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Abstract

Background: In spite of the advances made in the design of dexterous anthropomorphic hand prostheses, these
sophisticated devices still lack adequate control interfaces which could allow amputees to operate them in an
intuitive and close-to-natural way. In this study, an anthropomorphic five-fingered robotic hand, actuated by six
motors, was used as a prosthetic hand emulator to assess the feasibility of a control approach based on Principal
Components Analysis (PCA), specifically conceived to address this problem. Since it was demonstrated elsewhere
that the first two principal components (PCs) can describe the whole hand configuration space sufficiently well, the
controller here employed reverted the PCA algorithm and allowed to drive a multi-DoF hand by combining a two-
differential channels EMG input with these two PCs. Hence, the novelty of this approach stood in the PCA
application for solving the challenging problem of best mapping the EMG inputs into the degrees of freedom
(DoFs) of the prosthesis.

Methods: A clinically viable two DoFs myoelectric controller, exploiting two differential channels, was developed
and twelve able-bodied participants, divided in two groups, volunteered to control the hand in simple grasp trials,
using forearm myoelectric signals. Task completion rates and times were measured. The first objective (assessed
through one group of subjects) was to understand the effectiveness of the approach; i.e., whether it is possible to
drive the hand in real-time, with reasonable performance, in different grasps, also taking advantage of the direct
visual feedback of the moving hand. The second objective (assessed through a different group) was to investigate
the intuitiveness, and therefore to assess statistical differences in the performance throughout three consecutive
days.

Results: Subjects performed several grasp, transport and release trials with differently shaped objects, by operating
the hand with the myoelectric PCA-based controller. Experimental trials showed that the simultaneous use of the
two differential channels paradigm was successful.

Conclusions: This work demonstrates that the proposed two-DoFs myoelectric controller based on PCA allows to
drive in real-time a prosthetic hand emulator into different prehensile patterns with excellent performance. These
results open up promising possibilities for the development of intuitive, effective myoelectric hand controllers.
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Background
A successful replacement of the natural hand with an
artificial prosthesis may be achieved through the use of a
dexterous anthropomorphic hand, controlled and per-
ceived in a close-to-natural way by means of an intuitive
human–machine interface. One of the conditions
required for a satisfactory and usable prosthesis is that
the interface effectively decodes the efferent motor com-
mands dispatched by the amputee’s brain to perform
the desired actions with accuracy and acceptable cogni-
tive effort.
Traditional myoelectric prostheses (e.g. Otto Bock

SensorHand, Motion Control hand) have just one or two
degrees of freedom (DoFs), sequentially operated
through electromyographic (EMG) signals picked-up by
surface electrodes from the residual limb muscles. Al-
though these devices are extremely robust and require
low burden for the user in learning their operation, they
offer poor cosmetic appearance and limited functional-
ities. Similarly, the recently marketed multi-fingered pro-
totypes (like the Touch Bionics i-Limb and RSL Steeper
BeBionic) are still based on a traditional two-input EMG
controller used to open and close all the fingers of the
hand together. This drawback is due to the difficulties of
reliably using—in the practice—more than two EMG
channels simultaneously [1]. Indeed, despite the recent
achievements reached by researchers in developing
multi-DoF prostheses (e.g. the SmartHand [2], the VU
hand [3], the DARPA RP 2009 Intrinsic Hand [4]), these
are not yet used in the clinical practice due to the lack
of adequate interfaces with the user.
The most successful and common method employed

for prostheses control is based on EMG processing [5];
in order to myo-electrically control a dexterous pros-
thesis it is necessary to map EMG signals (corresponding
to different muscle contractions) to the different existing
DoFs, using a suitable control algorithm [6]. This is a
multiple input, multiple output (MIMO) problem where
the goal is to best map the EMG inputs to the outputs
in the prosthesis (i.e. the number of actuators). EMG
control techniques can be divided in two categories:
pattern recognition and non-pattern recognition based
[7]. In research, sophisticated algorithms (usually run-
ning off-line) implement pattern recognition: features
extracted from the EMG signals (e.g. mean absolute
value (MAV), root mean square (RMS), zero crossing, or
frequency domain features; for a review of the features
see [7] and [8]) are used to decode different muscular
contractions, using various classification algorithms (e.g.
multilayer perceptrons, fuzzy techniques, wavelets, linear
discriminant analysis) [9-16]. Non-pattern recognition
control, traditionally used in the clinical practice [17],
includes proportional control, threshold control, onset
analysis and finite state machines. The number of
functions that can be controlled by non-pattern recogni-
tion techniques is limited in comparison to pattern
recognition based ones but, in general, non-pattern rec-
ognition controllers offer greater reliability. They have a
simpler structure and have been mostly deployed in
ON/OFF or proportional control. In particular, in pro-
portional control the strength of muscle contractions
controls the prosthesis speed or force [7].
In order to achieve tangible improvements in this field,

