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ABSTRACT: A neural network model has been developed to
predict the inhibitory capacity of any chemical structure to be a
phosphodiesterase 7 (PDE7) inhibitor, a new promising kind
of drugs for the treatment of neurological disorders. The
numerical definition of the structures was achieved using
CODES program. Through the validation of this neural
network model, a novel family of 5-imino-1,2,4-thiadiazoles
(ITDZs) has been identified as inhibitors of PDE7.
Experimental extensive biological studies have demonstrated
the ability of ITDZs to inhibit PDE7 and to increase
intracellular levels of cAMP. Among them, the derivative 15
showed a high in vitro potency with desirable pharmacokinetic
profile (safe genotoxicity and blood brain barrier penetration).
Administration of ITDZ 15 in an experimental autoimmune encephalomyelitis (EAE) mouse model results in a significant
attenuation of clinical symptoms, showing the potential of ITDZs, especially compound 15, for the effective treatment of
multiple sclerosis.
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Successful drug design requires a multidisciplinary approach.
Understanding the nature of a drug and its intended target

requires knowledge of their chemistries, biophysical character-
istics, and, of increasing importance, their subcellular biological
context. The use of information technology and management
has become a critical part of the drug discovery process. Related
to this, chemoinformatics has emerged as a scientific discipline
encompassing the design, creation, organization, management,
retrieval, analysis, dissemination, visualization, and use of
chemical information. Its use to solve drug design problems
has been extensively reported.1,2

Following with our efforts to develop new and efficient
inhibitors of phosphodiesterase 7 (PDE7) as innovative drugs
for neurological disorders,3 we consider this approach a way to
boost the discovery and development of new PDE7 inhibitors
based on chemical structure. Our previous experience in the use
of chemoinformatic tools in drug discovery prompted us to
develop a neural network model for the prediction of inhibition
of PDE7 of any chemical structure. The choice of descriptors
occupies a special place in the development of in silico models.
The program called CODES4 is an efficient and easy-to-use

program to encode chemical structures by means of neural
computing (CODES is available free of charge for academic
institutions). The molecular descriptors obtained from this
method contain the underlying information of their chemical
structure.
PDE7 is involved in pro-inflammatory processes and is

necessary for the induction of T-cell proliferation.5 In addition,
PDE7 is widely expressed on certain brain regions6−8 while
specific inhibitors of PDE7 have been recently reported as
potential new drugs for the treatment of neurological disorders
due to their ability to increase levels of cAMP.3 Modulation of
the inflammation process is without any doubt a neuro-
protective, well-established strategy. Moreover, some unmet
diseases such as multiple sclerosis involved simultaneously
pathologies on immune system, T-cells, and brain cells,
microglia and oligodendrocytes. Although PDE4 inhibitors
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are also able to increase cAMP levels and have been widely
studied as efficient anti-inflammatory agents,9 a major drawback
of these compounds is the significant emetic effects.10 To
overcome these adverse effects, an alternative approach is to
target different cAMP specific PDE families, such as PDE7.
Thus, PDE7 inhibitors may represent a well targeted and
innovative therapy for this pathology.11

Furthermore, development of new PDE7 inhibitors with
favorable ADME properties will broaden the scope of a novel
class of therapeutics with an innovative mechanism of action
maintaining high levels of intracellular cAMP. These inhibitors
would target a major unmet medical need in a field in which
new and effective therapies are an urgent social need.
Therefore, the identification of selective inhibitors targeted
against PDE7 enzyme has become an attractive area of research.

Several years ago, our research group was the first one in
reporting PDE7 selective inhibitors.12 Since then, a lot of efforts
have been done to increase potency and selectivity of this kind
of compounds, conforming a great variety of diverse chemical
compounds with interesting pharmacological profiles.13

Following our ongoing research on this field, we have
discovered new leads by using chemoinformatics tools.14,15 We
have also shown that our compounds are able to increase
cAMP in lymphocyte cultures.16 Regarding advanced studies in
vivo, we have proved that PDE7 inhibitors belonging to the
quinazoline family enhance neuroprotection and decrease
neuroinflammation in well-characterized cellular and animal
models of Parkinson’s disease,17 spinal cord injury,18 stroke,19

and also Alzheimer’s disease.20 More recently, we have reported

Figure 1. PDE7A inhibitor families.
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also in vivo efficacy of the furan type PDE7 inhibitors in an
animal model of multiple sclerosis.11

Herein, we describe the development of a neuronal network
model in order to predict the inhibitory activity of new
compounds on PDE7. Using this computational approach, we
present the discovery of a new chemical family of PDE7
inhibitors, the 5-imino-1,2,4-thiadiazoles (ITDZs) recently
described in our group as substrate competitive GSK-3
inhibitors.21 The enzymatic assays on PDE7A confirm the in
silico results. We have also shown that the ITDZs increase
cAMP levels in cell cultures, and they are able to reduce the
clinical symptoms in an animal model of multiple sclerosis,
where GSK-3 and PDE7 inhibitors independently have been
shown an important role as therapeutic agents.11,22

■ RESULTS AND DISCUSSION

Neural Network Model. As a theoretical tool, the artificial
neural networks (ANNs) are a modeling methodology whose
application in some areas of Medicinal Chemistry such as
quantitative structure−property relationship (QSPR), quanti-
tative structure−activity relationship (QSAR), and prediction of
pharmacokinetic properties has increased spectacularly in
recent years.23,24

