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Abstract

Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death
pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its anti-
oxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is
increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events
modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH
depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death
independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux
during cell death progression and the redox signaling events by which GSH depletion regulates the activation of
the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a
central mechanism mediating redox signaling during cell death progression. Future studies should be directed
toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and
addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713.

Introduction

Cell death is generally classified by biochemical and
morphological criteria. Accordingly, three distinct types

of pathways can be defined which are apoptosis, necrosis, and
autophagy, although there are numerous examples where cell
death displays mixed features (84, 135). Apoptosis or pro-
grammed cell death is a ubiquitous homeostatic mechanism
involved in many biological processes. Apoptotic cell death is
critical not only in the turnover of cells in tissues but also
during normal development and senescence. However, the
deregulation of apoptosis also occurs as either a cause or a
consequence of distinct pathologies including cancer, auto-
immune and neurodegenerative disorders (64). Apoptosis is a
highly organized program characterized by the progressive
activation of selective signaling pathways conveying specific
biochemical and morphological alterations. The initiator
phase of apoptosis is characterized by initiator caspase
(cysteine-dependent aspartate-directed protease) activation,
cell shrinkage, loss of plasma membrane lipid asymmetry,
and chromatin condensation, while the execution phase
of apoptosis is characterized by activation of executioner
caspases and endonucleases, apoptotic body formation, and
ultimately cellular fragmentation (83).

Necrotic cell death is characterized by a gain in cell volume,
swelling of organelles, plasma membrane rupture, and sub-
sequent release of intracellular components. Although ini-

tially described as an accidental type of cell death, it is now
proposed that the execution of necrotic cell death can also be
finely regulated by specific signal transduction pathways
and catabolic processes (necroptosis). Necrosis has been re-
ported to occur in inflammatory and neurodegenerative dis-
orders, heart disease, neuronal ischemia and toxicity,
muscular dystrophy, diabetes, infections, and in apoptotic
cells that fail to be engulfed by phagocytic cells (secondary
necrosis) (135, 170).

Autophagy is a major catabolic pathway by which eu-
karyotic cells degrade and recycle macromolecules and or-
ganelles. It has an essential role in differentiation,
development, and cellular response to stress. Autophagy is
initiated by the selective or nonselective engulfment of cyto-
plasmic constituents by a phagophore, which forms a closed
double-membrane structure, the autophagosome. The auto-
phagosome subsequently fuses with a lysosome to become an
autolysosome whose content is degraded by acidic lysosomal
hydrolases (105). Autophagy is a homeostatic mechanism
involved in both survival and cell death. Autophagic cell
death is morphologically defined by massive autophagic va-
cuolization of the cytoplasm in the absence of chromatin
condensation. Although autophagy deregulation has been
associated with distinct pathologies, it is primarily regarded
as a pro-survival mechanism and there are only a limited
number of cases where increased autophagy has been estab-
lished as the cause of cell death (55, 136, 218).
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Redox signaling events are important regulators of cell
death pathways (40, 115, 181, 209). Although oxidative stress
and ROS/RNS formation have long been thought to be ma-
jor players regulating cell death, other redox-dependent sig-
naling mechanisms have been identified as key players in the
activation of the cell death machinery. GSH depletion is an
early hallmark in the progression of distinct cell death
mechanisms (36, 74, 107, 234). We and others have extensively
reviewed the mechanisms by which alterations in GSH ho-
meostasis regulate the activation of the cell death machinery
(39, 74, 77, 130). Other excellent reviews address the role of
compartmentalized GSH pools (mitochondria and endoplas-
mic reticulum) (6, 166), specific GSH-dependent antioxidant
systems (119, 159), and GSH-based protein modifications in
cell death (2, 50). Furthermore, several review manuscripts
address the role of GSH in regulating cell death pathways in
distinct pathologies (14, 71, 77) such as neurodegenerative
disorders (167), cancer (63), hepatotoxicity (252), autoimmu-
nity (196), and pulmonary diseases (22). This review article
aims at highlighting the role of plasma membrane GSH efflux
in GSH depletion during apoptosis and the mechanisms by
which GSH depletion, by its extrusion, might contribute to
alterations in the cellular redox balance and cell death pro-
gression. Furthermore, this works aims at summarizing the
current evidence regarding the molecular identity of plasma
membrane GSH transporters.

Overview of GSH Homeostasis

GSH (L-c-glutamyl-L-cysteinyl-glycine) (Fig. 1) is the most
abundant nonprotein thiol in mammalian cells acting as a
major reducing agent and antioxidant defense by maintaining
a tight control of the redox status. The peptidic c-linkage be-
tween glutamate and cysteine protects GSH from hydrolysis
by intracellular peptidases. The presence of the C-terminal

glycine protects GSH against cleavage by intracellular c-
glutamylcyclotransferases. The cysteinyl moiety of GSH pro-
vides the reactive thiol group (-SH group) that mediates GSH
biological functions, including oxidation-reduction (redox)
and nucleophilic addition-type reactions (Fig. 1). GSH is also
involved in the metabolism of xenobiotics, thiol disulfide ex-
change reactions, and acts as an important reservoir of cysteine.
GSH synthesis is initiated by generation of c-glutamylcysteine
from glutamate and cysteine via the glutamate-cysteine ligase
(GCL), and the subsequent addition of glycine by the activity of
GSH synthetase (GS) (172, 219).

Changes in the intracellular thiol-disulfide (GSH/GSSG)
balance are considered major determinants in the redox
status/signaling of the cell (123, 212). Almost all physiological
oxidants react with thiols, and GSH has the ability to directly
scavenge ROS/RNS. A large variety of unique GSH oxidation
species can be generated on ROS/RNS formation, and their
chemical profile depends on the magnitude and identity of the
ROS/RNS generated. Similar to protein thiols (cysteines),
GSH can be subject to one-electron oxidation by ROS such as
superoxide anion (O2� - ), which mediates derivatives with an
unpaired electron, including the thiyl radical (glutathionyl
radical [GS�]) and the thiyl peroxyl radical (GSOO�). Two-
electron oxidation of GSH by ROS/RNS such as hydrogen
peroxide (H2O2) and peroxynitrite (ONOO - ) mediates the
formation of other distinct oxidized states of GSH, which in-
clude the homo-disulfide glutathione disulfide (GSSG), glu-
tathione sulfenic (GSOH), sulfinic (GSO2H) and sulfonic acids
(GSO3H), glutathione disulfide S-oxide (GS(O)SG), glutathi-
one disulfide S-dioxide (GS(O)2SG), glutathione thiosul-
fenamide (GSNHSG), glutathione N-hydroxysulfenamide
(GSNHOH), and S-nitrosoglutathione (GSNO) (200, 246).
Except for GSNO and GSSG, the physiological relevance of
other oxidized GSH derivatives has not been studied in detail
primarily due to the lack of accessible and selective techniques
to quantify them, and their high instability/reactivity (116,
222, 230).

