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Abstract
Estrogens mediate profound effects throughout the body, and regulate physiological and
pathological processes in both women and men. The decreased incidence of many diseases in
premenopausal women is attributed to the presence of 17β-estradiol, the predominant and most
potent endogenous estrogen. In addition to endogenous estrogens, however, several manmade and
plant-derived molecules also exhibit estrogenic activity. Traditionally, the actions of 17β-estradiol
are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ, which function as ligand-
activated transcription factors. However, 17β-estradiol also mediates rapid signaling events via
pathways that involve transmembrane ERs, such as G-protein-coupled ER 1, (GPER, formerly
known as GPR30). In the past 10 years, GPER has been implicated in both rapid signaling and
transcriptional regulation. With the discovery of GPER-selective ligands that can selectively
modulate GPER function in cell experiments and preclinical studies, and the use of GPER-
knockout mice, many more potential roles for GPER are currently being elucidated. This Review
highlights the physiological roles of GPER in the reproductive, nervous, endocrine, immune and
cardiovascular systems, as well as its pathological roles in a diverse array of disorders including
cancer. GPER is emerging as a novel therapeutic target and prognostic indicator for these diseases.

Introduction
17β-Estradiol is commonly recognized as the female sex hormone with a critical role in the
development of the female reproductive organs and secondary sex characteristics. However,
this hormone is also essential to the development and function of the male reproductive
tract.1 In addition to the reproductive system, 17β-estradiol has important physiological
roles in almost every other arena of the body, including the nervous, immune, vascular,
muscular, skeletal and endocrine systems. As expected, therefore, 17β-estradiol and its
receptors contribute to multiple disorders, including cancer, cardiovascular diseases,
hypertension, osteoporosis, cognitive and behavioral alterations, neurodegenerative diseases,
metabolic disorders (such as obesity and diabetes) and immune disorders.2 Our
understanding of the widespread physiological effects of 17β-estradiol is complicated by the
existence of multiple types of estrogen receptors (ERs) and multiple modes of cellular
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signaling mechanisms that can span time frames from seconds to hours, or even days.3,4 The
pathophysiological mechanisms involving ERs are further complicated by a diverse array of
17β-estradiol-mimicking compounds, both synthetic and plant-derived, to which humans are
increasingly exposed.5

In this Review, we provide a brief overview of estrogen signaling and describe the discovery
and characterization of its receptors, with particular emphasis on G-protein-coupled estrogen
receptor 1 (GPER). We will also discuss studies that have elucidated the functions and
importance of GPER in health and disease and those that have revealed the therapeutic
potential of small-molecule regulators of GPER activity.

Estrogen receptors
ERα and ERβ

The first and best-described 17β-estradiol receptor (now called ERα) was identified in the
rat uterus in the 1960s.6,7 The second, less well-characterized receptor, ERβ, was identified
in the rat prostate in 1996.8 These highly homologous receptors function as ligand-activated
nuclear transcription factors that bind cis-acting estrogen response elements in the promoter
and enhancer regions of hormonally regulated genes.9 Both ERα and ERβ are soluble
receptors that can shuttle between the cytoplasm and the nucleus, but are found
predominantly in the nucleus (only ~5% of these receptors are present in the cytoplasm).4

Highly divergent and sometimes opposing functions for the two receptors have been
reported in studies of ERα-knockout and ERβ-knockout mice.10 In addition to their effects
on gene expression (that is, their genomic effects), these ERs are also associated with rapid
cellular signaling (termed non-genomic effects) that are thought to be mediated primarily by
membrane-associated forms of these receptors.11

Although multiple modes of action were suggested for these two ERs as early as the
1960s,1214 not all effects of 17β-estradiol, particularly the rapid and membrane-associated
signaling events, could be attributed to ERα and ERβ.15 In some cases, antagonists of these
receptors could not block certain rapid signaling events, which led to the prediction that
alternate membrane-bound ERs also existed.16 Interestingly, most of the 17β-estradiol-
mediated rapid signaling events are associated with G protein signaling or growth factor-
mediated pathways.

