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Abstract

Quality and consistency of clinical and research data collected from Magnetic Resonance Imaging 

(MRI) scanners may become suspect due to a wide variety of common factors including, 

experimental changes, hardware degradation, hardware replacement, software updates, personnel 

changes, and observed imaging artifacts. Standard practice limits quality analysis to visual 

assessment by a researcher/clinician or a quantitative quality control based upon phantoms which 

may not be timely, cannot account for differing experimental protocol (e.g. gradient timings and 

strengths), and may not be pertinent to the data or experimental question at hand. This paper 

presents a parallel processing pipeline developed towards experiment specific automatic 

quantitative quality control of MRI data using diffusion tensor imaging (DTI) as an experimental 

test case. The pipeline consists of automatic identification of DTI scans run on the MRI scanner, 

calculation of DTI contrasts from the data, implementation of modern statistical methods (wild 

bootstrap and SIMEX) to assess variance and bias in DTI contrasts, and quality assessment via 

power calculations and normative values. For this pipeline, a DTI specific power calculation 

analysis is developed as well as the first incorporation of bias estimates in DTI data to improve 

statistical analysis.
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1. INTRODUCTION

Standard practice for quantitative quality control of magnetic resonance imaging (MRI) data 

is currently restricted to phantom studies, which primarily evaluate Bo and B1 field 

homogeneity (scanner produced magnetic fields), and receiver coil sensitivity [1]. Although 

useful in evaluating basic scanner stability and improving overall scanner performance, 

phantom analysis may not be timely and cannot provide data-specific quality analysis. Such 

common events as patient motion, daily magnetic field drift, parameter tweaking, software 

updates, or hardware ‘glitches’, will not be captured by intermittent phantom studies yet 

these occurrences can drastically impact data quality. Additionally, phantom studies cannot 
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assist the researcher in deciding if suspect data is of a sufficient quality to answer an 

experimental question at hand. An automatic data-specific quality analysis pipeline can be 

used to address these issues and provide additional early warning about experimental 

specific scanner problems.

Diffusion Tensor Imaging (DTI) provides an excellent test case for a data specific quality 

analysis pipeline. DTI is an invaluable state of the art MRI method which measures water 

diffusion in vivo as a means to interrogate cytoarchitecture and elucidate neuronal fiber 

tracks [2]. Currently, DTI is the only in vivo method capable of measuring anatomical 

connectivity at a level that is beginning to rival its only alternative, histology. As such, DTI 

contrasts are quantitatively valuable and quality analysis becomes increasingly important. 

DTI data is particularly large, involving up to one hundred brain volumes, each with scores 

of slices, and experimental protocols are gradient intensive and subject to gradient amplifier 

difficulties and heating artifacts. DTI processing involves model fitting procedures — the 

SNR properties of the starting imaging data do not carry through in an easily tractable 

manner to the final DTI estimated contrasts. Furthermore, DTI contrasts are known to 

contain bias [3], particularly fractional anisotropy (FA) investigated herein, and as of yet this 

bias has remained unaccounted for in quantitative analysis of empirical data.

This article presents a pipeline for quality analysis of DTI data through use of two methods, 

power calculations and normative values. Power calculations, although arguably naïve, are 

fundamental to grant proposals and ubiquitous in the literature, making the statistical tool 

easily accessible to clinical researchers. In a quality control setting, power calculations can 

be used to evaluate if data is of sufficient quality to probe a desired effect size in a 

hypothesis testing scenario. A simplifying but deeply informative assumption would be to 

assume that all n data sets would be collected at the same variability and bias level of the 

observed dataset. An insufficient power at the desired effect size or adverse changes over the 

duration of a study (often years) can provide prompt warning of the need for experimental 

adjustments or scanner performance evaluation. Meanwhile, normative values provide an 

opportunity for long period monitoring of an experimental study. In this case, important DTI 

values are automatically processed and stored and expected distributional properties of these 

values can be established. In this method, normative values organic the specific scanner/

experimental protocol/processing method, can be established. By comparing histograms 

from individual datasets to the group histogram, questions of data compatibility and stability 

can be answered.