GSH Depletion During Cell Death: Where Does It Go?

GSH is essential for cell survival as demonstrated by the
observations that the GCL knockout mice die from massive
apoptotic cell death (51), and that the knockdown of GCL in
distinct cell types induces time-dependent apoptosis (58, 238).
However, GSH itself is not required for survival, only the
reducing equivalents provided by its reducing power (238).
GSH depletion is a hallmark of the progression of cell death.
More importantly, GSH depletion has been clearly shown to
occur in apoptosis before the rupture of plasma membrane
integrity (secondary necrosis) or cellular fragmentation, sug-
gesting an active mechanism involved in its depletion (73).
Distinct mechanisms have been reported to contribute to GSH
depletion during cell death progression as summarized next
(Table 1 and Fig. 2).

GSH depletion during cell death progression has been
largely ascribed to its oxidation in response to ROS/RNS
formation. Indeed, during the apoptosis induced by cytotoxic
agents, which by themselves induce oxidative stress such as
pro-oxidants, xenobiotics, mitochondrial toxins, chemother-
apeutics, and metals, GSH depletion is mediated by its oxi-
dation to GSSG by ROS/RNS (61, 104, 169, 199, 237) (Table 1
and Fig. 2). Glutathione reductase (GR) reduces GSSG back to

FIG. 1. GSH (L-c-glutamyl-L-cysteinyl-glycine) is a linear
tripeptide (M.W. 307.4 g mol21) formed from the amino
acids glycine, cysteine, and glutamate. In solution, GSH
possess a net negative charge of - 1 at physiological pH,
where the l-glutamic acid predominantly exists in its zwit-
terionic form, while the carboxyl group of the glycine frag-
ment prefers to be deprotonated. GSH, glutathione.
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Table 1. Potential Mechanisms Involved in Glutathione Depletion During Cell Death

Mechanisms/
transporters Characteristics References

Impaired de novo
synthesis

Inactivation of GCL. Caspase-dependent cleavage. (78, 79)
Impaired cysteine

uptake by EAAC1
Reduced EAAC1 translocation to the

membrane and increased levels of oxidized
EAAC1 in response to oxidative stress.

(5)

Oxidation and
adduct
formation

Scavenging of ROS
by GPx.

Induced by a wide variety of pro-oxidant
conditions. Accumulation of GSSG can
either be reduced by the GR/NADPH
system, or extruded through MRP
transporters.

(41, 61, 62, 5, 88, 104,
151, 169, 177, 182,
188, 199, 255)

Inactivation of G6PD and depletion of
NADPH impair GSSG recycling

Incorporation into
PSSG residues

Can be mediated by formation of mixed
disulfides between:

(16, 19, 82, 122, 176, 179,
223)

� Protein cysteines (SH) and GSSG
� PSOH and GSH
� Grx-catalyzed reaction of protein

cysteines with GSSG or GS�
� De-nitros(yl)ation of PSNO residues by

GSH, or GSNO-mediated PSSG formation.
Formation of GSNO Can be induced by: (30, 120, 124, 131, 215,

226)� Reaction of GS� with NO�
� Reaction of GSH with NO2 or N2O3

� Cyt C mediated GSNO formation from
NO� and GSH by acting as an electron
acceptor.
� Metal ions and metalloproteins

GSH-electrophile
adduct formation

Can be catalyzed by GSTs. Accumulation of
adducts that are extruded through MRP
transporters.

(23, 24, 43, 237, 244, 249)

Plasma
membrane
efflux transport

MRP1 Part of the ABCC subfamily of transporters.
The MRP transporters act as ATP-
dependent transporters. MRP1 is known to
mediate:

(21, 41, 43, 62, 67, 99,
106, 109, 110, 129,
139, 151, 177, 182,
188, 221)

� Co-transport of OA - and GSH.
� Transport of GSH-conjugated

xenobiotics and metabolites
� GSH efflux stimulated by xenobiotics

(verapamil, apigenin)
� GSSG efflux

Other MRPs:
MRP2, MRP4, and
MRP5

Although these MRPs have the ability to
transport GSH, GSSG, or GSH adducts,
their role in GSH depletion during
apoptosis has not been determined.

(13, 206)

CFTR Belongs to the same family as MRPs, but acts
as an ATP-gated chloride channel.

(94, 125, 138)

ABGC2 An ABC transporter, second member of the
subfamily G (BCRP/ABCG2). ABCG2 and
Cdrp1 (Candida albicans homologous
protein) have been recently reported to
mediate GSH transport.

(28, 256)

OATP-like OATPs have been proposed to mediate GSH
efflux by a GSH/OA - exchange, where
GSH efflux is driven by its electrochemical
gradient across the plasma membrane and
is trans-stimulated by the presence of a
wide variety of structurally unrelated
OA - . Pharmacolocial evidence suggests
that GSH-depletion during apoptosis
might be mediated by an OATP-like
transport mechanism. However, recent
evidence suggests that OATPs do not
mediate GSH/OA - exchange.

(12, 29, 73, 76, 97, 152,
153, 160)

(continued)
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Table 1. (Continued)

Mechanisms/
transporters Characteristics References

Connexins Unopposed gap junction hemichannels
regulated by Ca2 + and voltage. Primarily
reported to mediate GSH efflux in excitable
cells.

(204, 224, 225)

GLAST Induced by glutamate in retinal cell cultures. (87)
OAT3 In renal cells, but no association with cell

death progression has been reported.
(144)

RLIP76 Proposed as an ATP-dependent multispecific
transporter of GSH conjugates.

(10)

VRAC/VSOAC Cell swelling induces GSH depletion, and
GSH depletion has also been shown to
parallel apoptotic volume decrease.

(75, 148)

Secretory
pathway

Secretory granules Thought to mediate GSSG transport from the
ER.

(6, 112)

ABC, ATP-binding cassette; ABCC, ATP-binding cassette (ABC) transporter, subfamily C; CFTR, cystic fibrosis transmembrane
conductance regulator; Cyt C, cytochrome C; G6PD, glucose-6-phosphate dehydrogenase; GCL, glutamate-cysteine ligase; GLAST,
glutamate/aspartate transporter; GPx, glutathione peroxidase; GR, glutathione reductase; Grx, glutaredoxin; GS�, glutathionyl radical; GSH,
glutathione; GSNO, S-nitrosoglutathione; GST, glutathione-S-transferases; MRP, multidrug resistance protein; N2O3, dinitrogen trioxide;
NADPH, nicotinamide adenine dinucleotide phosphate; NO�, nitric oxide; NO2, nitrogen dioxide; OA - , organic anion; OATP, organic anion
transporting polypeptides; PSSG, protein glutathionylated; PSOH, protein sulfenic acid; PSNO, protein nitros(yl)ation; RLIP76 (RALBP1),
Ral-binding, Rho/Rac-GAP and Ral effector; ER, endoplasmic reticulum; VRAC/VSOAC, volume-regulated/volume-sensitive organic
osmolyte-anion channels..

