large voxel size,
intra-operative shift and a greater problem with image
co-registration.

Diffusion

Significant surgical interest currently centres on
tractography, but diffusion imaging has also been used
to outline tumour boundaries. Price et al [16] examined
20 patients with World Health Organization (WHO)
grade II, III and IV gliomas with diffusion tensor imaging
(DTI) correlated to biopsy specimens. Tumour was
indentified in all grades outside the T2 weighted signal
change and was predictable with diffusion imaging [16].
A study of 11 paediatric patients with DTI suggested
low-grade gliomas in children did not infiltrate, but this
small case series did not have tumour histology for 7 of
the 11 cases, limiting the validity of this statement [22].

DTI or tractography can help to outline the functional
anatomy of subcortical white matter. Current interest
rests with the corticospinal tract, but the technique has
also been used for language and visual tracts. This is
being used for intra-operative guidance in tumour cases
and dominant temporal lobectomy [23–25]. Tractography
is non-invasive and, unlike other non-invasive functional
techniques, provides information on subcortical white
matter pathways [26].

DTI tractography images are usually acquired as echo
planar images [23, 27]. These are distorted at the skull
base and near air-filled spaces [23]. Stimulated echo
acquisition mode (tSTEAM) gives less distortion but
provides only half the signal intensity, so requires four
times as many averages, increasing signal time signifi-
cantly [27]. Using tSTEAM or other sequences may help
in using tractography for brain stem tumours or
functional stereotactic methods [27].

A number of clinical studies have attempted to
examine accuracy. Berman et al [26] compared tracto-
graphy with intra-operative stimulation mapping and
magnetic source imaging in 9 patients and found up to
15 mm between stimulation and DTI fibre tracts. They
explained this as a consequence of using a 5-mm-wide

stimulating bipolar within the resection margin, with
its range being 5–10 mm [26]. Bello et al [24] looked
at 64 patients with fibre tracking for motor and
language pathways and correlated these with intra-
operative subcortical mapping. Bello et al [24] charted
the corticospinal tract, superior longitudinal fasciculus,
inferior fronto-occipital fasciculus and uncinate fascicu-
lus and found a high correlation with intra-operative
electrophysiology. Interestingly, all patients had a worse
deficit initially but, by 1 month, 88% were normal [24].
Nimsky et al [23] examined 19 patients who had pre-
operative fMRI with fibre tracking and intra-operative
DTI, and electrophysiology looking at phase reversal to
indentify the central sulcus. In only 6 of the 19 was a
gross total resection possible, but these were tumours
adjacent to the primary motor cortex where a very low
gross total resection rate would be expected [23]. They
found up to 8 mm of brain shift intra-operatively [23]. A
number of investigators suggest, even without brain
shift, a safety margin of 5 mm when approaching the
pyramidal tract appears appropriate [23, 27].

There are problems with fibre tracking. Fibre tracking
is a user-defined process and is dependent on the size
and location of the seed and the experience of the
individual processing the data [22, 27]. Multiple algo-
rithms are used as there is currently no accepted gold
standard [22]. Intra-operative updating of fibre tracking
is currently time-consuming [19, 23]. Crossing fibres,
multiple principle directions and oedema can affect the
eigenvector and the tract produced [22, 26]. Nilsson et al
[22] used fibre tracking in two cases, and suggested that,
with their methods, fibre tracking identified the bundle
site but not its size. Finally, clinical series that demon-
strate a conversion of tumour cases from subtotal into
gross total excisions are needed [23]. Despite these
problems, diffusion imaging provides an exciting avenue
for further investigation.

fMRI

fMRI offers pre- and intra-operative prediction of
functional cortical areas. Shinoura et al [28] looked at
17 patients, and compared fMRI for identification of the
primary motor cortex with intra-operative somatosen-
sory-evoked potentials (SSEPs) and cortical mapping.
fMRI was successful in more patients than SSEPs, mainly
because, in patients with a hemiparesis, the opposite
side could be easily identified and correlated with the
affected side [28]. There was a high concordance be-
tween the fMRI localised area and that identified intra-
operatively [28]. Fandino et al [29] showed in their series
of 11 patients, they were able to demonstrate cortical
reorganisation of the primary motor cortex on fMRI that
agreed with cortical stimulation.

Roux et al [30] examined language and had only three
of eight patients with complete agreement between fMRI
and intra-operative cortical stimulation, leading them to
suggest the technique was not good enough for pre-
surgical or intra-operative usage. More recently, Bizzi
et al [31] compared 34 patients using fMRI for motor
and language with intra-operative electrophysiology.
Overall sensitivity was 83%, and specificity was 82%
[31]. Interestingly, they found a difference with tumour
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grade, with a sensitivity and specificity of 65% and 93%,
respectively, for WHO grade IV gliomas, and 93% and
79%, respectively, for grade II gliomas [31].

There remain limitations with intra-operative use. fMRI
shows areas of activation, but these areas may not need to
be preserved to avoid a neurological deficit [32]. Two
separate case studies suggest that the blood oxygen level
dependant (BOLD) signal can be lost adjacent to gliomas
[33, 34]. At least 5 mm of error should be allowed for,
before considering intra-operative brain shift [32]. Finally,
it is not always possible to get an fMRI response in all
patients owing to patient co-operation and neurolo-
gical deficit [35]. fMRI appears to be useful in motor
mapping, and its use for language mapping is developing
[30–32].

PET/SPECT

Operative uses for PET include biopsy targeting and
functional cortex identification. Roessler et al [36] looked
at 27 patients with PET-targeted biopsies and found
anaplastic foci could be recognised to aid biopsy targeting.
Sadeghi et al [21] demonstrated in 14 patients that meth-
ionine (MET) PET provides an index of focal malignant
activity. Other studies have also supported MET PET as
being superior to conventional MRI in identifying biopsy
targets and differentiating radionecrosis [37–39]. Meyer
et al [40] used 12 15O2-labelled water PET scans to identify
Broca’s and Wernicke’s areas for language localisation in
7 patients [40]. Broca’s area was identified in five patients,
and Wernicke’s in six, although there was no intra-
operative electrophysiological confirmation [40]. Case
reports show inaccuracies in the predictive nature for
histological diagnosis [41]. Other disadvantages of PET
include the need for radioisotopes and the relatively poor
resolution.

Conclusion

There are many exciting developments within multi-
modal MRI and PET imaging that can be of practical use
to the neurosurgeon. Increased information to aid biopsy
targeting, and the definition of cortical functional areas
and white matter tracts can help make surgery more
accurate, more aggressive and less risky and, hopefully,
improve patient outcome.
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