The development of nonlinear modeling approaches, such as
artificial-intelligence-based algorithms, opened up the field to
the concurrent analysis of a wider variety of structures with
potentially varying modes of action and noncongeneric
chemicals. These artificial systems emulate the function of the
brain, where a very high number of information-processing
neurons are interconnected and are known for their ability to
model a wide set of functions, including linear and nonlinear,
without knowing the analytic forms in advance. One of the
most important factors involved in the resulting quality of this
kind of model is the numerical representation of the chemical
structure. Encoding the chemical structure into numerical
descriptors is not an easy task and often it implies a high level
of quantum chemistry knowledge and very time-consuming
procedures. With the objective of encoding each chemical
entity, CODES software4 has been used, giving molecular
descriptors from the topological point of view with the whole
chemical structure information. CODES software was pre-
viously used for such kind of codification with excellent results
in different QSAR or QSPR models.14,25−27 The performance
and the accuracy of results are strongly dependent on the way
that structures are represented but in some cases, it is difficult
to manually select descriptors useful for a particular property.
To overcome this problem, we used an approach based on
ANNs.
A representative set of 92 PDE7A inhibitor compounds of

wide structural diversity extracted from the literature was
employed as input data set. The data set is characterized by a
high structural diversity since it is formed by iminothiadia-
zoles,28,29 benzene sulfonamides,30 quinazolines,16 thiazoles,31

and spirotricyclic derivatives,32 among others (Figure 1).
Regarding the modeled variable, we used quantitative values

activity against PDE7A expressed as the logarithm of the
inhibitory concentration 50 (log IC50) at the micromolar range
and also qualitatives where the value (1) was assigned to the
range of activity that includes values lower than 0.1 μM, (0)
includes activity values between 0.1 and 1 μM, and (−1)
includes values greater than 1.1 μM. The structure database was
divided into groups randomly in order to obtain a training set

for the learning ANNs process and an external validation set to
confirm the predictive power of the model obtained.
In general, a molecule is represented by means of a 2D

graphic formula. The simplest representation of this molecular
structure is the linear notation converting the connection
matrix of a molecule (atoms and bonds connecting them) into
a sequence of alphanumeric symbols using a set of rules. The
most widespread method used for linear representation is the
“simplified molecular input line system” (SMILES)33,34 that is
the one used as input to define the molecules (Table S1,
Supporting Information).
As mentioned before, the definition of the molecules was

achieved from a nonsupervised neural network using CODES
program. This program codifies each molecule into a set of
numerical parameters taking into account exclusively the
information of its chemical structure from a topological point
of view.
The dynamic matrix of each structure of the data set was

obtained employing CODES. With the aim of homogenizing
the data set dimensions, the dynamic matrix was reduced to
four numeric parameters (a1, a2, a3, and a4) using the reduction
dimension process (Table S2). This number of numeric codes
was chosen based on previous studies with ANNs.27,35 These
four variables were accomplished for each compound and stand
for the chemical. The reduction dimension process is a strategy
which decreases the complexity without chemical information
data lost. This step is useful not only to encode the structures
into a small number of variables, but also it makes possible the
use of a set of molecules with different number and atom types.
After establishing molecular descriptors, the next step was

the development of the theoretical models by means of a
learning process in order to link the biological activity and the
chemical structure. A supervised FFNN (feed forward neural
net) network was used to perform the neural predictive models
with each initial training set. Some of these initial models are
gathered in Table 1 (entries 1−3). Using these models and
applying in each case one of the strategies mentioned in the
Methods section, new models were developed (entries 4−8).
All the models present the 4 − x − 1 architecture, where the 4
value is the number of the selected descriptors, 1 is the network
output, that is, the value of activity against PDE7A, and x is the
number of hidden neurons.
The best models are presented in Table 1 along with their

architecture, r2, and standard deviation (SD). The models 1−8
showed correct statistical parameters in the training process
(0.99 < r2 < 0.74). However, when we moved to the results
obtained for the external validation set or test, the performance
declined significantly (0.25 < r2 < 0.68).

Table 1. PDE7A Individual Model Statistical Parameters

model na architecture r2/SD training I.V.b r2/SD test

1 70/22 4:7:1 0.74/0.38 70% 0.68/0.34
2 49/43 4:7:1 0.78/0.37 − 0.62/0.33
3 59/33 4:7:1 0.99/0.01 100% 0.50/0.34
4 70/22 4:7:1 0.80/0.33 70% 0.38/0.46
5 67/25 4:7:1 0.74/0.38 − 0.51/0.50
6 75/17 4:7:1 0.99/0.01 100% 0.45/0.56
7 70/22 4:8:1 0.78/0.38 80% 0.25/0.81
8 49/23 4:8:1 0.99/0.01 100% 0.45/0.56

aNumber of compounds of training/test set. b% prediction in internal
validation; 1− not internal validation.
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Analyzing the model 1, in qualitative terms (inactive,
moderate, and active), the percentage of prediction in the
external validation set does not exceed 50%; that is, the
network is not predictive (Table S3 in the Supporting
Information).
According to statistical parameters (Table S4 in the

Supporting Information), model 1 shows lower values of
index fraction correct (FC) in the test than in the training set
and moderate values of false alarm rate (FAR), pointing out
that there is a significant percentage of misclassified inactive
compounds (classified as moderate compounds), and therefore,
this model could not be used to predict real inhibitors.
Given these negative results, we proposed to use another

strategy based on neural network ensemble (NNE)36 which is a
learning paradigm where a collection of a finite number of
neural networks is trained for the same task. It originates from
Hansen and Salamon’s work, which shows that the general-
ization ability of neural networks, that is, training many neural
networks and then combining their predictions. ANN ensemble
techniques have become very popular among neural network
practitioners in a variety of ANN application domains.37,38 An
effective NNE should consist of a set of ANNs that not only are
highly correct but make their errors on different parts of the
input space as well. In general, a neural networks ensemble is
constructed in two steps, that is, training a number of
component neural networks and then combining the
component predictions.
In order to obtain a more reliable model, we evaluated the