GPER
In 2000, it was reported that rapid 17β-estradiol-mediated activation of extracellular signal-
regulated kinases (ERKs) was dependent on the expression of an orphan, G protein-coupled
receptor with seven transmembrane domains.17 This receptor, which was then known as
GPR30, was cloned by many groups in the late 1990s.18–23 Following this initial report,
other papers described 17β-estradiol-mediated, GPR30-dependent, generation of cyclic
AMP (cAMP)25 and expression of Bcl-2,26 nerve growth factor27 and cyclin D2.28

Furthermore, other researchers described GPR30-mediated expression of c-Fos29 and an
interaction between the effects of progestin and GPR30 expression.30–32 Two studies
published in 2005 described binding of 17β-estradiol to GPR30 in GPR30-transfected COS7
and HEK293 cells as well as various breast cancer cell lines.33,34 Together, these results
suggested that GPR30 was a 17β-estradiol-binding receptor, which led to its designation as
G protein-coupled estrogen receptor 1 (GPER) in 2007. GPER is now known to be
expressed in numerous tissues,24 and research into its functions has substantially increased.
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Estrogen receptor ligands
Natural endogenous estrogens, predominantly 17β-estradiol, are the primary ligands of ERs.
17β-estradiol is synthesized predominantly in the ovaries, although it is also produced at
many sites throughout the body, including the breast, brain, adipose tissue and the arterial
wall, where it might have specialized local effects.35 The 17β-estradiol-based steroids estriol
(a GPER antagonist at high concentrations36), estrone and estrone sulfate can also modulate
biological functions, although their specific actions are less clear than those of 17β-
estradiol.37 Plasma concentrations of 17β-estradiol in premenopausal women are ~0.2–1.0
nmol/l, although it increases by many hundredfold during pregnancy. Local concentrations
in specific tissues can be much higher than the plasma values, for example in breast tissue
(10–20-fold)38 or in the placenta at term (~12 μmol/l).39 The hydrophobic nature of these
steroids allows them to diffuse passively through cell membranes and reach their
intracellular targets, the ERs.40

A large variety of natural and man-made chemicals also have estrogenic activity (Figure 1).5

Estrogenic compounds synthesized by plants (phytoestrogens) include flavonoids such as
coumestans and isoflavones.41 Synthetic estrogenic compounds (known as xenoestrogens,
environmental estrogens, or endocrine disruptors) include many pesticides, herbicides and
plastic monomers.5 Their widespread use results in chronic low-level exposure to these
compounds in humans.42 Although the majority of phytoestrogens and xenoestrogens are
believed to exert their physiological effects through modulation of ERα and ERβ,43 many of
these compounds also activate GPER, including the soy isoflavone genistein (for which
serum concentrations up to 500 nmol/l have been measured44), nonylphenol, the pesticides
DDT and DDE (dichlorodiphenyltrichloroethane and dichlorodiphenyldichloroethylene,
respectively), bisphenols45 (such as bisphenol A, which promotes testicular seminoma cell
proliferation46), the herbicide atrazine47 and possibly equol—a nonsteroidal equine estrogen
found in premarin48 that is formed by human gut bacteria as a metabolite of the isoflavone,
daidzein.49

17β-estradiol mimetics are also used extensively in clinical and therapeutic applications. For
example, 17α-ethynylestradiol is the predominant estrogen used in female contraceptives.
Drugs, such as tamoxifen and raloxifene, which are used in treatments for breast cancer and
osteoporosis, act as ER agonists in some tissues and ER antagonists in others, which led to
their designation as selective estrogen receptor modulators (SERMs).50 By contrast,
fulvestrant is a ‘pure’ ER antagonist that leads to ER degradation and/or downregulation,
which led to its designation as a selective estrogen receptor downregulator (SERD).51