FIG. 2. Fates of GSH during cell death progression. GSH depletion during cell death can occur by distinct mechanisms. (1)
Upon oxidative stress, GSH is used for the scavenging of peroxides by GPxs, which generate GSSG as a byproduct. GSSG can
be reduced back to GSH by the GR/NADPH system. (2) GSH loss also occurs via its extrusion across the plasma membrane by
the activation of GSH transporters or pumps (GSH-T). (3) GSH-Ts also mediate GSSG efflux and transport of GSH-conjugates
(GS-XN) generated by xenobiotics in order to avoid deleterious effects of the accumulation of these toxins. (4) GSH depletion
might also be associated with the impairment of GSH de novo synthesis as demonstrated by the impairment of the cysteine
uptake transporters (EAAC1 in neurons) and the degradation of GCL by caspases. (5) Alterations in GSH/GSSG balance during
apoptosis have been correlated with alterations in PSSG levels. In addition, other oxidative forms of GSH such as GSNO might
also be formed by the direct interaction of GSH with distinct ROS/RNS. GCL, glutamate-cysteine ligase; GR, glutathione
reductase; GSH, glutathione; GSSG, glutathione disulfide; GSNO, S-nitrosoglutathione; NADPH, nicotinamide adenine dinu-
cleotide phosphate; PSSG, protein glutathionylated; ROS/RNS, reactive nitrogen species/reactive oxygen species.

GSH TRANSPORT, REDOX SIGNALING, AND CELL DEATH 1697



GSH using reduced nicotinamide adenine dinucleotide
phosphate (NADPH) as the electron donor reductant, and
glucose-6-phosphate dehydrogenase (G6PD) is indispensable
for the regeneration of NADPH from NADP + (Table 1 and
Fig. 2). The depletion/oxidation of NADPH and the inacti-
vation of G6PD occur during apoptotic cell death, which
might impair GSH recycling and contribute to GSH depletion
(54, 85, 88, 198, 255). Besides G6PD, other NADP + -dependent
dehydrogenases can also regenerate NADPH in the cytoplasm,
including the 6-phosphogluconate dehydrogenase, the cyto-
solic NADP + -dependent isocitrate dehydrogenase (IDPc), and
the cytosolic NADP+ -dependent malic enzyme. Knockdown of
IDPc increases GSSG levels and augments the sensitivity of
cells to cell death induced by oxidative stress (149).

Previous findings have shown that GCL is a direct target of
caspase 3 (78, 79), which during apoptosis should not only
prevent GSH replenishment but also contribute to GSH de-
pletion, as GSH’s half-life has been estimated to be between 2
and 5 h (18, 113, 207). Furthermore, the impairment of cysteine
uptake during cell death induced by parkinsonian neurotox-
ins has also been suggested as contributing to GSH depletion
(5) (Table 1 and Fig. 2).

Protein (S-)glutathionylation (PSSG, also known as [S-]
glutathiolation) refers to the formation of a protein-mixed
disulfide between the thiol group of GSH and a cysteine
moiety of a protein. During cell death, increased PSSG has
also been reported, which might also contribute to GSH de-
pletion (1, 38, 57, 137, 201) (Table 1 and Fig. 2). GSH can also
form other GSH derivatives on reaction with distinct ROS/
RNS (Fig. 2). GSNO regulates apoptosis (72, 155, 174, 228),
and a recent report suggests that released cytochrome C (Cyt
C) during apoptosis has the ability to catalyze GSNO forma-
tion (17). GSNO is metabolized via the GSH-dependent
formaldehyde dehydrogenase class III alcohol dehydroge-
nase, also known as GSNO reductase (GSNOR) (20). In thy-
mus, GSNOR deficiency increases apoptosis, reducing the
number of CD4 single-positive thymocytes (250).

GSH efflux also participates as a major contributor in the
alterations of the cellular redox balance associated with cell
death (Table 1 and Fig. 2). In addition, the formation of GSH-
adducts by xenobiotics and electrophiles, and their subse-
quent extrusion by specific plasma membrane transporters,
has also been reported to contribute to GSH depletion during
apoptosis (23, 171, 185, 205, 244, 247) (Table 1 and Fig. 2). It is
important to mention that multiple mechanisms are likely to
participate in GSH loss during apoptosis (56, 61, 67). In the
next section, we will review the mechanisms involved in GSH
efflux during apoptosis.

Transport Mechanisms Involved in Plasma Membrane
GSH Efflux During Cell Death

GSH is a ubiquitous tripeptide produced intracellularly
that is not only 85%–90% freely distributed in the cytosol, but
can also be found compartmentalized in mitochondria, per-
oxisomes, nuclear matrix, and endoplasmic reticulum (ER)
(Table 1 and Fig. 3). Specific transport mechanisms have been
evolved to maintain compartmentalized GSH/GSSG ho-
meostasis. The concentration of mitochondrial GSH is similar
to that of cytosol (10–14 mM). GSH can cross easily the outer
mitochondrial membrane (OMM) through porin channels. A
significant pool of GSH is compartmentalized in the mito-

chondria matrix by dicarboxylate carrier or 2-oxoglutarate
transporters (OGC) [reviewed in this Forum and in Refs.
(143, 166)] (Fig. 3). In contrast to mitochondria and cytosolic
compartments, where GSH is predominantly found in its re-
duced form, in the ER, GSH exits mainly as GSSG acting as a
source of oxidizing equivalents favoring disulfide bond for-
mation for the proper folding of nascent proteins. Protein-
dependent facilitated diffusion in the ER membrane is
thought to mediate GSH permeation (Table 1 and Fig. 3). The
ER is the initiating organelle of the secretory pathway, where
secretory and membrane proteins are synthesized. In the cy-
tosol, GSSG can be recycled back to GSH by GR or effluxed by
specific transporters (discussed next). Since mitochondria lack
a GSSG efflux mechanism, they rely on GR to counteract the
pro-oxidant effects of GSSG. In contrast, the fate of the GSSG
in the ER is unclear; it could be reduced within the ER by GR,
transported to the cytosol for its reduction, or it could be se-
creted via the secretory pathway (6). Indeed, high levels of
GSH have been found in secretory granules (112). GSSG ex-
trusion through the secretory pathway can decrease GSH
levels in the cell. However, if extracellular GSH is subject to
recycle via the c-glutamyl transpeptidase, its extrusion can
promote cysteine recycling and de novo GSH synthesis. In this
review, we focus only on the plasma membrane efflux
mechanisms for GSH and GSSG and their role in cell death
progression.