Four important challenges towards DTI data specific quality analysis using power 

calculations and normative values are (i) measuring variability of an individual data-set, (ii) 

estimating and incorporating contrast bias, and (iii) a system that links to the scanner and 

automatically processes and analyses the dataset in a time efficient manner. Here we present 

solutions to these challenges by combining (i) wild bootstrap analysis to estimate variability 

from a single dataset [4] and (ii) simulation extrapolation (SIMEX) to evaluate bias [5].
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2. THEORY

The theory section provides (2.1) background in DTI, (2.2) bootstrap applied to DTI to 

measure FA variance, (2.3) SIMEX applied to DTI to measure FA bias, and (2.4) 

incorporation of bias into power calculations for DTI. The first three sections address topics 

that have been presented in detail previously by this lab and by others. These sections are 

then kept as brief as possible.

2.1 Diffusion Tensor Imaging [2]

Diffusion tensor imaging is a method to measure the three dimensional diffusion coefficient 

of water, D, in vivo. To do so, diffusion gradients are applied in sequence along various 

directions, g, resulting in a series of diffusion weighted images (DWI). Each gradient 

attenuates the water signal in proportion to the diffusion coefficient of water along that 

gradient direction. Attenuation in each DWI is measured in relation to a control image, 

symbolized as So, and for a single voxel the diffusion equation for a DTI experiment is,

(1)

where j indexes the diffusion gradient number and b is an experimental dependent parameter 

reflecting gradient strength and timing. The diffusion coefficient D is a 3×3 tensor and in the 

simplest and most commonly employed model represents the covariance matrix of the 

trivariate Gaussion probability distribution for finding a water molecule at a distance Δd 

from a starting point, (x,y,z) after time Δt. D is commonly in units of mm2/s. The 

Eigenvectors of D describe the three principle axis of the trivariate Gaussian while the three 

Eigenvalues, (λ1 λ2 λ3), represent the one dimensional diffusion coefficient along each 

principle axis. An invaluable and ubiquitous diffusion tensor contrast is fractional 

anisotropy, which ranges from 0 to 1 and measures the extent of diffusion anisotropy, FA = 

1 being unidirectional diffusion and FA = 0 being perfectly isotropic diffusion.

(2)

Note that FA greater than 1 may occur if negative Eigenvalues (which do not represent 

physical diffusion processes but may result from experimental noise) are permitted.

2.2 SIMEX on DTI to measure bias [6, 7]

The premise of SIMEX is conceptually simple. Bias can be understood by adding noise to 

data in incremental amounts and measuring the resulting contrast. The trend in the contrast 

with added noise should enable prediction of the contrast with ‘removed’ noise. For 

simplicity, the following description assumes a single DTI experiment is performed (e.g. 

single subject, one DTI dataset) and describes the single-voxel case, though the analysis can 

be extended to multiple experiments and multiple voxels. In the following, bold lettering 

represents a vector or function. Let x refer to the collection of DWI and So images (Eq. 1), 

and let xT be a truth data set described by zero experimental noise, σE = 0. Let the function 
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F map dataset x to the contrast FA. Then the experimentally observed data xobs and 

corresponding FAobs is described by,

(3)

where Z is a vector length j+1 of standard normal error values. The noise distribution of xobs 

is technically Rician, however for SNR >5, which is nearly always the case for clinical and 

research scans, the Gaussian becomes an excellent approximation [8]. For the simulation 

step of SIMEX, Gaussian synthetic noise of variance ωσE
2 is added (in implementation for 

DTI data, Rician noise is used to xobs. Letting Uk be a j+1 vector of random drawings from 

a standard normal we have,

(4)

For R different ωr, the process is repeated K times to evaluate the expectation value of 

FA(ωr).

(5)

Observe from Eq. 4 that the variance of xk(ω) is exactly described by σE(1+ω), and the 

variance of xk(ω) is zero when ω = −1 and therefore so to is FAk(−1). The case of ω = −1 

cannot be reached through simulation, as this represents the impossible tasks of removing 

noise, however it can be reached throughfitting of  followed by extrapolation to ω = 

−1. In the extrapolation step, the set of R + 1 FA values,  are fit with 

an approximating function, , in this case a polynomial order 2. The new SIMEX 

estimate of FA, FASMX, is then calculated through extrapolation to ω = −1. The bias in the 

original FAobs estimate, BFA, can then be estimated.