the fundamental issues to be tackled are: (1) how to in-
crease the voluntary controlled dexterity (i.e. the number
of controllable DoFs) and, at the same time, (2) how to
provide the amputee with an intuitive and effective way
for controlling his/her artificial limb. With the aim to
address such problems, this study presents a control
method suitable for multi-fingered prostheses, based on
surface EMG and bio-inspired to muscle synergies
involved in natural motor coordination.
A functional muscle synergy represents the elementary

unit of motor behaviour and is defined as a pattern of
co-activation of muscles recruited by a single neural
command signal [18]. Back in the 1960s, Nikolai Bern-
stein proposed the existence of muscle synergies as a
neural strategy for simplifying the control of multiple
DoFs [19]. More recently, Santello et al. [20] demon-
strated that this same strategy is effective also in the case
of hand control and that, during grasps, some DoFs of
the hand are tightly correlated. In particular, in that ex-
periment, subjects were asked to shape the hand as if to
grasp and use a large number of familiar objects, while
static finger postures were measured by means of a data-
glove; Principal Components Analysis (PCA) showed
that the first two components could account for 80% of
the variance, implying a substantial reduction from the
15 DoFs that were recorded. Hence, they demonstrated
that only few synergies are involved in the control of
hand posture (even though this mechanism is coupled
with a finer control mechanism providing for small, sub-
tle adjustments) [20]. Drawing inspiration from this bio-
mechanical/neuromuscular behaviour, in our previous
work we developed a control algorithm based on PCA
able to map two continuous control inputs into continu-
ous multiple outputs (motors) of a robotic hand [21]. In
addition we demonstrated the ability of the system to
achieve stable grasps when the two control inputs were
virtually generated. If extended to upper-limb prosthe-
tics, such an approach could allow amputees to control
multi-DoF hands using an extremely reduced number of
myoelectric channels. Remarkably, the approach holds
the potential to overcome the MIMO problem (i.e. how
to map a reduced number of inputs into a large number
of outputs), as it could allow successful control of
hands—if mechanically capable—into 80% of the natural
hand postures by just modulating two input channels.
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Previous works, aimed to control dexterous hands or
robotic grippers, exploited the concept of synergies in
order to reduce the dimension of the problem. Particu-
larly, the PCA technique, usually employed in prostheses
control algorithms to preprocess (decorrelate) EMG sig-
nals [22] or to reduce features dimensionality [10,23],
has also been exploited in robotics to implement auto-
matic grasp planners [24,25] or even to design
the mechanical architecture of an anthropomorphic
hand [26].
This paper presents the first work on the real-time

prehension control of a robotic hand employing a two
differential channels (four electrodes) EMG acquisition
system and a PCA-based controller, operated by 12 able-
bodied subjects. Participants volunteered in experimen-
tal tasks consisting in (i) grasping, (ii) transporting and
(iii) releasing different kinds of objects, by employing a
five-fingered (and six motors) robotic hand, mounted
onto an orthopaedic splint designed for able-bodied
users (hereafter, prosthetic hand emulator). The pro-
posed experiments were aimed at addressing two key
objectives. The first objective was to understand the
effectiveness of the approach, i.e., whether it is possible
to drive the hand in real-time, with reasonable perform-
ance, in different grasps. The second objective was to
investigate the intuitiveness, indirectly, by using quantifi-
able performance metrics and therefore to assess
statistical differences among these ones throughout con-
secutive experiments.
In the following pages the experimental setup, com-

posed of the prosthetic hand emulator, the two degrees
of freedom EMG controller and the PCA-based algo-
rithm, is described. Finally, a description of the per-
formed experiments is provided and the collected results
are presented and discussed to be useful for future
developments.

Methods
The system here employed consisted of 3 modules: the
robotic hand (RH), mounted onto an orthopaedic splint
designed for able-bodied users, the EMG signals acquisi-
tion module (AM) and the software control system (CS)
(cf. Figure 1).

Prosthetic hand emulator
The robotic hand used for assessing the feasibility of the
approach was a modified and simpler version of the
CyberHand [27], assembled onto an orthopaedic splint
which allowed any reaching movement not involving the
wrist, as in Panarese et al. [28] (cf. Figure 2). The hand
is anthropomorphic, right-handed, human-sized, with
five independent underactuated fingers able to mechan-
ically adapt on objects. Hand actuation is achieved by
means of six electrical motors: five are employed for
independent flexion/extension of each finger, and the
sixth one for thumb abduction/adduction. The hand is
able to perform the three main functional grasps defined
in Iberall & Arbib’s grasp taxonomy: power, precision
and lateral grasps [29]. However, as mentioned in our
previous work [21], grasp stability for precision grasps is
only allowed within a certain force/position workspace
of the fingers due to instability problems; therefore, to
perform a stable precision grasp (i) accurate positioning
of the fingers and (ii) accurate force level on the object
are required. A microcontroller-based hierarchical archi-
tecture implementing fingers position control is embed-
ded in the hand and is activated by external commands
from a standard RS-232 communication bus. A detailed
description of the hand can be found in [27].