Apoptosis induced by distinct stimuli, particularly death
receptors, has been reported to promote GSH depletion via the
activation of a plasma membrane efflux transport (41, 67, 73,
90, 98, 106, 190, 220, 239). Inhibition of GSH depletion under
these conditions rescues cells from apoptosis (73, 90, 96, 99).
However, controversy still exists regarding the transport
mechanism(s) involved in GSH depletion. A variety of protein
transporters have been reported to act as GSH transporters
(Table 1 and Fig. 4). Most studies to date have suggested that
multidrug resistance proteins (MRPs) act as GSH efflux
transporters during apoptosis (21, 67, 99, 106, 139). The hu-
man ATP-binding cassette (ABC) transporter, subfamily C
(ABCC) subfamily of transporters contains 13 members from
the ABC superfamily with sizes from 1325 to 1545 amino
acids. The ABCC subfamily includes the cystic fibrosis
transmembrane conductance regulator (CFTR, ABCC7), two
sulfonylurea receptors SUR1 (ABCC8) and SUR2A/B
(ABCC9), and nine MRPs. ABCC proteins are energy-
dependent transporters, except for the CFTR that acts as a
channel gated by ATP binding and hydrolysis, and SURs,
which act as ATP-dependent potassium channel regulators.
The MRP transporters have been demonstrated to act as co-
transporters of organic anions (OA - ) and GSH (12, 43). In
addition, they also transport GSH-conjugated xenobiotics
(GS-XN) and GSH-conjugated metabolites that must be ex-
ported to avoid deleterious effects. This efflux confers drug
resistance to tumor cells and can protect normal cells from
toxic insults. MRP1 functions as a GSH-conjugate transporter
not only at the plasma membrane but also in intracellular
secretory vesicles (240). The transport of organic anions, in-
cluding drugs and conjugated OA - , by MRP, requires the
hydrolysis of ATP (12, 43) (Table 1 and Fig. 4). Experimental
conformation analysis has demonstrated that in solution,
GSH is found as a mixture of different protonation states. Due
to the presence of the two carboxylic acid groups, the thiol
group, and the amino group, 16 different charged species of
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GSH with net charges ranging from + 1 to - 3 are found in
solution. However, GSH has been found to possess a net
negative charge of - 1 at physiological pH (Fig. 1). Within
GSH, the l-glutamic acid predominantly exists in its zwitter-
ionic form, while the carboxyl group of the glycine fragment
prefers to be deprotonated, and the cysteine moiety is in the
neutral thiol form (142). Co-transport of two anions is an
unusual mechanism. Thus, GSH transport by MRP1 transport
might only target the GSH pool in a neutral or cationic state,
which would explain the low affinity of MRP1 for GSH (see
next). This pool could be slightly increased by acidification of
the intracellular milieu during apoptosis (140). To date, there
is no experimental evidence demonstrating that the co-
transport of GSH and OA - molecules by MRP requires GSH
to be in its anionic form. MRP1 can transport GSH alone, but
this requires its stimulation by specific xenobiotics, for exam-
ple, phenylalkylamines such as verapamil or bioflavonoids
such as apigenin (43). Alterations in GSH levels reciprocally
regulate MRP levels as shown by a recent report demonstrat-
ing that sustained GSH depletion prompts ubiquitin/proteo-
somal degradation of MRP2 (217).

Pharmacological activation of MRPs induces apoptosis
by GSH depletion (139, 197, 232, 235). However, contradic-
tory results have been reported regarding the role of MRP1 in
GSH efflux during apoptosis. We previously demonstrated
that pharmacological inhibition of MRP1 with MK571 (10–
50 lM) and probenecid (250–1000 lM) stimulated rather than

FIG. 3. Compartmentalization of the GSH/GSSG redox couple. GSH is produced intracellularly and is found 70%–90%
freely distributed in the cytosol, but also compartmentalized in mitochondria, nuclear matrix, and ER. Specific transport
mechanisms maintain compartmentalized GSH/GSSG homeostasis. GSH diffuses through MOM via porin channels (not
depicted here), and translocates through the IMM via DIC or OGC exchangers. In the nucleus, GSH is considered to diffuse
freely through the nuclear pore. Protein-dependent facilitated diffusion is thought to mediate GSH permeation in the ER, but
the molecular identify of the mechanism(s) involved remains unknown. Within the ER, GSH exits largely as GSSG due to its
oxidation. It has been proposed that GSSG could be secreted via the secretory pathway for its recycle. A variety of protein
transporters have been reported to act as plasma membrane GSH transporters (GSH-T), but their role in GSH depletion
during cell death progression is still unclear. Values indicate redox potential for GSH/GSSG (mV), % of compartmentalized
GSH with respect to total cellular levels, concentration of GSH (mM), and GSH/GSSG ratio for each subcellular compart-
ment. Values were taken from (6, 95, 128, 212). IMM, inner mitochondrial membrane; DIC, dicarboxylate carrier; OGC, 2-
oxoglutarate transporters.

FIG. 4. Plasma membrane GSH efflux pumps. Distinct
candidates have been proposed to act as GSH transporters.
The MRPs act as ATP-dependent cotransporters of GSH
(coupled to the extrusion of an OA- ), GSSG, and GSH con-
jugates. MRP1 can transport GSH alone, but this requires its
stimulation by xenobiotics. The OATPs were initially pro-
posed to act as the GSH/OA - exchanger, where GSH efflux is
thought to be driven by its electrochemical gradient across the
plasma membrane, and stimulated by the presence of extra-
cellular OA- . Other proposed candidates for GSH efflux are
the members of the ABC family of transporter CFTR and
BCRP/ABCG2, hemichannel connexins (CX), and RLIP76.
Energy dependency of GSH transport by BCRP/ABCG2 has
not yet been confirmed. ABC, ATP-binding cassette; MRP,
multidrug resistance protein; OA- , organic anion; OATP, or-
ganic anion transporting polypeptide; RLIP76 (RALBP1), Ral-
binding, Rho/Rac-GAP and Ral effector.
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inhibited GSH depletion and apoptosis induced by Fas ligand
(FasL) (73). Interestingly, some reports have demonstrated
that in some cell types, inhibitors of MRP1-mediated drug
transport stimulate GSH-efflux via MRP1 (45, 177). Similarly,
the inhibition (6.5–50 lM MK571) and genetic knockdown of
MRP1 stimulates anti-Fas- and tumor necrosis factor-alpha
(TNF-a)-induced apoptosis in human epithelial cells (25). In
contrast, Hammond et al. (99), using the same experimental
model ( Jurkat lymphoid cells), reported that the inhibition of
MRP1 using high concentrations of MK571 (75 lM) and pro-
benecid (7 mM) resulted in a significant reduction of GSH loss
induced by either intrinsic or extrinsic pathways (99). Un-
fortunately, neither of these inhibitors are specific, especially
at high concentrations. In their study, probenecid, an MRP1
blocker with poor selectivity, almost completely abolished
GSH depletion and apoptosis, while MK571, a more selective
MRP1 inhibitor (15, 60), only marginally reduced GSH loss
(99). Furthermore, although the authors demonstrated that
siRNA knockdown of MRP1 decreased GSH loss induced by
Fas activation, the effect of MRP1 knockdown on apoptosis
was not evaluated (99).