(6)

2.3 Wild Bootstrap on DTI data to measure variance[4]

The bootstrap method to estimate variance from a single dataset first creates a simulated 

population based upon that dataset. Let Xobs be the set DWIj/So for a single voxel 

(capitalized to distinguish from the similar xobs described above in section 2.2) and let D be 

the diffusion tensor calculated from Xobs using Eq.1. A model-fit data set Xmf can then be 

created by solving for a new DWIj/So using the fitted diffusion tensor D. The model error 

vector ε is composed of the elements Xobs − Xmf. Synthetic bootstrap data Xbs and synthetic 

bootstrap FA values, FAbs, can then be made by resampling with replacement the errors 

from ε.

(4)
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Here,  is a vector of length j whose elements are created by random sampling with 

replacement from ε, α is a vector of length j whose elements are randomly chosen from the 

set {−1 1}, F is a mapping from X to FA, and m = 1,2,‥M indexes the bootstrap number. 

Note that errors are resampled in imaging space and are resampled along a constant voxel 

(e.g. errors from one voxel are not used on a different voxel). Once a population of 

 is simulated, the bootstrap estimated variance, σbs, of the original FAobs is 

calculated.

(8)

2.4 Power Calculations with Bias

Bias is well known to exist in DTI data [3, 9]. The presence of bias in data changes the true 

power, 1-βT and true alpha rate, αT, of a hypothesis test away from the nominal power, 1- 

βnom, and the nominal alpha rate αnom of the hypothesis test. Although this is well known, a 

literature and textbook search yielded no readily available equations. Here we derive αT and 

1-βT for a two sided Z-test run with ignored bias B. Let x̄ be the average of n observations 

drawn from a normally distributed population with mean μ and standard deviation σ. Let μ 

be an estimate of μT. Without bias, μ = μT and x̄ limits to μT as n approaches infinity. In the 

presence of bias B, μ = μT + B and x̄ limits to μ and not μT as n approaches infinity. Define 

the null hypothesis as μT = f, and the alternative hypothesis as μT ≠ f. The null hypothesis is 

rejected under the condition that , where Za is 

defined as the inverse cumulative distribution function of a standard normal evaluated at a, 

Φ−1(a).

Alpha-rate—The nominal alpha rate is defined as the probability of falsely rejecting the 

null. It is therefore defined under the given condition μT = f.

(9)

Here, P is the probability function. When bias B is present, the given condition, μT = f leads 

to μ = f + B. The true alpha rate for a test run with the nominal alpha rate defined as in Eq. 9 

becomes

(10)

Using the fact that  is sampled from a standard normal, the analytic solution for 

αT is easily obtained.
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(11)

Power analysis—The nominal power for a given effect size, ES, is defined as the 

probability of correctly rejecting the null when μT = f + ES.

(12)

The probability function is solved using the fact that  is sampled from a standard 

normal,

(13)

When bias B is present, the given condition μT = f +ES leads to μ = f+ ES +B and the true 

power for a test with nominal power as in Eq. 12 is,

(14)

The probability function is solved using the fact that  is sampled from a 

standard normal,

(15)

3. METHODS AND RESULTS

Figure 1 shows the near future completed pipeline for dataset specific quality analysis in 

DTI. Herein we present the methods and results for nearly all pieces of the Figure 1 pipeline. 

Two incomplete parts of the pipeline are the pipeline beginning and the pipeline end. The 

pipeline begins with data collected on the scanner being shipped to a cluster for analysis. 

Although the infrastructure for detection and automatic DTI processing is in place, for 

efficiency we use as a test case previously acquired data available online (see below). The 

end of the pipeline uses power analysis and normative values for quality analysis. Here we 

present first pass methods of visualizing and interpreting these results, but much information 

is contained in these values and further investigation is required before a more optimal 

output and statistical analysis is designed. Unless otherwise stated, all processing and 

analysis was performed in Matlab 2010 (Mathworks, Natick, MA).
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3.1 Experimental DTI Dataset and Pre-processing

Data were downloaded from the Multi-Modal MRI Reproducibility study [10] available 

online at www.nitrc.org. The dataset consists of 21 DTI datasets each repeated twice for a 

total of 42 DTI datasets. Full collection details are provided in the reference. Briefly, the 

DTI data was collected using a multi-slice, single-shot, echo planar imaging (EPI) sequence. 

Thirty two gradient directions were used with a b-value = 700 s/mm2 (j = 32, b = 700, (Eq. 