predictive power by creating several training sets and predicting
activities of unknown compounds. Instead of the selection of a
sole test set, we generated multiple ones by means of NNE
approach. Then we averaged external predictions. Members of
NNEs were randomly generated by dividing the whole data set
into 70 inhibitors for the training set (76%) and 22 inhibitors
for the test set (24%), keeping the previous architecture.
All the model data is shown in Table 2 with their r2 and

standard deviation. The NNE models 1−6 show correct

statistical parameters in the training process (0.85 < r2 < 0.77).
When we moved to the results obtained for the external
validation set, the performance presented moderate predicted
values (0.70 < r2 < 0.34).
Analyzing the NNE3 model, in qualitative terms, the

percentage of prediction in the training set and the external
validation set, both of them were above 75%. Also, the
percentage compounds well predicted in qualitative terms by
the training set and the external validation of the NNE3 model
is shown in the Table 3.
According to statistical parameters, the NNE3 model shows

the highest values of index fraction correct (FC) in training and
test set, and lowest values of false alarm rate (FAR) than in
model 1 (Table 4).

From all models evaluated we can conclude that the NNE3
model obtained by NNEA strategy presents a good predictive
capacity to be a useful tool for the discovery of new candidates,
that is, new PDE7 inhibitors. This model shows an overall good
classification percentage, with 82% and 74% in training (Table
S5 in the Supporting Information) and test set (Table 5),
respectively.

External Validation of the Neural Model NN3. As our
goal is to develop a robust neural model, we proposed to
perform an external validation using our in-house chemical
library composed by diverse chemical structures synthesized in
our laboratory during the last years.
Virtual screening was then carried out with compound data

set of our in-house chemical library composed of 715
molecules, filtered to focus on compounds with desired CNS

Table 2. PDE7A NNE Model Statistical Parameters

model strategy no. nets r2 /SD training r2/SD test

NNE 1 NNE A 5 0.78/0.30 0.60/0.28
NNE 2 NNE A 10 0.77/0.38 0.53/0.35
NNE 3 NNE A 20 0.85/0.25 0.70/0.23
NNE 4 NNE B 5 0.80/0.28 0.65/0.28
NNE 5 NNE B 10 0.80/0.26 0.34/0.29
NNE 6 NNE B 20 0.87/0.22 0.44/0.34

Table 3. Cluster Analysis of Training and Test Set of Model
NNE3

experimental

training test

predicted inactive moderate active inactive moderate active

active 10% 3% 71% − 24% 88%
moderate 54% 93% − 100% 75% −
inactive 36% 4% − − 1% −

Table 4. Statistical Parameters of Training and Test Set of
Model NNE3a

training set test set

FC 76% 72%
FAR 2% 18%
POD 98% 100%

a(FC) fraction correct, (FAR) false alarm rate, (POD) probability of
detection.

Table 5. Test Set of NNE3 Model

quantitative analysis qualitative analysis

compd log IC50 theoretical experimental theoretical

I-1 −0.8239 −1.1733 0 1
I-4 −0.9208 −1.2318 0 1
I-5 −1.4949 −1.1544 1 1
I-6 −0.7696 −0.5978 0 0
I-7 −1.7959 −1.2059 1 1
I-11 −1.5229 −1.1296 1 1
I-13 −1.284 −1.107 1 1
I-14 −1.8539 −1.3647 1 1
I-20 −1.9586 −1.2981 1 1
I-24 −1.8239 −1.3433 1 1
I-35 −1.1805 −0.7131 1 0
I-37 −0.0088 −0.5628 0 0
I-41 −0.7959 −0.3203 0 0
I-42 −0.7959 −0.7512 0 0
I-43 −0.6778 −0.7453 0 0
I-48 −1.585 −1.2113 1 1
I-53 −0.9208 −1.2209 0 1
I-55 −0.3768 −0.8946 0 0
I-76 0.1139 −0.2832 −1 0
I-77 −0.5376 −0.393 0 0
I-82 −0.6198 −0.9589 0 0
I-84 0.1761 −0.1496 −1 0
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druglike properties. Details of the workflows and tables with the
compounds are detailed in the Methods section and the
Supporting Information, respectively. The aim of the screen
was to identify novel chemotypes that would provide starting

points for optimization to compounds with good druglike
properties.
As filters for our selection (Figure S1), we consider initially

two different properties in these compounds thinking on a

Table 6. Predicted and experimental Values of IC50 (PDE7A) of the New Hits and the Standard Reference Compounds

Table 7. Predicted and Experimental Values of IC50 of the New Family of PDE7A Inhibitorsa

compd R1 R2 R3 X predicted qualitative experimental IC50 PDE7A (μM) experimental qualitative

2 Ph Ph CH2CO2Et Br 1 1.13 ± 0.21 1
3 Ph Ph H Br 0 1.02 ± 0.13 1
4 Ph Ph (CH2)4CH3 Br 0 1.44 ± 0.15 0
5 Ph Ph cyclohex Br 1 1.64 ± 0.22 0
6 Ph Ph CH2-3Pyr 2Br 0 0.38 ± 0.06 1
7 Ph Ph (CH2)2OH Br 0 1.11 ± 0.17 1
8 4-OMePh Ph CH2-3Pyr 2Br 1 0.86 ± 0.10 1
9 4-OMePh Ph (CH2)2OH Br 1 1.50 ± 0.14 0
10 4-OMePh Ph Ph Br 1 4.36 ± 0.31 0
11 4-OMePh Ph CH2CO2Et Br 0 0.89 ± 0.09 1
12 Ph 4-OMePh CH2-3Pyr 2Br 1 0.85 ± 0.07 1
13 Ph 4-OMePh (CH2)2OH Br 1 1.18 ± 0.15 1
14 Ph 4-OMePh CH2CO2Et Br 1 0.78 ± 0.11 1
15 Ph Ph (CH2)2Morph 2Br 0 1.59 ± 0.16 0
16 Ph Ph Ph − 0 3.52 ± 0.42 0
17 Ph Ph (CH2)2OH Cl 0 1.97 ± 0.29 0
18 Ph 4-NO2Ph CH2-3Pyr 2Br 1 0.84 ± 0.19 1
19 Ph 1-naphthyl CH2-3Pyr 2Br 1 0.87 ± 0.09 1
20 1-naphthyl Ph CH2-3Pyr 2Br 1 1.08 ± 0.15 1
21 1-naphthyl Ph (CH2)2OH Br 0 1.24 ± 0.12 1
22 pent Ph CH2-3Pyr 2Br 0 2.80 ± 0.17 0