Several other factors likely also contribute to the contra-
dictory results presented by Hammond et al. (99) and in our
study (73). Although in both studies GSH depletion and its
extracellular accumulation were determined using the GSH
recycling assay, we also corroborated our results with flow
cytometry analysis, which allows the discrimination be-
tween dead cells, cellular debris, and cells at distinct stages
during the apoptotic program. These studies represent a
more accurate discrimination between early GSH loss (be-
fore the loss of plasma membrane integrity) and passive
GSH depletion after the plasma membrane integrity has
been compromised. In addition, some differences might ex-
ist regarding the signaling pathway triggered by the Fas
receptor. While we used the physiological ligand (FasL) (73),
Hammond et al. triggered apoptosis using anti-Fas anti-
bodies (99), which do not reliably mimic FasL (114, 211).
Finally, in a follow-up study, the same group recently re-
ported that overexpression of MRP1 protects rather than
stimulates Fas-induced apoptosis, contradicting their own
published results (164).

In addition to GSH, GSSG has also been shown to be de-
toxified by its efflux across the plasma membrane through
MRP transporters (41, 62, 109, 110, 129, 151, 177, 182, 188),
suggesting that MRPs might play a role in the cellular re-
sponse to oxidative stress. In fact, MRP1 affinity for GSSG (Km
*100 lM) is significantly higher than that for GSH (Km
*5–10 mM), which explains its protective role during apo-
ptosis, as the accumulation of GSSG has deleterious effects in
cells (43). GSSG directly induces or sensitizes cells to apop-
tosis by activation of stress-activated protein kinases JNK
(c-jun-n-terminal kinase) and p38 (68, 70). A recent study
demonstrates that MRP1 activity in retinal pigment epithelial
cells mediates both GSH and GSSG efflux upon oxidative
stress and that its inhibition protects against oxidative
damage by facilitating the intracellular reduction of GSSG and
preventing GSH depletion (221). In sickle cell disease er-
ythorcytes, an increase in GSSG efflux by MRP1 is linked to
GSH depletion and oxidative stress (188). Other MRP proteins
have also been reported to mediate GSH and GSSG efflux,
including MRP2, 4, and 5 (13, 206), but their role in apoptosis
has not been studied (Table 1).

Bi-directional GSH/OA - has been reported in different cell
types, including human cell lines (86, 118, 150, 152, 153, 186,
229), and organic anion transporting polypeptides (OATP)
have been proposed to mediate GSH efflux by a GSH/OA -

exchange (Table 1 and Fig. 4). GSH efflux by OATPs is stim-
ulated by the presence of a wide range of structurally unre-
lated OA - substrates (trans-stimulation), demonstrating the
wide nonspecificity of the OA - binding site in the OATP
proteins. GSH is present at high concentrations within the
cells ( > 1 mM), whereas blood plasma concentrations are at
least two orders of magnitude lower ( < 0.01 mM). Further-
more, since GSH is negatively charged at physiological pH,
there is a large negative intracellular potential ( - 30 to - 60 mV)
that facilitates its extrusion from the cell (12, 97). Since GSH
transport by OATPs is driven by the outwardly directed elec-
trochemical gradient across the plasma membrane, it is reversed
by increases in the extracellular GSH concentration, demon-
strating its bidirectionality. OATPs were initially reported to
mediate this exchange transport (97, 152, 153). However recent
studies suggest that GSH/OA- exchange is not mediated by
this family of transporters (12, 29, 160). We previously proposed
a role for an OATP-like transporter in GSH depletion based on
the observation that not only a variety of structurally unrelated
OA- stimulate GSH depletion, but also that GSH loss was
paralleled by an increased uptake of OA- in the absence of
plasma membrane permeabilization. However, there remains a
possibility that GSH efflux and OA- uptake are also mediated
by different and still uncharacterized molecular entities (73).

The CFTR has been suggested to mediate the transport of
GSH during apoptosis (125). Recently, staurosporine-induced
apoptosis and GSH/GSSG depletion (138), as well as cigarette
smoke-induced GSH efflux in the lung were associated with
CFTR activity (94) (Table 1 and Fig. 4). More recently, another
ABC transporter, the subfamily G member 2 (BCRP/ABCG2),
was identified in human epithelial cells as a GSH efflux
transporter, but its role in apoptosis remains to be studied
(28). In addition, it has been recently demonstrated that, in
Candida albicans, the ABC transporter Cdrp1 mediates GSH
depletion and apoptosis. Cdrp1 protein sequence shows
a higher similarity to human BCRP/ABCG2 than other
ABC transporters [BCRP/ABCG2 > p-glycoprotein (ABCB1) >
MRP1 (ABCC1)]. However, whether GSH depletion mediated
by Cdrp1 is via efflux of the reduced or conjugated form of
GSH has not been determined (256) (Table 1 and Fig. 4).

Several other proteins are proposed to mediate GSH
transport. The organic anion transporter 3 (OAT3) has been
suggested to mediate renal GSH transport (144) (Table 1).
RLIP76 (RALBP1) is a 76 kDa Ral-binding, Rho/Rac-GAP,
and Ral effector protein that was proposed to be a multi-
specific transporter of xenobiotics as well as GSH-conjugates
with inherent ATPase activity (10) (Table 1 and Fig. 4). Con-
nexins and glutamate/aspartate transporters (GLAST) have
also been suggested to mediate the efflux of GSH in excitable
cells (87, 204, 224, 225) (Table 1 and Fig. 4). Finally, cell swell-
ing is reported to induce GSH depletion (148). Since volume-
regulated/volume-sensitive organic osmolyte-anion channels
(VRAC/VSOAC) are activated during apoptosis (27) (Table 1),
GSH depletion might be mediated by these efflux pathways
driven by the electrochemical gradient of GSH across the plas-
ma membrane. Accordingly, we have recently demonstrated
that GSH depletion regulates cell shrinkage during apoptosis
(apoptotic volume decrease) and activation of ion fluxes (75).
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It is clear that further studies are required to elucidate the
molecular identity(ies) of the transporter(s) mediating GSH
efflux during apoptosis. However, the study of GSH deple-
tion by its efflux is hampered by the lack of more sensitive and
accessible approaches to determine accumulation of extra-
cellular GSH, as the GSH recycling assay commonly used
to measure GSH and GSSG levels might not be sensitive en-
ough (low lM detection limit) to accurately determine their
presence extracellularly. In vitro, the extracellular medium is
infinitely bigger compared with the intracellular space, and
this would result in profound dilution of GSH levels (202).
More sensitive methods to detect GSH and GSSG based on
high-performance liquid chromatography combined with
mass spectrometry analysis could provide a better means for
evaluating GSH accumulation in the extracellular milieu, but
the application of these approaches is limited by their acces-
sibility (180).