However, some members of each of these classes of compounds can also act as GPER
agonists,17,34 which complicates the interpretation of their mechanisms of action and the
receptors involved under both physiological and disease conditions.52

GPER-selective ligands
Research into the specific activities of GPER has been aided by the discovery of GPER-
selective agents. Since the identification of the first GPER-selective agonist G-1 in 2006, a
number of reports have examined the disease-related or health-promoting effects associated
with GPER activation. Importantly, studies using G-1 at concentrations as high as 1–10
μmol/l showed no notable activity of this agent towards ERα in terms of activating or
inhibiting rapid signaling events,34 estrogen response element-mediated transcription,53 or
ERα downregulation.53 Furthermore, G-1 had no activity on 25 other important G-protein-
coupled receptors54 or in GPER-knockout mice,55–57 which provided evidence that G-1 is a
specific ligand for GPER.
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In 2009, a GPER-selective antagonist G15 was identified.58 G15 has a similar structure to
G-1,58 and is effective in inhibiting all G-1-mediated effects tested to date as well as many
17β-estradiol-mediated effects.58–62 The core structures of G-1 and G15 have been used to
generate several radiolabeled agents that can be used for imaging and potentially treatment
of GPER-expressing tumors in viv.63,64

GPER signaling
Although ERα and ERβ are accepted as the predominant nuclear receptors involved in the
genomic effects of estrogen, evidence also indicates that rapid modulation of cell-signaling
pathways occurs via a subpopulation of ERs located at the plasma membrane (Figure 2),4

which has led to speculation about the role of GPER.65 The localization of GPER, however,
seems to be predominantly intracellular,34,203 consistent with reports that describe the
constitutive internalization of plasma membrane GPER.135,204

Signaling through GPER occurs via transactivation of the epidermal growth factor receptor
(EGFR) and involves nonreceptor tyrosine kinases of the Src family.17 In this mechanism,
which is now also accepted for other G-protein-coupled receptors,66 stimulation of GPER
activates metalloproteinases and induces the release of heparin-binding EGF, which binds
and activates EGFR67 leading to downstream activation of signaling molecules, such as
ERK1 and ERK2.68 Moreover, 17β-estradiol-mediated activation of GPER stimulates
production of cAMP,25,33 intracellular calcium mobilization34,69,70 and PI3K activation.34

Further research in human breast cancer cells suggested that sphingosine kinase71 and
activation of integrin α5β1

72 were intermediates in 17β-estradiol-mediated EGFR
transactivation. The latter suggests a role for GPER in fibronectin assembly.72

In addition to the above-mentioned rapid signaling events, GPER also regulates
transcriptional activity, albeit indirectly, by activating signaling mechanisms that involve
cAMP, ERK and PI3K.{Meyer, 2009 #1462} The genes regulated by GPER include FOS
that encodes c-Fos,29 which forms a heterodimer with various other proteins to form the
transcription factor AP-1. In turn, these signaling pathways also activate other transcription
factors, such as steroidogenic factor 1,73 which induce expression of additional genes.74,75