a(1) was assigned to the range of activity that includes values less than 0.1 μM, (0) includes activity values between 0.1 and 1 μM and (−1) includes
values greater than 1.1 μM.
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potential chronic treatment for a neurodegenerative disease:
oral bioavailability and blood brain barrier (BBB) penetration.
We use the Lipinski rule39 to classify the 715 molecules. Out of
those, 648 structures (90.6%) meet the theoretical criteria to be
bioavailable. These compounds were selected to determine the
BBB permeability. Only 220 molecules (37.9%) fulfilled these
criteria, and they were used in the neural model NN3 to predict
the qualitative potential of PDE7 inhibition (Tables S6 and S7).
The 19.5% of the in silico screened compounds (43 derivatives
of our own library) were predicted as PDE7 inhibitors. From
these predicted PDE7 inhibitors, only 21 of them were physical
available and pure (>95% by HPLC). These compounds were
evaluated experimentally on human recombinant PDE7A
(Table S8), together with two reference compounds selected
as positive and negative controls. Thus, MR1.51, a recently
described PDE7 inhibitor,11 and Rolipram, a well-known PDE4
inhibitor,40 were well predicted, both in silico and exper-
imentally (Table 6). The experimental evaluation of the 21
selected compounds showed a significant percent of inhibition
of PDE7 at 10 μM for some derivatives, while others were
inactive (Table S8). As a first step, only in the cases where
percent inhibition of PDE7A is >65% the IC50 was determined.
The final result of this study had provided to us two new hits
(compounds 1 and 2) as PDE7A inhibitors (Table 6).
Regarding the thiophene derivative hit (1), it was discarded

for further development due to the fact that it was found in the
literature that this kind of heterocycle was able to inhibit also
PDE4,41 a cAMP isoenzyme with emetogenic properties.10 On
the contrary, the 5-imino-1,2,4-thiadiazole derivative hit (2)
was considered as a new lead for further development.
Recently, we have published 5-imino-1,2,4-thiadiazoles

(ITDZs) as substrate competive GSK-3 inhibitors, and so we
have synthetised a great number of derivatives for the kinase
project. Now, we consider these number of derivatives of the
family of 5-imino-1,2,4-thiadiazoles (ITDZs) structurally
related with compound 2,21 as a focused chemical library, and
we screen it against PDE7A both in silico with the NN3 model
and experimentally using human recombinant PDE7A. Data are
collected in Table 7 showing that the ITDZs family is without
any doubt a new chemically diverse group of PDE7A inhibitors.
From the analysis of predicted and experimental qualitative

values obtained (Tables 7 and 8), results showed a good overall

classification percentage (approximately of 62%). As concluded,
thanks to this validation process, we have been able to validate
our model as plausible computational tool to make a successful
theoretical screening and to find two interesting hits.
Candidate Selection for in Vivo Studies. Due to the

novelty of ITDZs as PDE7 inhibitors, we decided to select one
or two candidates to test the activity in vivo. Recently, a
potential cardiotoxic effect of long-term PDE3A inhibition was
reported.42 Thus, to avoid adverse effects in further develop-
ment steps of this kind of compound, we measured the
inhibition on PDE3A of our new PDE7A1 inhibitors (Table 9).
When the percentage of PDE3A inhibition was greater than
40%, the corresponding compounds were discarded in order to

avoid future cardiotoxic effects. According to these results, the
5-imino-1,2,4-thiadiazoles 3, 5, 7, 9, 10, 13, 14, 15, 16, 17, and
22 could be suitable drug candidates to be further explored.
To know if these new PDE7 inhibitors are able to modulate

cAMP cellular signaling pathways, we checked the ability of a
couple of compounds, derivatives 3 and 15, to regulate
intracellular cAMP levels in cell cultures (Figure 2). Two

different compound concentrations (10 and 30 μM) were used,
and in both cases we observed an increase of cAMP even more
effective than the standard PDE7 inhibitor BRL50481.30 We
have recently reported this class of compounds, the ITDZs, as
substrate competitive inhibitors of GSK3 with potential for the
treatment of neurodegenerative diseases.21 As synergistic
interactions between PDE4B and GSK3 inhibitors have been

Table 8. Analysis of Results from Table 7

experimental

predicted active moderate

active 8/13(62%) 1/8(12%)
moderate 5/13(35%) 5/8(62%)

Table 9. PDE3A Inhibition for Thiadiazoles 2−22

compd % inhib PDE3A @10 μM

2 55.20 ± 5.20
3 31.10 ± 1.40
4 72.67 ± 2.50
5 33.75 ± 0.40
6 58.84 ± 0.30
7 18.81 ± 3.40
8 55.20 ± 2.60
9 24.48 ± 8.50
10 3.81 ± 2.80
11 55.47 ± 4.10
12 40.59 ± 0.10
13 12.69 ± 4.30
14 36.86 ± 4.80
15 20.60 ± 10.20
16 8.76 ± 7.00
17 23.78 ± 1.30
18 81.05 ± 0.60
19 89.90 ± 2.90
20 67.86 ± 6.50
21 44.66 ± 0.10
22 34.10 ± 6.20