Redox Signaling, GSH Depletion, and Cell
Death Progression

GSH content is a determinant of cell death progression.
Several studies have demonstrated that high intracellular
GSH levels are associated with apoptotic-resistant pheno-
types in several models of apoptosis (33, 80), while by itself,
GSH depletion either induces or stimulates apoptosis (4, 9,
165). Conversely, GSH supplementation prevents the apo-
ptosis induced by distinct stimuli (32, 46, 73, 76, 133). GSH

depletion induced by inhibition of the GCL potentiates death
receptor-induced apoptosis in T-cells (9, 80), but by itself, it
does not trigger cell death. However, this might be attributed
to the observation that pharmacological inhibition of GCL
depletes only the cytosolic GSH pool, having little effect on
mitochondrial GSH (91, 241, 253). The precise contribution of
cytosolic versus mitochondrial GSH pools in apoptosis is not
fully understood, although some reports suggest that apo-
ptosis correlates directly with cytosolic rather than with mi-
tochondrial GSH depletion (245). In contrast, other studies
have shown that mitochondrial GSH depletion is essential in
triggering the cell death cascade [reviewed in this Forum and
in Refs. (143, 166)]. Another explanation to why GSH deple-
tion might not induce cell death in some cell types is given by
reports demonstrating that prolonged GSH depletion up-
regulates antiapoptotic proteins such as B-cell lymphoma 2
(Bcl-2), heat shock proteins, and nuclear factor-kappa B (NF-
jB) (47, 69, 236), as well as other antioxidant systems, in-
cluding the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
and heme oxygenase-1 that might inhibit cell death progres-
sion (41, 81, 108, 147, 183). Interestingly, excessive GSH
overload has also recently been shown to mediate mito-
chondrial toxicity and cell death by reductive stress (254).

The signaling pathways that regulate the progression of
apoptosis have been extensively studied and characterized
(Fig. 5). Induction of apoptosis via the extrinsic pathway is
triggered by the activation of the death receptors Fas (CD95/
Apo-1), TNF-related apoptosis-inducing ligand (TRAIL)

FIG. 5. Molecular mechanisms involved in the regulation of apoptosis by GSH. GSH depletion regulates cell death
progression by apoptosis through a variety of mechanisms. GSH depletion triggers the permeability transition pore of the
mitochondria, the pro-apoptotic function of released Cyt C, the formation of the apoptosome, and the activation of execu-
tioner caspases. Furthermore, GSH depletion precedes oxidative stress and is necessary for ROS/RNS formation. Alterations
in GSH, GSSG, GSNO, and ROS/RNS homeostasis can modify the levels of PSSG/PSNO residues. Aggregation of death
receptors and caspase activation has been demonstrated to be regulated by protein glutathionylation and nitros(yl)ation. Cyt
C, cytochrome C; BH3, Bcl-2 homology 3 ; Bcl-2, B-cell lymphoma 2; Bid, BH3 interacting-domain death agonist; FADD, Fas-
associated death domain; GSNO, S-nitroglutathione; PSSG, protein glutathionylation; PSNO, protein nitros(yl)ation; ROS/
RNS, reactive oxygen and nitrogen species.

GSH TRANSPORT, REDOX SIGNALING, AND CELL DEATH 1701



receptors 1 and 2 (DR4/DR5), and TNF receptor 1 (TNFR1) by
their respective ligands FasL, TRAIL, and TNF-a. Activation
of death receptors leads to the formation of the death-induc-
ing signaling complex, which includes the Fas-associated
death domain (FADD), initiator caspase 8 or 10, and the cel-
lular FADD-like interleukin-1 beta-converting enzyme
(FLICE)-inhibitory protein (FLIP). In contrast, TNFR1 signal-
ing results in the formation of two signaling complexes. TNF-
induced complex I formation lacks FADD and pro-caspase 8,
but induces the recruitment of the receptor-interacting protein
(RIP), TNFR-associated death domain protein (TRADD), and
TNFR-associated factor (TRAF)-1/2, which translocate to the
cytosol where FADD, caspase 8/10, and FLIP are recruited to
form the traddosome or complex II, leading to the activation
of initiator caspases (145). Activation of NF-jB antagonizes
programmed cell death induced by TNFR1, and GSH deple-
tion has been shown to down-regulate TNF-induced NF-jB
activation and sensitize hepatocytes to apoptotic cell death
(157).

The extrinsic/death receptor pathway has the ability to
crosstalk to the intrinsic pathway of apoptosis by an ampli-
fication loop induced by caspase-dependent cleavage of the
Bcl-2-family protein BH3 (Bcl-2 homology 3) interacting-do-
main death agonist (Bid), which translocates to the mito-
chondria and promotes the release of Cyt C. The intrinsic
pathway of apoptosis is activated by a wide variety of stimuli,
including chemotherapeutic/cytotoxic agents (environmen-
tal pollutants, xenobiotics, and drugs), stress (radiation, hy-
perglycemia, hypoxia, oxidative and osmotic stress), and
cytokine withdrawal. Activation of the mitochondria path-
way mediates the release of Cyt C that is regulated by the Bcl-
2 protein family. The BH3-only Bcl-2 family members Bcl-2-
associated death promoter (Bad), Bid, Bcl-2-like protein 11
(Bim), NOXA, and p53 upregulated modulator of apoptosis
(PUMA) regulate the antiapoptotic Bcl-2 proteins Bcl-2 and
Bcl-xl (B-cell lymphoma-extra large) to promote apoptosis.
Bcl-2 and Bcl-xl inhibit Bcl-2 associated X protein (Bax) and
Bcl-2 homologous antagonist/killer (Bak), and activation of
BH3-only proteins derepresses Bax and Bak by direct inhibi-
tion of Bcl-2 and Bcl-xl. Bax and Bak are crucial for inducing
the permeabilization of the OMM and the release of Cyt C.
Subsequently, released Cyt C leads to the recruitment of
Apaf1 into an apoptosome and activates caspase 9 (37).

GSH depletion is necessary for the formation of the apop-
tosome (210) and also triggers cell death by modulation of the
permeability transition pore of the mitochondria and the ac-
tivation of executioner caspases (3, 8, 42, 189, 238, 241) (Fig. 5).
In addition, GSH depletion activates the intrinsic apoptotic
pathway initiator Bax and Cyt C release (49, 96) (Fig. 5). Re-
leased Cyt C requires cytosolic GSH levels to be depleted for
its pro-apoptotic action (31, 89, 103, 194). Depletion of intra-
cellular GSH also overcomes Bcl-2-mediated resistance to
apoptosis (8, 208). The antiapoptotic role of Bcl-2 has been
linked to GSH content by several studies, where it was re-
ported that Bcl-2 regulates GSH content and distribution in
different cellular compartments (121, 126, 242). Bcl-2 over-
expression also reduces GSH efflux, but the mechanism in-
volved remains unclear (191, 192). A recent study suggests
that Bcl-2 regulates mitochondrial GSH content by a direct
interaction of the BH3 groove with GSH (257), while the an-
tiapoptotic effect of Bcl-xl has also been attributed to the
regulation of GSH homeostasis by preventing GSH loss (26).

However, these effects appear to be cell-type specific and
context -dependent (175, 214, 231).