EMG signals acquisition module
EMG signals were acquired by means of active surface
electrodes, regularly used in myoelectric prostheses and
commercially available (Myobock electrodes 13E200=50,
Otto Bock Healthcare Products GmbH, Wien, Austria):
signals conditioning (adjustable amplification—in this
case set to 6—and low-pass filtering B = 90–450 Hz) is
performed on-site by the electrode hardware itself, and
for this reason in prosthetics they are generally referred
as EMG sensors (instead of simple electrodes). Two pairs
were individually adjusted and placed on the subjects’
forearm in order to pick-up independent myoelectric
signal pairs generated by the activity of the following an-
tagonist muscles: the flexor (FCR) and extensor carpi
radialis (ECR), the extensor pollicis longus (EPL) and the
flexor carpi ulnaris (FCU) (cf. Figure 2). It is known that
wrist flexion and extension are demanded to FCR and
ECR, while the other two muscles are involved respect-
ively in wrist abduction (EPL) and adduction (FCU)
movements [30]. The mutual interference between the
activity of the four muscles did not represent a signifi-
cant problem, due to accurate individual positioning of
the EMG sensors [31]. The underlying objective was in-
deed to develop a myoelectric joystick (Figure 3), i.e. a
two differential channels controller using EMG signals
from muscles that move the wrist (similarly to [31-33]).
EMG sensors were connected to an acquisition board
(NI-DAQ USB-6211, National Instruments Corp., Aus-
tin, TX, USA) which communicated with the laptop that
run the decoding algorithms.

Software control system
A C-written application was developed using LabWindows-
CVI (National Instruments) and run on the laptop con-
nected to both the EMG acquisition module and to the
hand. The control system decoded and converted the
subjects’ 2-DoF wrist contractions (flexion/extension
and adduction/abduction) into hand posture control



Figure 1 System overview. The experimental setup included the EMG acquisition module (AM, with four active electrodes placed on the user’s
forearm and an acquisition board) and the software control system (CS), which ran on a laptop and was interfaced with the hand (RH) via serial
port. The CS acquired and decoded the four EMG signals to generate two independent input signals; these were fed into the PCA-based
algorithm that generated and sent the six motor control commands to the robotic hand.
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commands, implementing the algorithm based on PCA
previously presented by the authors in [21]. At a glance
this algorithm reverted the PCA concept and allowed to
drive the dexterous 6-motor hand in a pre-defined
hand-posture workspace with just two independent
control inputs (in this case the 2-DoF wrist move-
ments); the pre-defined hand-posture workspace is illu-
strated in Figure 4 [21]. The picture shows a discrete
grid representing the two inputs and a sample of the
postures assumed by the hand (corresponding to such
inputs), i.e., the two-to-six mapping. The map denotes
that some areas (i.e. some input combinations) are more
functional for certain grasp types rather than others. The
pre-defined workspace of the hand was actually the result
of the analysis of postural data directly collected from the
Figure 2 Prosthetic hand emulator and electrodes positioning.
Experimental set-up showing the prosthetic hand emulator and the
four EMG sensors on the targeted muscles: the flexor (FCR) and
extensor carpi radialis (ECR), the extensor pollicis longus (EPL) and the
flexor carpi ulnaris (FCU).
six position sensors in the hand, while performing a
multitude of grasps (cf. Appendix A and [21]).
In this study the two control inputs were obtained

from effective myoelectric signals picked-up in real-time
on the forearm of able-bodied subjects wearing the pros-
thetic hand emulator, so that they could control (moving
their wrists as shown in Figure 3) the posture of the
hand in the workspace (in Figure 4), and hence grasp
objects. As shown in our previous work, the first input
Ch1 (wrist flexion/extension) mostly influenced fingers
flexion/extension (horizontal axis in Figure 4) whereas
the second input Ch2 (wrist adduction/abduction) influ-
enced thumb rotation (vertical axis in Figure 4). For the
sake of clarity, the mathematical description of the myo-
electric joystick, of the hand-posture workspace and of
the PCA-based controller are described in Appendix A.
Figure 3 Two DoFs control signal generation. Wrist movements
re-mapped into Ch1 and Ch2 signals variations, used to generate
input commands for the PCA-based algorithm. Extending (ext) or
flexing (flex) the wrist affected the input control signal Ch1.
Adduction (add) and abduction (abd) movements influenced Ch2.