Figure 2. Intracellular cAMP level in Raw cells treated with compound
3 and 15 at 30 and 10 μM.
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suggested due to the influence of increased cAMP levels
induced by PDE4B inhibitors on GSK3 function,43 our ITDZ
compounds offer a unique potential to be explored as
innovative multifunctional neurological drugs without the
emetic effects present in PDE4B inhibitors. In fact, one of
the member of this family (compound 7) has expressed
antipsychotic capacities and ameliorated certain cognitive
domains relevant to schizophrenia assessed in vivo.44

Considering the great potential therapeutic use of this class
of compounds, it is indispensable for pharmaceutical develop-
ment to assess their safety. Consequently, we evaluate the in
vitro mutagenic and genotoxic potential of 3, 7, 9, 14 and 15
following the well-known Ames test.45 The negative results of
these mutagenicity studies showed the safety of this class of
compounds to be further developed (Table 10). Moreover, we

have previously determined some pharmacokinetic properties
of ITDZs showing their ability to cross the blood-brain barrier
(BBB).21 However, we found differences in solubility which
might jeopardize further development. As aqueous solubility of
lipophilic scaffolds is often improved by the attachment of a
morpholine unit,46 we selected derivative 15 containing this
unit, as candidate for further progression. Its capacity to cross
the BBB21 and its safety in the Ames test, prompted us to

evaluate it in chronic experimental autoimmune encephalo-
myelitis (EAE) mice, a well established murine model for
multiple sclerosis where GSK3β22 and PDE7 inhibitors11 have
shown separately efficacy.

In Vivo Studies. Experimental Autoimmune Encepha-
lomyelitis Model. EAE was induced in C57BL/6J mice by
subcutaneous (s.c.) immunization with 100 μg of MOG35−55
peptide in complete Freund’s adjuvant on day 0. Clinical signs
and score were monitored up to day 41. Mice began to show
neurological deficits on day 11, reaching a maximum score
around day 16. A therapeutic regimen of administration was
chosen to test the inhibitor in the EAE model, which means
that the compound is administered when the animals present
the disease with the worst neurological score. Thus, a daily
intraperitoneal (i.p.) administration of ITDZ 15 for 29 days
started at day 5 after disease onset. The dose was selected
considering the IC50 value on the two targets (PDE7 and GSK-
3) and the dose used to observe cellular anti-inflammatory
activity.21 As we can see in Figure 3, a clear and significant
attenuation of clinical symptoms during the days of treatment
was observed. The cumulative clinical scores were calculated by
adding up the daily score for individual animals over the time
period when clinical signs were evident. Statistically different
cumulative clinical scores is indicated.
This experiment showed the efficacy of PDE7-GSK3 dual

inhibitors on a well established model of multiple sclerosis.
Specifically, compound 15 administrated to the EAE mice when
the disease is established and the worst neurological score was
measured showed a pronounced recovery of the clinical
symptoms.

■ CONCLUDING REMARKS
In summary, we have developed a neural network model to
determine the inhibition of PDE7A of any new chemical
structure with a percentage of prediction of 74%. The model
has been established using CODES program that defines each
molecule from the 2D graphical representation. It is interesting
to emphasize that CODES is an efficient and easy way to
encode structures and it does not need 3D information, thus
avoiding the risky choice of the appropriate physicochemical
descriptors and problems associated with the conformation.
Thanks to this neural network model, we found a new family

of PDE7A inhibitors that contains a 5-imino-1,2,4-thiadiazole
ring in their structure, the ITDZ compounds. Biological in vitro
studies on PDE7A of a great number of compounds showed
without any doubt that ITDZs are PDE7A inhibitors in the low
micromolar range able to increase levels of intracellular cAMP.
Among the tested derivatives, compound 15 was chosen for in
vivo studies based on its good pharmacokinetic, pharmakody-
namic, and safety profile properties. This compound is able to
reverse clinical symptoms in an EAE mice model when it is
administered following a therapeutic regimen. As ITDZs were
previously known as substrate competitive GSK-3 inhibitors,
these results emphasize the idea of the great potential of
multitarget drugs, especially PDE7A-GSK3 dual inhibitors as
therapeutic agents for CNS diseases.

■ METHODS
Computational Methods. Development of Neural Models. The

following strategy was pursued to develop a neuronal network model
to predict PDE7A inhibition.

Database. A series of 92 inhibitors was collected from literature
whose biological activity is expressed as IC50 (μM). This database is

Table 10. Ames Test Results

compd
dose

(μg/plate)
no. of revertants

without S9
no. of revertants in the

presence of S9

3 15 5.5 ± 2.5 8.0 ± 0.5
5 9.5 ± 0.5 6.0 ± 1.0
1.6 8.5 ± 0.5 9.0 ± 0.5
0.5 9.5 ± 0.5 9.0 ± 2.0
0.18 9.0 ± 1.0 9.0 ± 0.5

7 20 8.5 ± 0.5 10.0 ± 0.5
6 8.0 ± 0.5 9.0 ± 1.0
2 11.5 ± 1.5 13.0 ± 2.0
0.7 12.0 ± 1.0 12.5 ± 3.5
0.2 12.0 ± 3.0 10.5 ± 0.5

9 20 4.0 ± 0.5 9.5 ± 3.5
6.7 10.5 ± 2.0 14.5 ± 0.5
2.2 7.5 ± 2.0 6.5 ± 0.5
0.7 13.0 ± 9.0 8.5 ± 0.5
0.27 8.5 ± 1.5 7.5 ± 1.5

14 20 (a) 5.0 ± 1.0
6.7 9.5 ± 0.5 7.0 ± 0.5
2.2 9.5 ± 3.0 7.0 ± 0.5
0.7 2.5 ± 0.5 7.0 ± 3.0
0.27 8.0 ± 1.0 7.5 ± 0.5