GSH depletion might also be a prerequisite for oxidative
stress and the activation of cell death pathways. By itself, GSH
depletion promotes nistrosative stress and cell death, sug-
gesting an important role of basal GSH levels in the mainte-
nance of a homeostatic reductive environment and the
buffering of ROS/RNS (7). GSH depletion occurs at earlier
stages of the cell death program and is followed by a delayed
accumulation of ROS, which requires GSH depletion (48, 76,
139). GSH depletion by its efflux has been shown to be inde-
pendent from oxidative stress and ROS generation (76, 96).
We and others have recently shown that GSH depletion is
necessary for the generation of ROS during FasL-induced
apoptosis (76, 139, 156), and that GSH content, but not the
excess in ROS formation and oxidative stress, regulates apo-
ptosis induced by Fas activation (76) (Fig. 5). Other studies
have also shown that apoptosis seems to be actively regulated
by GSH content and not by excessive oxidative stress and ROS
generation (53, 101, 198). The role of ROS/RNS in apoptosis
has been extensively studied (40, 209), and several GSH-
dependent antioxidant enzymes protect cells from undergo-
ing programmed cell death. However, protective effects of
thiol compounds on apoptosis in the absence of excessive ROS
formation are also observed (53, 102). Ceramide accumulation
is induced by different pro-apoptotic signals, including Fas
ligation, irradiation, and anticancer drugs. A recent report
shows that GSH depletion independent of ROS mediates
ceramide generation and apoptosis by inhibition of sphingo-
myelin synthase, which converts ceramide to sphingomyelin
(134).

GSH catalytically detoxifies cells from peroxides such as
H2O2, OONO - , and lipid peroxides (LOO�) by the action of
GSH peroxidases (GPx), leading to the accumulation of GSSG
(Figs. 2 and 6). The accumulation of GSSG upon oxidative
stress has been observed to be toxic to the cell (68, 70). GPx has
been shown to protect against apoptosis induced by Fas ac-
tivation (92). However, death receptor- (Fas and TNF) in-
duced cell death was shown to be similar in animals deficient
in GPx compared with WT (11). GPx also protects against
apoptosis induced by oxidative stress (127), ischemia/re-
perfusion injury (44), and doxorubicin (93), and reduces pro-
apoptotic Bax expression (65). Phospholipid hydroperoxide
glutathione peroxidase (PHGPx or GPx4) directly reduces
phospholipid hydroperoxides. GPx4 overexpression has also
been reported to protect against oxidative-stress induced
apoptosis by preventing cardiolipin oxidation and Cyt C
oxidation (154, 203), while its down-regulation induces
apoptosis-inducing factor (AIF)-mediated cell death (216).
Overexpression of the mitochondrial GPx4 was also shown
to protect against apoptosis induced by the intrinsic mito-
chondrial pathway by reducing mitochondrial hydroperoxide
accumulation (187).

As indicated previously, another fate of GSH during oxi-
dative stress and apoptosis is the formation of mixed dis-
ulfides with protein cysteines or PSSG. Since this subject is
also reviewed in detail in this Forum, we will only briefly
describe some major findings in this area. GSH depletion in-
duced by oxidative stress, or by its active efflux across the
plasma membrane, exerts prefunds alterations in the GSH/
GSSG redox balance that might regulate PSSG levels (Fig. 6).
Both GSSG and GSH can induce PSSG formation, depending
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on the oxidized/reduced status of the cysteine residue and the
redox potential of the protein. Apoptosis is accompanied by
increased PSSG formation (1, 57, 227). TNF-a-induced apo-
ptosis is reported to be paralleled by increased PSSG forma-
tion, which is inhibited by overexpression of Bcl-2 (227). Loss
or suppression of NF-jB enhances sensitivity to apoptosis.
Glutathionylation of NF-jB inhibits its DNA-binding capacity
and enhances apoptosis induced by hypoxic conditions (201).
FasL-induced apoptosis has also been reported to increase
PSSG, which amplifies the apoptotic signaling cascade by
glutathionylation of the Fas receptor (1) (Fig. 5). In contrast,
caspases can be glutathionylated under basal conditions and
become de-glutathionylated upon the induction of apoptosis
(193) (Fig. 5). GSSG is commonly viewed as a byproduct of
GSH metabolism, which is either recycled to GSH o or ex-
ported out of the cell (Fig. 6). However, pathophysiological
significance of GSSG per se remains poorly studied. An early
and transient rise in intracellular GSSG has been shown to
precede Cyt C release and caspase 3 activation (39, 199). In-
terestingly, GSSG-induced caspase 3 glutathionylation in-
hibits its enzyme activity (117). A recent report shows
that GSSG-induced toxicity is mediated by 12-lipoxygenase

(12-LOX) activation via its glutathionylation (195). GSH de-
pletion and GPx4 down-regulation induce cell death by the
activation of 12-LOX (35, 146, 216, 243).

PSSG reductases glutaredoxins (Grxs) have been demon-
strated to protect against apoptosis by decreasing PSSG for-
mation. In contrast, knockdown of Grx1 significantly inhibits
TNF-a-induced cell death via increased glutathionylation of
caspase 3 and impaired activation of the enzyme (111, 193).
GSNO is a well-known inducer of protein nitros(yl)ation
(PSNO) (Fig. 6), which regulates apoptosis (161, 162, 173).
Caspases have been shown to be nitrosylated under basal
conditions, and their de-nitros(yl)ation is required for their
activation during apoptosis (132, 163, 178). In addition, sev-
eral other proteins whose signal transduction cascades mod-
ulate apoptosis have been demonstrated to be regulated by
nitros(yl)ation including Bcl-2 and FLIP (34, 59).

Most of the evidence regarding the role of GSH in the ac-
tivation of cell death pathways refers to apoptotic signaling
cascades. However, recent reports also suggest a protective
role of GSH in cell death processes other than apoptosis. For
example, N-acetyl-L-cysteine (NAC) has been shown to pre-
vent ROS-induced formation of autophagosomes and the