Figure 4 CyberHand postures distribution. CyberHand postures over the Ch1,Ch2 input signals plane, sampled using a 5×5 grid. Blue, red or
dark green backgrounds are used to denote areas corresponding to those hand configurations which are functional for achieving respectively a
power, precision or lateral grasp. Faded colours are used to indicate areas where more than one grasp type could be achieved. A black
background denotes the open-hand neutral position.
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Experimental setup and protocol
Two groups of volunteers composed of six able-bodied
subjects each (3 males and 3 females each, whose aver-
age age was 25.5 ± 1.8 years old), all with dominant right
hand (same as the artificial hand) and naïve to EMG
control, were enrolled in this study. Subjects in both
groups (G1 and G2) were asked to execute the simple
task of grasp, lift, transport and release an object operat-
ing in real-time the CyberHand through the myoelectric
PCA-based controller introduced above. Twenty differ-
ent objects were chosen (cf. Table 1), proportionally
representing the percentages of power, precision and lat-
eral grasps used in activities of daily living (ADLs) [34].
Each subject was seated on a chair in front of the ob-

ject to be grasped, which was placed (always in this same
position) on a desk. The prosthetic hand emulator was
fastened to the right forearm of the subject as shown in
Figure 2.
At the beginning of the experiments, each subject

wearing the system was asked to perform powerful
flexion/extension and abduction/adduction movements
of his/her right wrist (about 2 s for each contraction),
while the corresponding EMG signals were recorded.
This simple procedure was used to calibrate the CS with
the subject’s muscular activity: the maximum EMG amp-
litude value for each channel was identified and used to
set Ti,1 and Ti,2 noise thresholds (e.g., 1/4 of peak value)
(cf. Eq. 5, Appendix A).
Starting with the artificial hand completely opened,

after an initial audio cue, each task (i.e. moving the tar-
get object from its initial position on the desk to a final
one, fixed 50 cm far on the same desk) started. Comple-
tion and grasping times were measured using a standard
chronometer (activated after the starting cue and finally
stopped once the hand returned in the open posture,
after object release).
There were two sets of 20 objects for each subject and,

in both sets, the target objects were presented in ran-
dom order. The experimental task was the same for both
G1 and G2, whereas the protocol differed. Subjects in
G1 were given precise instructions on how to control
the hand (i.e., how the 2-DoFs EMG joystick worked,
how contractions were mapped into hand postures, how
to flex muscles to obtain a defined grasp) and a twenty
minutes training session (not recorded), in which they
were free to train and control the CyberHand with their
EMGs and to grasp different objects as they wished.
After that, the experimental trials began. Subjects in G2,



Table 1 Objects used in the experimental trials

Object Shape Size [mm] Grasp Type

Paper roll cylindrical d= 47; h= 225 power

Spray cylindrical d= 52; h= 140 power

2 l bottle cylindrical d= 90 power

0.5 l bottle cylindrical d= 65 power

Coke tin cylindrical d = 65; h = 110 power

Twine roll cylindrical d= 60; h= 80 power

Cigarette pack parallelepiped 20 × 55× 85 power

Torch cylindrical d= 35; h= 165 power

Golf ball spherical d= 40 precision

Plastic sphere spherical d= 33 precision

Soft rubber ball spherical d= 50 precision

Electric adapter plug cylindrical d= 43; h= 40 precision

Plastic cube cube L= 30 precision

Paperclips pack parallelepiped 70 × 38× 15 precision

CD circular d= 120 lateral

Single CD case rectangular 140× 125 × 5 lateral

Pad-per-hole perfboard rectangular h= 2 lateral

Audio-cassette case parallelepiped 108× 67 × 16 lateral

Business card rectangular h= 1 lateral

Post-it notes package parallelepiped 78 × 127 × 8 lateral

In the Size column, d stands for diameter and h for height.
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instead, were given only simple instructions (i.e., which
muscles to contract) with no time for initial practicing,
but were asked to perform the experiment on three con-
secutive days. The different experimental protocols for
the two groups were aimed at assessing two complemen-
tary hypotheses on the intuitiveness and effectiveness of
the system. The first hypothesis (assessed through G1
subjects) was that a short practice after detailed instruc-
tions would be sufficient to achieve good performance in
grasp tasks. The second hypothesis (assessed through
G2 subjects) was that the controller was intuitive
enough that, even with no precise instructions, perform-
ance would improve with practice anyway.
Three metrics were used to quantify the quality and

performance of grasp: (1) the task-completion rate (CR),
defined as the percentage of correctly executed tasks (i.e.
reach, grasp, transport and release the object without
slippage); (2) the object-grasp time (Tg), defined as the
time taken to correctly grasp (in subjects’ opinion) the
object, from audio cue to the achievement of a firm
grasp and confident object lift; (3) the task-completion
time (Tc), defined as the time spent to perform the
whole task (object grasp, transport and release, starting
from the audio cue). These metrics were based on simi-
lar studies [14,35].
Statistical differences among experimental task-

completion rates and times were evaluated using the
Friedman test [36]. Non parametric statistics was used
as the data set did not pass tests for normality. A level
of p< 0.05 was selected as the threshold for statistical
significance. In addition, in this study we assumed that
results achieved in two consecutive sets on the same day
were not statistically different. Statistical analyses were
performed using MatLab (The MathWorks, Natick, MA,
USA) scripts.