15 20 6.0 ± 3.0 11.5 ± 2.0
6.7 25.0 ± 20.0 6.0 ± 0.5
2.2 8.0 ± 1.5 9.0 ± 2.0
0.7 10.5 ± 2.0 10.5 ± 0.5
0.27 8.0 ± 4.0 9.5 ± 2.5

control (−)
PBS

− 11.5 ± 2.5

control (+)
NPDb

− 852 −

control (−)
S9

− − 9.5 ± 1.5

control (+)
2AFc

− − 412

aSome toxicity was observed that did not allow us to evaluate the
revertants. bNPD (2-nitro-o-phenylendiamine). c2AF (2-aminofluor-
ene).
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formed by different families which show IC50 values in PDE7A. The
original database was divided randomly into training sets and test sets
of different size. Regarding the output (values of activity), we used for
the training of the neural net: quantitative values that measure the
inhibition as log IC50, and qualitative values that refer to whether the
compounds are active (1), moderate (0), or inactive (−1). Active
compounds (1) represent the compounds whose activity comprises
the values until 0.1 μM, moderate compounds (0) represents the
compounds with activity between 0.1 and 1 μM, and inactive
compounds (−1) represents the compounds with activity higher than
1.1 μM.
Input Data. The first step is to draw the selected compounds using

CHEMDRAW software (v. 8.0) and encode them using SMILES
system that denotes a molecular structure as a graph.33 Subsequently,
the molecular descriptors are obtained using CODES software (v1.0,
revision 3). CODES encodes each molecule into a dynamic matrix.
CODES consists of two levels, topological and neural, and its
philosophy relies on a Gestalt isomorphism47 between both levels.
While the topological space is the chemical structure by itself, the
neural one consists of an interactive and competitive network. Each
point of atom of the topological space corresponds with each unit or
neuron of the neural space, and each type of atom takes a different
initial value based on the atom nature, the number of atoms, bonds,
the connectivity with the rest of the molecule, and chirality (if
applicable). Attending to connectivity, CODES considers both
bonding and nonbonding interactions between atoms. If atoms are
not bonded in the topological space, it means an inhibitory connection
in the neural level (value −1), otherwise the neural space considers an
excitatory connection and the value depends on bond type (values: 1
for simple bond, 2 for double bond, 3 for triple bond, and 1 + 1/2 for
aromatic bonds). The stereochemistry is also taken into account
during the codification process and R o S configuration is expressed by
a corrective nonlinear function (Table S1 in the Supporting
Information).
The neural network employs a sigmoidal function in the

codification process, and the network is characterized by a non-
supervised learning. In the learning process, CODES records all the
activities reached in every cycle (or iteration) of the network. This
process finishes when the equilibrium state is reached. So, all activities
values of each atom of the structure during each cycle or iteration are
gathered in a matrix from the initial to final step forming the dynamic
matrix, which contains the whole codification process. It is interesting
to emphasize that CODES does not need three-dimensional
information because the topological space and its conversion to a
neural space only needs details about atoms and the relationship
between them (bonds); this is the chemical structure by itself. Thus,

CODES avoids the risky choice of appropriate physicochemical
descriptors and problems associated with the conformation.

Based on the topological matrix, we used the whole previous matrix
of each compound. The next step is reduction of dimension of
matrices of each chemical molecule in order to have the same number
of descriptors.

Reduction of dimension (RD) philosophy resides in reducing the
complexity of any system without loss of any information about the
molecule. By training supervised multilayer neural network, namely,
ReNDeR (Reversible Nonlinear Dimension Reduction), high-dimensional
data can be converted to low-dimensional codes. This network consists
of an entry layer, three hidden layers (coding, two or three neurons,
and decoding), and an output layer, with its simetric architecture as
shown: (AxR)-c-h-c-(AxR). The input and the output layers (AxR)
contain the same information and the same number of neurons. On
the other hand, c means the hidden layers which represent the chosen
number of variables the matrix will be reduced in.

In the developed model, the process of dimension reduction is
carried out in order to compress the dynamic matrix data to a set of
four numeric codes for each molecule (hidden neurons: A, B, C, and
D). Reduction of dimension is carried out using TSAR48 software
which applies the Monte Carlo algorithm (Table S2 in the Supporting
Information).

Convergence parameters are 0.005 rms (root mean square) 500
cycles past best, 6000 iterations/cycle, and a data excluded of 1%. The
process is finished when Best rms and Test rms are constant and their
values are not higher than 0.02. The neural network is considered
trained when the line diagrams of the convergence plot are
unchanging.

Development of Neural Network Model. This procedure is carried
out by a standard feed-forward network with back-propagation using
TSAR software (v3.0)48 with an architecture 4-n-1, where four is the
number of parameters above-described, n is the hidden neurons, and
one is the output value (IC50).

In each training set established, we performed a systematic study of
the neural network learning process. In a first approach, we evaluated
the suitable number of hidden neurons. Thus, several initial trainings
were carried out with the appropriate architecture. Convergence
parameters are 0.01 rms 200−300 cycles past best, 1000−2000
iterations/cycle, and a data excluded of 30−50%. In order to have a
model to predict PDE7A inhibition, we have developed individual
networks and neural network ensembles. Individual networks: models
were evaluated using statistical parameters and internal validation
method, and all were retrained in the second learning stage. We used
two different approaches for the second learning. Type 1 consists in
retraining the selected model several times, while type 2 consists also
in several retrainings using the previous model in the following one.