FIG. 6. Redox alterations induced by GSH/GSSG transport. (1) Several protein transporters have been proposed to
mediate GSH/GSSG transport, which in fact, can significantly impact cellular redox balance. (2) GSH levels maintain a
reduced intracellular environment, even under normal conditions as evidenced by observations that by itself GSH depletion
induces oxidative stress. GSH directly scavenges ROS/RNS or enzymatically, through the GPx/GR/NADPH/G6PD system.
Thus, GSH efflux sensitizes cells to oxidative stress, while GSSG transport can serve as a protective mechanism. (3) Changes
in the GSH:GSSG ratio directly result in alterations of oxidative post-translational modifications in protein thiols (PSH). (4)
Both GSH and GSSG have the ability to promote PSSG formation via (a) GSSG reaction with PSH, (b) GSH reaction with
PSOHs, the most commonly accepted mechanism, and (c) Grx-mediated transfer of thiyl radicals (GS�) to PSH residues. (5)
PSSGs are known to regulate enzyme function and activity (redox signaling) and protect cysteines from irreversible oxidation
to PSO2H and PSO3H residues, and subsequent degradation. Gpx, glutathione peroxidase; GR, glutathione reductase; G6PD,
glucose-6-phosphate dehydrogenase; Grx, glutaredoxin; NADPH, nicotinamide adenine dinucleotide phosphate; PSOH,
protein sulfenic acid; PSO3H, protein sulfonic acids; PSO2H, protein sulfinic acids.
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subsequent degradation of proteins during starvation-induced
autophagy (213). Lipopolysaccharide-induced autophagy is
paralleled by ROS formation and GSH depletion, which was
also prevented by NAC (251). Treatment with c-glutamylcys-
teinyl ethyl ester, a precursor of de novo GSH formation, de-
creases autophagy after traumatic brain injury (141). Excessive
GSH depletion and oxidative stress have been reported to
switch apoptosis to necrotic cell death (66, 158, 233, 234). GSH-
depleting agents at doses that decrease mitochondrial GSH
levels induce necrosis. However, modest doses of these agents
resulting in selective cytoplasmic GSH depletion sensitize he-
patocytes to TNF-a -induced apoptosis (100, 168, 184). Cer-
amide has been implicated as a secondary messenger for TNF-
a-induced cell necrosis, and NAC or GSH-monoethylester can
delay the onset of ceramide-induced necrosis (52). Recently,
necrostatin-1, an inhibitor of programmed cell necrosis or ne-
croptosis, was shown to inhibit cell death in mouse hippo-
campal cells induced by GSH depletion (248).

Conclusions and Perspectives

GSH depletion has been observed to occur at early stages
during the cell death progression. Although GSH depletion
was initially associated mainly to its oxidation by ROS/RNS
generated during oxidative stress, it is now recognized that
GSH depletion occurs by a variety of distinct mechanisms.
GSH depletion by its efflux has been described as an active
process that in many cases is independent from oxidative
stress and precedes ROS accumulation. More importantly,
GSH depletion has also been demonstrated to directly regu-
late the cell death machinery independently from ROS accu-
mulation and oxidative damage. Several protein transport
mechanisms have been proposed to mediate GSH efflux, but
controversy still exists regarding its role in GSH depletion
during apoptosis. The understanding and identification of
GSH tranpsorters involved in GSH depletion is hampered by
the lack of sensitive and accessible approaches to determine
extracellular GSH accumulation. More research is necessary
to accurately determine the transporter or transporter entities
regulating GSH depletion during cell death, and the signaling
mechanisms regulating/activating them.
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Abbreviations Used

12-LOX¼ 12-lipoxygenase (EC 1.13.11.31)
ABC¼ATP-binding cassette

ABCC¼ATP-binding cassette (ABC) transporter,
subfamily C

ABCG2¼ATP-binding cassette (ABC) transporter,
subfamily G member 2

AIF¼ apoptosis-inducing factor
Bad¼Bcl-2-associated death promoter
Bak¼Bcl-2 homologous antagonist/killer
Bax¼Bcl-2 associated X protein

Bcl-2¼B-cell lymphoma 2
Bcl-xl¼B-cell lymphoma-extra large
BCRP¼ breast cancer resistance protein

BH3¼Bcl-2 homology 3
Bid¼BH3 interacting-domain death agonist

Bim¼Bcl-2 like protein 11
Caspases¼ cysteine-dependent aspartate-directed

proteases
CFTR¼ cystic fibrosis transmembrane conductance

regulator
Cyt C¼ cytochrome C

DIC¼dicarboxylate carrier
DR4¼TRAIL receptor 1
DR5¼TRAIL receptor 2

ER¼ endoplasmic reticulum
FADD¼ Fas-associated death domain

FasL¼ Fas ligand
FLICE¼ FADD-like interleukin-1 beta-converting

enzyme
FLIP¼ FLICE-inhibitory protein

G6PD¼ glucose-6-phosphate dehydrogenase
(EC 1.1.1.49)

GCL¼ glutamate-cysteine ligase (EC 6.3.2.2)
GLAST¼ glutamate/aspartate transporter

GPx¼ glutathione peroxidase (EC 1.11.1.9)
GPx4¼phospholipid hydroperoxide glutathione

peroxidase or PHGPx (EC 1.11.1.12)
GR¼ glutathione reductase (EC 1.8.1.7)
Grx¼ glutaredoxin (EC 1.20.4.1)

GS(O)2SG¼ glutathione disulfide S-dioxide
GS(O)SG¼ glutathione disulfide S-oxide

GS�¼ glutathionyl radical
GSH¼ glutathione

GSNHOH¼ glutathione N-hydroxysulfenamide
GSNHSG¼ glutathione thiosulfenamide

GSNO¼ S-nitrosoglutathione
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Abreviations Used (Contd.)

GSNOR¼GSH-dependent formaldehyde
dehydrogenase class III alcohol
dehydrogenase (ADH3) or GSNO
reductase (EC 1.1.1.284)

GSO2H¼ glutathione sulfinic acid
GSO3H¼ glutathione sulfonic acid
GSOH¼ glutathione sulfenic acid

GSOO�¼ thiyl peroxyl radical
GSSG¼ glutathione disulfide

GST¼ glutathione-S-transferases
H2O2¼hydrogen peroxide
IDPc¼ cytosolic NADP + -dependent isocitrate

dehydrogenase
IMM¼ inner mitocondrial membrane

LOO�¼ lipid peroxides
MRP¼multidrug resistance protein
N2O3¼dinitrogen trioxide
NAC¼N-acetyl-L-cysteine

NADPH¼nicotinamide adenine dinucleotide
phosphate

NF-jB¼nuclear factor-kappa B
NO�¼nitric oxide
NO2¼nitrogen dioxide
Nrf2¼nuclear factor (erythroid-derived 2)-like 2

O2�- ¼ superoxide anion

OATP¼ organic anion transporting polypeptides
OA - ¼ organic anion

OGC¼ 2-oxoglutarate transporters

OMM¼ outer mitochondrial membrane

ONOO - ¼peroxynitrite

PHGPx or GPx4¼phospholipid hydroperoxide
glutathione peroxidase

PSNO¼protein nitros(yl)ation

PSO2H¼protein sulfinic acids

PSO3H¼protein sulfonic acids

PSOH¼protein sulfenic acid

PSSG¼protein glutathionylated
PUMA¼p53 upregulated modulator of

apoptosis
RIP¼ receptor-interacting protein

RLIP76 (RALBP1)¼Ral-binding, Rho/Rac-GAP and
Ral effector

RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

TNF-a¼ tumor necrosis factor-alpha
TNFR¼TNF receptor 1

TRADD¼TNFR-associated death domain protein
TRAF¼TNFR-associated factor

TRAIL¼TNF-related apoptosis-inducing ligand
VRAC/VSOAC¼volume-regulated/volume-sensitive

organic osmolyte-anion channels
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