Results
The six subjects enrolled in G1 performed 40 grasps
each (20 objects, 2 repetitions) on a single day, for a
total of 240 trials. The six subjects in G2 performed 120
grasps each in three days, for a total of 720 trials.
1) The percentage of completed tasks and 2) time

spent to grasp and complete the task were used to evalu-
ate the control system usability and how easy to learn
was the re-mapping of muscular contractions into hand
movements by subjects naïve to EMG control. There-
fore, the evolution throughout the three days of these
metrics for subjects in G2 and their comparison with
group G1 performance were analyzed.
Each experimental session (two sets of grasps, includ-

ing set-up and calibration) lasted about 60 min. As
expected, the majority of time was spent to grasp the ob-
ject (i.e., voluntarily control the hand in the prehensile
pattern), after which subjects were able to transport and
release it within few seconds and with minimal effort.
The primary cause of trial failure (83% of total fails) was
the object fall during the grasping phase, especially for
small objects requiring precision grasps. In some cases
(17%), the object fell during its transportation from the
initial to the target point on the desk, due to a poorly
stable grasp.

Task-completion rates
The task-completion rate, for subjects in G2 on day 1, 2,
3 and for subjects in G1, is presented in Figure 5. Each
bar representing power grasps (in black) includes 96
samples (8 objects, 2 repetitions, 6 subjects), precision
grasps (in white) 72 samples (6 objects) and lateral
grasps (light gray) 72 samples (6 objects).
The visible improvement in performance throughout

the three days was not always confirmed by the Fried-
man test, as task-completion rates across days and sub-
jects (G2) revealed to be statistically different only for
precision grasps (p = 0.015) but not for power (p = 0.495)
and lateral (p = 0.222) grasps.

Object-grasp and task-completion times
The object-grasp and task-completion time distributions
for G1 and G2 on day 1, 2 and 3 are presented in
Figure 6. On the average, Tg and Tc times for G2 sub-
jects decreased along with days. The Friedman test on



Figure 5 Results: average task-completion rates. Task-completion rates for group G2 on day 1–3 (d1–d3) and for group G1, considering both
sets for each object. Black bars represent power grasps, white bars refer to precision grasps and light gray ones to lateral grasps.

Figure 6 Results: object-grasp and task-completion times distributions. Box & whiskers plots representing (A) object-grasp time (Tg) and (B)
task-completion time (Tc) distributions for subjects in G2 on day 1,2,3 (d1, d2, d3) and for group G1. Black boxes refer to power grasps, white
boxes to precision grasps and the gray ones to lateral grasps. Each box is delimited by the first and third quartile values; thick horizontal lines,
instead, highlight median values. Whiskers show the extent of the rest of the data, while crosses represent the outliers.
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Tg revealed that there were significant differences among
days for power (p< 0.001) and lateral grasps (p< 0.001)
but not for precision grasps (p =0.192). Similar results
were obtained for task-completion times (power p< 0.001,
lateral p< 0.001, precision p= 0.088).
Overall, data presented in the box plots show high dis-

persion. Nevertheless, this large variability was caused
by the differences in subjective performance and not by
other variables (sets or days). This is clearly demon-
strated by the graphs in Figure 7, where all task-
completion and object-grasp times are plotted along
with days (outlier samples mostly refer to precision
grasps). Although each subject’s performance was differ-
ent (i.e. subject 6 was generally faster than subject 4), all
of them presented a clear improvement (Tc and Tg de-
crease) with time. The slope of the plotted fitting curve
(i.e. a single decaying exponential function obtained by
means of non-linear least squares fitting) may vary
among them, but the trend is always (encouragingly)
negative.
Moreover, at a glance graphs in Figure 7 show similar

trends between pair wise task-completion and grasp-
object times. This is confirmed by the Wilcoxon signed-
Figure 7 Object-grasp and task-completion time trends throughout d
completion (Tc) times for power, precision and lateral grasps throughout tr
set 1 and 2, day 2: set 1 and 2, day 3: set 1 and 2). Each dataset is fitted wi
improvement in performance.
rank test [37] (taking care of subtracting the mean value
from each distribution) in 11 subjects out of 12, demon-
strating that the transport and release phases of the task
did not significantly influence the overall subject’s
performance.
It should also be noted that the long times required to

perform a grasp (Tg up to 20 s and over) should be
related to the hand speed, which was very low (see the
“Concluding remarks”). The minimum time required to
perform stable grasps (in the three prehensile forms)
was measured, resulting in 4.2 s for power grasps and
3.2 s for lateral and precision grasps. Therefore, as
depicted in Figure 6 and Figure 7, day 3 results were
considerably near to the best achievable ones.