Figure 3. Therapeutic effect of compound 15 in MOG35−55-induced EAE in C57BL6J mice. (A) Mean ± SEM clinical score as a function of days
after immunization of mice with MOG35−55 peptide. Mice developed clinical signs on day 11, and from the 5th day after the onset of the disease
they were treated daily either with compound 15 (triangles) or with vehicle (squares) until day 45. (B) Cumulative clinical scores (±SEM) during
EAE with ITDZ 15 (gray filled bar) or with vehicle (black filled bar). *p < 0.05 compared to vehicle-treated animals, unpaired t test. ●, Vehicle (n =
7); ▲, 10 mg/kg compound 15 (n = 4) i.p. daily.
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NNE: each ensemble was evaluated using statistical parameters and
internal validation method.
Validation of the Models. All models were evaluated using

statistical parameters: fraction correct (FC), false alarm rate (FAR),
and probability of detection (POD). We should have counted such
parameters by each final model:
Fraction correct (FC) is the fraction of compounds that were

classified correctly

= + + ×FC
TA TM TI

no. total
100

where TA is true active, TM is true moderate, and TI is true inactive.
False alarm rate (FAR) represents the fraction of inactive

compounds that were wrongly classified.

=
+ +

×FAR
FA

TA TM TI
100

where FA is false active.
Probability of detection (POD) represents the fraction of active

cases that were truly classified.

= +
+ +

×POD
TA TM

TA TM FI
100

where FI is false inactive.
Also, we carried out an internal validation by cross-validation

expressed (r2) by leave-group-out method. On the other hand, we
carried out an external validation by a test set.
Virtual Screening. We used the workflow shown in Figure S1

(Supporting Information). According to this workflow, we had
employed physicochemical property filters to avoid low levels of a
potential drug absorption or distribution. One of the common
employed filters is the empirical Lipinski rule39 (log P < 5, a key
property for an oral drug; molecular weight < 500 given the fact larger
molecules showed reduced passive penetration across membranes; H-
bond donors < 5; H-bond acceptor < 10). All these properties were
calculated with Molinspiration cheminformatics software (http://
www.molinspiration.com/) using the SMILE code for each molecule.
The second filter was the ability of a compound to penetrate the

blood-brain barrier (BBB), a compulsory property of any drug to act
on the CNS. The majority of compounds, that are able to cross the
BBB, use passive diffusion. It was shown49,50 that physicochemical
properties are involved in brain penetration. Therefore, a Volsurf
model51 was used for the classification of compounds according to
logBB predicted given by two rules.
If log P − (N + O) > 0 or if N + O < 5 (the number of nitrogen and

oxygen atoms), then log BB is positive considering as high chance to
cross this barrier. Both rules could be useful to estimate blood-brain
partitioning.
According to this data, it was calculated log BB for each compound

with suitable druglike properties using the above two rules. Afterward,
220 compounds were selected to perform the prediction of their
potential activity against PDE7.
As standard references, we considered Rolipram,40 a PDE4 inhibitor

as negative inhibitor of PDE7, and the furan derivative MR1.51,11 a
recently described PDE7 inhibitor.
Experimental Methods. Radiometric Phosphodiesterase Inhib-

ition Assay. The methodology used for measuring human
recombinant PDE7A1 and PDE3A activity was based in a Scintillation
Proximity Assay (SPA) from Perkin-Elmer (TRKQ7090). The activity
of the phosphodiesterase is measured by coincubating the enzyme with
[3H]cAMP and the hydrolysis of the nucleotide is quantified by
radioactivity measurement after binding of [3H]AMP to scintillation
binding bead.
Either 0.02 units of PDE7A1 (Calbiochem # 524751) or 0.02 units

of PDE3A (Calbiochem # 524742) were incubated in a 96-well
flexiplate with 5 nCi of [3H]cAMP and inhibitors in 100 μL of assay
buffer (contained in the kit) for 20 min at 30 °C. After the incubation
time, 50 μL of a solution of SPA-beads (approximately 1 mg/well) was
added to each well and the plate was shaken for 1 h at room

temperature. Finally, beads were settled for 30 min and radioactivity
was detected in a Microbeta Trilux reader.

IC50 values were calculated by nonlinear regression fitting using
GraphPad Prism. Data (radioactivity vs log concentration) was fitted
to a sigmoidal dose−response equation: Y = bottom + (top −
bottom)/(1 + 10(logIC50−X)n), where bottom and top were the minimum
and maximal inhibition for PDE, respectively, IC50 was the
concentration of compound that inhibited the PDE activity by 50%,
and n was the slope of the concentration−response curve.

cAMP Measurements in Raw Cells. Quantification of cAMP was
carried out using the EIA (enzyme immunoassay) kit from GE
Healthcare. Briefly, Raw cells were seeded at 3 × 104/well in 96-well
dishes and incubated overnight before the assay. After 60 min
incubation with compounds 3 and 15, cAMP intracellular levels were
determined following the manufacturer’s instructions.

Mutagenicity Assay. The method of direct incubation in plate45

using culture of Salmonella typhimurium TA98 strain was performed
on derivatives 3, 7, 9, 14, and 15. The influence of metabolic activation
was tested by adding S9 fraction of mouse liver. Positive controls of
NDP and 2AF were run in parallel. The revertant number was
manually counted and compared to the natural revertant. The
compound is considered mutagenic when the number of revertant
colonies is at least 2-fold of the spontaneous revertant frequencies for
at least two consecutive dose levels.52−54 The maximum assayed doses
were determined according to toxic effect on S. typhimurium previously
determined for each compound.

EAE Induction and Treatment. Six-week-old female C57BL6 mice
(15−20 g) were purchased from Harlan (Spain). All experimental
procedures followed the European Communities Council Directive of
November 24, 1986 (86/609/EEC). The protocol was approved by
the ethic committee of the University of Barcelona and of the
Generalitat de Catalunya. The mice were maintained on a 12 h light/
dark cycle at a constant environmental temperature with free access to
food and water for 1 week prior to experimentation.