1)). Five So images were collected and averaged to form a single So image. The resulting 

images consisted of sixty-five transverse slices with a field of view = 212 × 212 mm, 

reconstructed to 256 × 256 voxels. Each voxel size is 0.83 × 0.83 × 2.2 mm. Matched DTI 

dataset pairs were registered to the same space through affine registration to an So target 

image and data were automatically masked and the brain volume isolated. Registration and 

masking were performed using FSL (FMRIB, Oxford, UK). Individual case inspection 

revealed that automatic masking was mostly successful but most images had less restrictive 

masking than optimal. The experimental error, σE (Eq. 3) was estimated at each voxel using 

the 32 differences of DWI between paired datasets. Assuming approximate normality for the 

empirical noise, σE
2 = Var(DWI(scan 1) − DWI(repeat scan))/2, where Var is the variance 

function.

3.2 Calculation of FAobs, BFA, and σbs (Figure 2)

Following the flowchart, first data underwent DTI processing. Diffusion tensor estimates 

were calculated by fitting the model (Eq. 1) to the data using a simple LLMMSE. FAobs for 

each voxel was then calculated according to Eq.2. Moving upwards along the flowchart, 

SIMEX was then performed to estimate the bias BFA. For the simulation step, noise added to 

the data (Eq. 4) was Rician distributed, which is approximately Gaussian for SNR > 5 [8]. 

(ωr) was averaged from K = 2000, 4000, 6000, and 8000 iterations for ω = 2, 4, 6, and 8 

respectively (Eqs. 4–5). The resulting set of (ωr) was fit to a polynomial of order 2 and the 

fit equation, (ω), extrapolated to ω = −1, producing FASMX. The SIMEX estimated bias, , 

was then calculated (Eq. 6). Travelling next to the lower path on the flowchart, bootstrap 

analysis was run in order to calculate the bootstrap estimated variance, σbs. The bootstrap 

method herein follows the methodology described in the theory section and used 700 

iterations to calculate σbs. Example output of FAobs, BFA, and σbs
2 for a mid-brain slice is 

shown in Figure 2, together with the spatial map of the estimated experimental variance for 

the DWI, σE
2.

3.3 Power Analysis (Figure 3)

The power analysis herein is framed by the statistically tractable and meaningful question, 

‘if all datasets in the study were collected at the measured data quality level, what is the 

power and alpha rate for a two sided hypothesis test at effect size ES?’. The specific 

hypothesis test is as described in the theory section with the test population being a 

hypothetical cohort with variance σbs and bias BFA and an adjustable sample size of n=15. 

Although the hypothesis test is not between two groups, as is usually the case with a DTI 

study, the power analysis for this hypothesis test represents a worst case scenario. Owing to 

the correlation between bias and FA, it is likely that two compared groups would have 

similar bias values. This hypothesis test assumes no bias in the comparison constant f, thus 
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reflecting an upperlimit for the largest bias discrepancy in a comparison study. With σbs and 

bias BFA, αT (Eq. 11) is calculated (Figure 3A). Power is then analyzed for an array of effect 

sizes and demonstrated for regions of interest ROI (Figure 3B). The power for all voxels 

within a slice at a specific effect size can also be visualized (Figure 3B). These images not 

only provide information on quality of the DTI dataset, but also represent the first graphical 

representation of power analysis for DTI and emphasize the potentially serious impact of 

bias on power and alpha rates.

3.4 Normative Values (Figure 4)

The FAobs, BFA, and σbs for each voxel in the 42 different DTI images collectively form a 

massive dataset, consisting of over 55 million values for each parameter. Three two way 

comparisons formed from all pairs of FA, BFA and σbs are shown in Figure 4A–C. 

Histograms for each parameter were constructed for each of the 42 DTI datasets using fixed 

b in widths and centers. For FAobs 481 bins were used with evenly spaced centers ranging 

from 0 to 1.2, for BFA 1201 bins were used with evenly spaced centers ranging from −2 to .

4, and for σbs 1818 bins ranging from .0011 to 2 were used. Bin widths were roughly based 

on the equation 3.5σ/55.72, (σ is standard deviation) and bin upper and lower limits were 

placed near minimum and maximum values. The average of each bin for each parameter are 

shown in Figure 4D–F together with evenly spaced standard deviations of a bin subset. .