Discussion
The objective of this study was to demonstrate the feasi-
bility of the PCA-based control algorithm, previously
presented by the authors in [21], in more realistic condi-
tions, i.e. controlling in real-time the prosthetic hand
emulator with actual myoelectric signals.
Experimental trials demonstrated that the myoelectric

controller worked properly and that the PCA-based
ays for each subjects in G2. (A) Object-grasp (Tg) and (B) task-
ials. Data are sorted following their temporal execution order (day 1:
th a decreasing exponential function (black curve) demonstrating the
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approach allowed to drive—in the correct prehensile
pattern—a multi-fingered, multi-DoF hand with just two
differential EMG channels, i.e., with a clinically viable
system. Since the approach aims to improve the usability
of the prosthesis, the physical features of the grasp (e.g.
form closure, force closure, grasp stability, etc.) were not
considered as a measurement of performance, but rather
we preferred to investigate usability-related metrics.
Indeed, these can portray more interesting insights on
the ability of the final users to learn how to control the
artificial hand through the present system. Several con-
siderations can thus be made on the performance
achieved by each group.

G1 results: initial training ensures good performance
CR
For subjects belonging to G1 who operated the hand in
a single experimental session, after the 20 min practice,
task-completion rates for power and lateral grasps were
similar, also statistically (Friedman test: power p = 0.58,
lateral p = 0.37), to those obtained by G2 on the three
days and, importantly, considerably high (cf. Figure 5).
The CR in precision grasps was also high. These results
underline the importance played by the 20 min training
and instructions given, effectively sufficient for gaining
significant confidence with the system and for achieving
excellent performance (CR = 89% on the average).

Tg and Tc
With regard to time metrics, results for group G1 are
closer to those obtained by G2 on the first day, rather
than those on the second or third day (cf. Figure 6). As
described below, this is probably due to the fact that
improvements in time metrics are visible only after sev-
eral trials.

G2 results: performance improves with time
Observing results achieved by group G2, which under-
went a three days experimental session, it is possible to
highlight issues on the subjects’ performance evolution.

CR
Generally, the CR increased along with days (cf.
Figure 5). However, improvements were statistically
significant only for precision grasps (p = 0.015), as these
are (in general and especially in the beginning, with no
particular instructions on how to perform them) the
most difficult ones, due both to the mechanical features
of the hand and to the shape of the grasped object (often
spherical) [21]. Therefore, performance improvements
were particularly pronounced (i.e. the height of precision
grasp bars in Figure 5 significantly increase), underlying
that subjects learned how to finely operate the hand
thanks to practice.
For power and lateral grasps, which are instead sim-
pler, a high performance was already achieved on day 1,
and thus CR displayed just a slight increase (not statisti-
cally significant).

Tg and Tc
Concerning time analyses, results revealed a very high
dispersion; this was mainly due to inter-subject variabil-
ity and would decrease if considering the six subjects
separately (Figure 7). Subjective time trends, together
with average task completion rates, demonstrate that
those subjects who underwent a three days experimental
session soon learned how to functionally control the
artificial hand, improving their performance.
Tg (and Tc) values significantly decreased throughout

days for power and lateral grasps but not for precision
grasps, which anyhow (importantly) did not increase. In
this last case, their persistent high variability was prob-
ably affected by the intrinsic complexity and effort
required to control the hand in such posture.

Precision grasps accuracy
The time-improving grasp accuracy for precision
grasps was clearly visible for the operator who super-
vised the experiments: on the first day, almost all sub-
jects exploited the inherent dexterity of the PCA-
controller, trying to perform grasps with the minimum
effort. They mostly used only one DoF (i.e., the one
mainly controlling fingers flexion/extension) which was
good enough to grasp all objects, even if approxi-
mately. On day 2 and 3 instead, they controlled the
hand more accurately.
This can be demonstrated by Figure 8, which repre-

sents in the Ch1,Ch2 plane (the two signals that modu-
late the two principal components) the values reached
when stable precision grasps were achieved. Circles refer
to day 1 (naïve subjects), whereas triangles refer to day 2
and 3 (when subjects were supposed to be trained). It is
immediate to observe that the majority of day 1 samples
are distributed along the bottom horizontal axis (where
Ch2=max(Ch2)), that corresponds to a rough powerful
adduction of the wrist. On day 2 and 3 the control be-
came finer: this is denoted by the increased concentra-
tion of points spread over the Ch1,Ch2 plane, meaning
that subjects paid more attention in operating the sys-
tem (not just making Ch2 saturate, as on day 1). Never-
theless, importantly, the improvement in accuracy and
completion rate was not paid in terms of increased
object-grasp time (Figure 6a).