EAE was induced by subcutaneous immunization with 100 μg
MOG35−55 peptide (EspiKem S.r.l., Italy) emulsified in 100 μL of
complete Freund’s adjuvant (CFA) (Sigma-Aldrich) enriched with
Mycobacterium tuberculosis (H37Ra strain, Difco, Detroit, MI). Mice
were immediately intraperitoneally injected with 200 ng of Bordetella
pertussis toxin (Sigma-Aldrich) and again 48 h after the immunization.

Animals were scored daily for EAE. Disease severity of EAE was
graded according to a five-point scale: grade 0 = no disability; 1 = a
flaccid tail; 2 = a mild but definite weakness of one or both hind legs; 3
= moderate paraparesis of one hind leg; 4 = no hind leg movement; 5
= a moribund state with little or no spontaneous movement and
impaired respiration.55 Mice with a score of 4.0 were euthanized.

Stock solution of the compound (100 mg/mL in DMSO) was
diluted 1:50 in a solution of 5% Tocrisolve (Tocris, U.K.) in distilled
water. Mice were treated through daily intraperitoneal (i.p.) injection
starting on day 5 after the onset of the disease at a dose of 10 mg/kg of
animal (n = 7) or with only vehicle (n = 7) until day 41.

GraphPad Prism 4.01 (GraphPad Software Inc., San Diego, CA)
was used to analyze data reported in the Figure 3 legend.
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Gonzaĺez (Universidad de la Repub́lica, Uruguay) for their
helpful assistant in the genotoxicity assays.

■ REFERENCES
(1) Livingstone, D. J., and Davis, A. M. (2012) Drug design strategies:
Quantitative approaches, The Royal Society of Chemistry, Cambridge.
(2) Clark, T., and Banting, L. (2012) Drug design strategies:
Computational techniques and applications, The Royal Society of
Chemistry, Cambridge.
(3) Gil, C., Campillo, N. E., Perez, D. I., and Martinez, A. (2008)
Phosphodiesterase 7 (PDE7) inhibitors as new drugs for neurological
and inflammatory disorders. Expert Opin. Ther. Pat. 18, 1127−1139.
(4) CODES v1.0. Original idea Prof. Manfred Stud.
(5) Nakata, A., Ogawa, K., Sasaki, T., Koyama, N., Wada, K., Kotera,
J., Kikkawa, H., Omori, K., and Kaminuma, O. (2002) Potential role of
phosphodiesterase 7 in human T cell function: comparative effects of
two phosphodiesterase inhibitors. Clin. Exp. Immunol. 128, 460−466.
(6) Miro, X., Perez-Torres, S., Palacios, J. M., Puigdomenech, P., and
Mengod, G. (2001) Differential distribution of cAMP-specific
phosphodiesterase 7A mRNA in rat brain and peripheral organs.
Synapse 40, 201−214.
(7) Sasaki, T., Kotera, J., and Omori, K. (2002) Novel alternative
splice variants of rat phosphodiesterase 7B showing unique tissue-
specific expression and phosphorylation. Biochem. J. 361, 211−220.
(8) Reyes-Irisarri, E., Perez-Torres, S., and Mengod, G. (2005)
Neuronal expression of cAMP-specific phosphodiesterase 7B mRNA
in the rat brain. Neuroscience 132, 1173−1185.
(9) Houslay, M. D., Schafer, P., and Zhang, K. Y. (2005) Keynote
review: phosphodiesterase-4 as a therapeutic target. Drug Discovery
Today 10, 1503−1519.
(10) Robichaud, A., Stamatiou, P. B., Jin, S. L., Lachance, N.,
MacDonald, D., Laliberte, F., Liu, S., Huang, Z., Conti, M., and Chan,
C. C. (2002) Deletion of phosphodiesterase 4D in mice shortens
alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of
emesis. J. Clin. Invest. 110, 1045−1052.
(11) Redondo, M., Brea, J. M., Perez, D. I., Soteras, I., Val, C., Perez,
C., Morales-Garcia, J. A., Alonso-Gil, S., Paul-Fernandez, N., Martin-
Alvarez, R., Cadavid, I., Loza, I., Perez-Castillo, A., Mengod, G.,
Campillo, N. E., Martinez, A., and Gil, C. (2012) Effect of
phosphodiesterase 7 (PDE7) inhibitors in experimental autoimmune
encephalomyelitis mice. Discovery of a new chemically diverse family
of compounds. J. Med. Chem. 55, 3274−3284.
(12) Martinez, A., Castro, A., Gil, C., Miralpeix, M., Segarra, V.,
Domenech, T., Beleta, J., Palacios, J. M., Ryder, H., Miro, X., Bonet, C.,
Casacuberta, J. M., Azorin, F., Piña, B., and Puigdomenech, P. (2000)

Benzyl derivatives of 2,1,3-benzo- and benzothieno[3,2-a]thiadiazine
2,2-dioxides: first phosphodiesterase 7 inhibitors. J. Med. Chem. 43,
683−689.
(13) Castro, A., Jerez, M. J., Gil, C., and Martinez, A. (2005) Cyclic
nucleotide phosphodiesterases and their role in immunomodulatory
responses: advances in the development of specific phosphodiesterase
inhibitors. Med. Res. Rev. 25, 229−244.
(14) Castro, A., Jerez, M. J., Gil, C., Calderon, F., Domenech, T.,
Nueda, A., and Martinez, A. (2008) CODES, a novel procedure for
ligand-based virtual screening: PDE7 inhibitors as an application
example. Eur. J. Med. Chem. 43, 1349−1359.
(15) Gil, C., Castro, A., Jerez, M. J., Ke, H., Wang, H., Ballester, S.,
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