4. DISCUSSION

Current practice for quantitative quality control in MRI can be improved through the use of 

quality analysis of experimental data itself. Here we demonstrate important steps towards 

creating a quality analysis pipeline for DTI data. The processing incorporates both the 

previously established bootstrap analysis for DTI metrics and, as bias is a known problem in 

DTI contrasts, the novel usage of SIMEX to estimate bias in those metrics. Although both 

bootstrap and SIMEX are computationally expensive, involving hundreds to thousands of 

loops per voxel (Figure 1), these methods are highly parallelizable and become timely and 

feasible with the incorporation of cluster computing. By incorporating these methods into an 

automatic pipeline, not only can these values be made available to the researcher for prompt 

feedback, but can also be stored for the creation of normative values or other applications 

such as comparisons between different experimental methods.

A first look at the power analysis and normative values from the pipeline offers some 

interesting insights. The pipeline incorporates power analysis in order to provide 

quantitative values that would be useful in deciding the levels of FA values that are 

distinguishable at the variability and bias level of the tested dataset. Accounting for bias or 

even estimating bias is not yet standard practice in DTI as bias estimation methods have 

only most recently been introduced. However, bias in the DTI data examined here proved to 

have surprisingly severe effects on power and alpha rate of the pipeline hypothesis test 

(Figure 2). As mentioned in materials in methods, this is a worst case scenario. But the 

analysis also provides strong confidence in the alpha and power rate for the predominantly 

unbiased and low variance white matter. The density plots (Figure 4A–C) offers a first 

insight into the surprising effect on alpha rate. Bias correlates more strongly with FAobs than 
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with σbc, causing substantial bias at σbc levels insufficient to mask the impact of bias. The 

normative histograms (Figure 4D–F) offer a comparison method for testing if a new dataset 

collected using the same DTI sequence is ‘reasonable’ and already suggest interesting 

patterns. For example. the large spike at FAobs = 1.0 in Figure 4D represent a cluster of 

voxels with negative Eigenvalues.

Remaining steps in the pipeline are to (1) streamline through addition and removal of useful 

values (e.g. incorporation of a model fit error map and/or quantify patient motion through 

the affine registration), (2) to investigate, likely using cluster analysis methods, interesting 

and potentially useful properties of the growing normative values, and (3) test on live data 

with researcher/clinician feedback. The basic method described herein and its future 

development should prove translatable to other areas of MRI experiments, e.g., BOLD or 

VASO, allowing automatic feedback on data quality and experimentally stability.
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Figure 1. 
Flow chart of quality analysis pipeline. The flow chart begins in the upper left corner with 

data collected on the scanner. The data undergoes DTI processing followed by analysis with 

SIMEX to measure bias, BFA, and bootstrap to measure the variance of FA, σbs. These 

parameters are then kept for the development of normative values and for power analyses.
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Figure 2. 
Three important parameters produced through the pipeline and the initial data variance. All 

images are from the dataset ‘Session01’ slice 36. (A) The FA values calculated from the 

initial tensor fit. (B) DWI variance for Session01 and its repeat scan Session25. (C) The 

bootstrap estimated variance of FAobs. (D) The SIMEX estimated bias.
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Figure 3. 
Power analyses incorporating bias. Values represent a ‘worst case scenario’ as described in 

materials and methods. Data shown are from dataset ‘Session01’ slice 36. The colorscale 

values for (A) are shared with the Y-axis for (B). (A) The true alpha rate for a hypothesis 

test with alpha = .05 and uncorrected bias. (B) The average power for three ROIs at various 

effect sizes. Gray matter (red) represents a low σbs high BFA case, deep gray matter (green) 

represents high σbs and medium BFA while white matter (blue) represents low σbs and near 

zero BFA. Note the white matter plot (blue) is symmetric, as is expected of an unbiased 

estimator. The dashed black line corresponds to an effect size, ES = −.05. (C) The power for 

ES = −.05. The three ROI used to create the plots in (B) are shown.
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Figure 4. 
Distribution of FAobs, BFA, σbs, and their histograms. Density of individual parameters (A–

C) represents 55.7 × 106 values and the colorbar scale represents the log10 of the total 

number of values found in each region. The distribution of histograms (D–E) represents 42 

histograms each from the 42 datasets, red error bars show the standard deviation of that bin. 

Before averaging, each bin value was normalized by the total number of voxels processed in 

that dataset. In all cases, the standard deviations are shown on a downsampled number of 

bins for ease of viewing.
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