Concluding remarks
Some final remarks on the setup should be provided.
The relatively low speed of the hand is a parameter that
certainly affected experimental outcomes. For this



Figure 8 Control signal values corresponding to the reaching of stable precision grasps. Precision grasp points distribution over the Ch1,
Ch2 plane for all subjects in G2. Circles denote grasps on the first day, triangles correspond to grasps on day 2 and day 3.
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reason, in fact, the measured time values are definitely
long (cf. Figure 6, where Tg are up to 20 s); however,
what is interesting and worth publishing are the differ-
ences in times and trends throughout days and not
absolute values. It should be noted that the minimum
time required to perform stable grasps (in the three pre-
hensile forms) was measured and resulted in 4.2 s for
power grasps and 3.2 s for lateral and precision grasps.
Therefore, as depicted in Figure 6 and Figure 7, day 3
results were considerably near to the best achievable
ones. It is still not clear whether a faster hand would
improve or worsen performance, as a more reactive sys-
tem may be less controllable, especially during accurate
movements. Further researches dealing with these
aspects and employing a faster hardware are therefore
foreseen.
The present ones are the first experiments and the

viability of such system, which is mostly indicated for
transradial amputees, would be in the end demonstrated
by amputated subjects performing real activities of daily
living. Nevertheless, it is reasonable to suppose that EMG
performance in controlling a hand prosthesis—especially
using four electrodes—would not significantly change
with amputees using a traditional myoelectric hand (as
shown in [13] and [14]). In particular, if the amputation
level ranges from wrist disarticulation to transradial in the
lower third, we can assume that results would not be
significantly different, as the muscles targeted in this study
would be preserved. If the amputation instead is more
proximal, e.g. short below the elbow, four independent
EMG sites should be found and their positioning should
be assessed in each different case. Even with a transhum-
eral amputation the present system could still be imple-
mented, but in this case the setup should be changed
(e.g. placing electrodes sites on the shoulder and breast
muscles) and results would probably be different.

Conclusions
In this work, we demonstrate for the first time that a
PCA-based controller can be successfully combined with
a two DoFs (4 electrodes) EMG acquisition system and
easily used by able-bodied participants to control in
real-time the prehension of a five-fingered six-motorized
artificial hand. The experimental results of the trials
described in this paper demonstrate that this bio-
inspired myoelectric interface and control system has
the great potential to become a usable means for ampu-
tees by achieving both ease of use and dexterous func-
tionality, and by allowing them at last to manage their
hand prosthesis in a more intuitive and natural way.

Appendix A
Myoelectric joystick
The myoelectric joystick was implemented as follows.
Signals generated by the antagonist extensor and flexor
carpi radialis (s1,1 and s1,2, wrist extension/flexion) were
combined to obtain the first DoF (Ch1 signal) of the
control input; signals from the flexor carpi ulnaris and
the extensor pollicis longus (s2,1 and s2,2, wrist adduction/
abduction) were used to obtain the second DoF (Ch2 sig-
nal) (cf. Figure 3). Signals were sampled at 1 kHz, and
integrated over 20 ms non-overlapping windows:

Si;j kð Þ ¼
XNkþN�1

t¼Nk

si;j tð Þ i ¼ 1; 2; j ¼ 1; 2 ð1Þ

where t represents sampled time (t= 0,. . .,tn, being tn the
time of acquisition end), N is the number of samples
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included in 20 ms (i.e. 20, if sampling at 1 kHz) and k is
an integer index:

k ¼ 0; 1; 2; . . . ; floor
tn þ 1
N

� �
� 1 ð2Þ

(floor stands for “round to the nearest lower integer
value”). Index i is used to denote the muscles pair (i.e.,
FCR and ECR or EPL and FCU), while j refers to the
muscles inside the pair.
Two combined signals Sxi(k) (one for each muscles

pair) were then computed by multiplying the maximum
between the integrated signals of each two antagonist
muscles (Si,j(k)) by an empirical corrective factor Fi,k:

Sxi kð Þ ¼ Fi;k � max
j

Si;j kð Þ� � � sign Si;1 kð Þ � Si;2 kð Þ� �
;

ð3Þ
with k varying as in (2).
Finally, signals Ch1 and Ch2 (i.e. the outputs of the

EMG processing module) were computed by simple in-
tegration (accumulation):

Chi kð Þ ¼ Sxi k � 1ð Þ þ Sxi kð Þ: ð4Þ
The empirical corrective factors Fi,k depended on the

four EMG signals as follows:

Fi;k ¼ 0 if Si;1 kð Þ < Ti;1
� �

∧ Si;2 kð Þ < Ti;2
� �

f F1;k ¼ 1
F2;k ¼ 0:8

if M kð Þ 2 S1;1 kð Þ; S1;2 kð Þ� �� �
∧ M kð Þ > 1:5 � S2;j kð Þ� �

f F1;k ¼ 0:6
F2;k ¼ 1 if M kð Þ 2 S2;1 kð Þ; S2;2 kð Þ� �� �

∧ M kð Þ > 1:5 � S1;j kð Þ� �
Fi;k ¼ 1 otherwise

ð5Þ
where j = 1,2; Ti,1 and Ti,2 were threshold values (experi-
mentally assessed), below which signals were considered
as noise and, each time, M(k) was the maximum value
among the four signals Si,j(k).
In practice, every 20 ms the highest integral value

among the four (e.g. S1,1(k)) was compared with the ones
generated by the other pair of muscles (in this example,
S2,1(k) and S2,2(k)) and if it was sufficiently greater (i.e.
S1,1(k)> 1.5�S2,1(k) and S1,1(k)> 1.5�S2,2(k)), then the cor-
rective factor for the “losing” pair of muscles was set to a
number between 0 and 1 (i.e. 0.8 or 0.6 vice-versa). The
corrective factor for the “winning” pair was always set to
1, in order to totally reflect the maximum muscular con-
traction into a variation of the corresponding Chi signal;
whereas, if muscular activity was below the thresholds (i.
e., considered as noise), it was set to zero.
The two signals (DoFs) Ch1 and Ch2 were finally fed

into the “inverse PCA” algorithm (presented in [21] and
briefly resumed below) to compute the six end-point
position values for the control of the CyberHand.
As regards the empirical factors used, the need to
introduce them emerged in preliminary investigations,
while plotting the two channels Ch1 and Ch2 on the x, y
axes of the monitor screen, i.e. converting them into co-
ordinate values of a 2D cursor. During these first trials,
the obtained cursor movements were not fluent; in par-
ticular subjects had difficulties in moving the cursor
along oblique paths, since the contributions of the two
muscles pairs to the two signals were not well balanced
(each time the “winning pair” too strongly prevailed on
the other pair). Thus, different Fi,k values were used to
correct them, trying to enhance each time the action of
the winning muscles pair and to lower the other one’s,
but without completely cancelling it. Moreover, signals
generated by flexor and extensor carpi radialis were
found to be significantly higher than those produced by
the other pair [38]; this is why, when the wrist adduc-
tion/abduction (usually weakly) prevailed, an even lower
corrective factor (e.g. 0.6) was required to attenuate
those strong muscles contribution.
Hence, the corrective factors finally chosen permitted:

first, to compute a 2-DoFs, continuous (50 Hz rate), and
independent (synchronous and not exclusive) output (as
both channels, if above thresholds, were always com-
puted); second, to match the cross-effects of different
pairs of muscles (by setting different corrections to the
losing pair, i.e. 0.6 or 0.8).
Being the corrective factors subject-dependent, they

had to be properly calibrated for each user; in this study
however, the values reported above demonstrated to be
a good trade-off for all subjects involved. If electrodes
were placed on other muscles (which might behave dif-
ferently and have different strengths) these values should
be properly re-tuned. Noise thresholds Ti,j (one for each
recorded signal) also required subjective tuning and
were calculated in this work during the calibration pro-
cedure preceding each experimental session, as a frac-
tion (1/4, found empirically) of the maximum value of
the recorded EMG signal.

PCA-based controller and hand-posture workspace
Being inspired by the work of Santello et al. [20], in our
previous paper [21] we presented a PCA-based control-
ler able to control some level of dexterity in multi-DoF
hands by means of just a 2-DoF control input.
The PCA algorithm [39] is briefly described hereafter.

Having a dataset matrix of hand postures (where each
datum consists of N position values), the eigenvectors of
its covariance matrix (NxN) are the PCs and the related
eigenvalues are the PCs weights, which represent the
amount of data variance the PCs can explain. By multi-
plying the dataset matrix by the PCs matrix (whose col-
umns are the PCs vectors ordered in descending order
according to their weights) a new dataset is obtained,
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where variables are uncorrelated. PCA can also be used
for dimensionality reduction, since, if the last PCs have a
low weight, they can be neglected, and each datum in
the new set will be represented by a reduced number of
variables.
In the specific case of the CyberHand, the analysis of

postural data directly collected from the hand six pos-
ition sensors (meaning that the original data dimension
is N=6), while performing a multitude of grasps with dif-
ferent objects, demonstrated that the first two PCs can
account for almost 90% of these data variance. Thus,
inverting the PCA algorithm and neglecting the low-
weight PCs, these 2 PCs can be used to transform a 2D
input (Ch1, Ch2) into its 6D original counterpart
(Out1,. . .Out6), which consists of six position values for
the hand fingers:

PC1
!

PC2
!

. . . PC6
!

2
4

3
5 �

Ch1
Ch2
0
. . .
0

2
66664

3
77775

¼

PC1;1 � Ch1 þ PC2;1 � Ch2
PC1;2 � Ch1 þ PC2;2 � Ch2
PC1;3 � Ch1 þ PC2;3 � Ch2

. . .
PC1;6 � Ch1 þ PC2;6 � Ch2

2
66664

3
77775 ¼

Out1
Out2
Out3
. . .
Out6

2
66664

3
77775 ð6Þ

where PCi,j is the j-th dimension of the i-th principal
component (column) vector PCi.
In practice, the calculated PCs matrix, allows to trans-

form two independent inputs Ch1 and Ch2 (e.g. the
mouse coordinates on a PC screen) to a defined work-
space of hand postures (cf. Figure 4).
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