GPER in Physiology and Disease
Reproductive system

The role of 17β-estradiol is best-defined in the reproductive system, where this hormone
regulates uterine and mammary development and function. Although roles for GPER are
implicated in almost every system of the body (Figure 3), conflicting observations have been
published.24 No clear developmental or functional defects occur in the reproductive organs
of GPER-knockout mice,76–79 whereas ERα-knockout mice displayed multiple reproductive
defects.80 Furthermore, in wild-type mice treated with G-1, no changes in ductal growth or
end bud formation were detected in mammary glands, and no uterine imbibition of water or
proliferative response in the mammary gland or endometrium was observed.78 However, in
another study, G-1 treatment of mice stimulated uterine epithelial proliferation by
approximately threefold, as compared to the ~15-fold increase in proliferation observed with
17β-estradiol.58 Importantly, blocking GPER with G15 reduced the 17β-estradiol-mediated
proliferative response by ~50%,58 which suggests that GPER contributes to this response.
Surprisingly, high concentrations of G-1 (1,000-fold greater than those needed to observe a
proliferative effect) reduce both 17β-estradiol-mediated uterine imbibition of water and
proliferation, through inhibition of ERK1 and/or ERK2 in the stroma and phosphorylation of
serine 118 in ERα. 81 These data suggest that GPER regulates uterine proliferation,
independently of ERα, in a process that may involve crosstalk with the 17β-estradiol–ERα
pathway.
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In addition to mammalian uterine effects, GPER is also involved in the regulation of meiotic
arrest in oocytes of the Atlantic croaker and zebra fish. In vitro, 17β-estradiol and G-1
reduced both spontaneous and progestin-induced oocyte maturation, whereas knockdown of
GPER or blockade of GPER with G15 prevented the inhibitory effects of 17β-estradiol,
which occur via an EGFR-dependent pathway.61,82 Furthermore, GPER expression in
granulosa and theca cells of the hamster ovary is regulated by gonadotropins and the estrous
cycle84 and, in this location, GPER regulates the 17β-estradiol-mediated stimulation of
primordial follicle formation.83 In humans, GPER enhances contractile responses to
oxytocin in the myometrium, which suggests a role for GPER in uterine contractility during
labor.85 Moreover, ERα, ERβ and GPER regulate the proliferative and apoptotic pathways
involved in spermatogenesis86–88 during male reproductive development. Overall, the roles
of GPER in the reproductive system are complex and require further investigation,
particularly with regard to human physiology.

Nervous system and neurohormonal pathways
The effects of 17β-estradiol in the central and peripheral nervous system include
maintenance of homeostasis, regulation of synaptic plasticity and cognition, neuroprotection
and modulation of pain sensation. Although many of these effects might involve ERα and
ERβ, increasing evidence indicates that GPER has multiple roles in 17β-estradiol-mediated
neurological functions. GPER mRNA and protein expression have been found throughout
the central and peripheral nervous system of male and female rodents, including in the
hippocampus, hypothalamus and midbrain, as well as the spinal cord and dorsal root
ganglia.70,89,90 However, conflicting results reporting expression in small arterial surface
vessels and pericytes in the brain also exist.76 Both ERα and GPER activate the ERK1/2
pathway in trigeminal ganglion neurons and increase allodynia, indicating a role for these
two ERs in temporomandibular disorder and migraine.91 Furthermore, in the rat, G-1
depolarizes spinal cord neurons,89 stimulates mechanical hyperalgesia via protein kinase C
ξ92 and mediates visceral hypersensitivity in the absence of inflammation.93

17β-Estradiol has many beneficial effects on the brain, including reducing neuronal loss
following stroke, increasing neuronal connectivity and improving cognitive performance.94

GPER has been implicated in 17β-estradiol-mediated effects on cholinergic neurons in the
basal forebrain, which suggests that this ER might be an important regulator of cognitive
function, particularly in women following menopause.95 In studies that used immortalized
hippocampal cell lines, GPER (along with ERα) was implicated in the protective effects of
17β-estradiol against glutamate-induced injury,62 although in cortical neurons G-1 did not
have any effect.96 However, in vivo studies showed that G-1 treatment replicates the effects
of 17β-estradiol in promoting neuronal survival following global ischemia in the brain.97,98

Altogether, these results suggest that GPER agonists might represent a new therapeutic
approach for stroke and chronic neurodegenerative diseases.99

In the brain, G-1 (like 17β-estradiol) attenuates serotonin receptor signaling in the
paraventricular nucleus of the hypothalamus and reduces responses to oxytocin and
adrenocorticotropic hormone, which suggests that GPER might have a role in mood
disorders.100 Furthermore, G-1 exhibited antidepressant properties in a mouse model of
depression, where it reproduced the effects of 17β-estradiol, which were inhibited by the
GPER-selective antagonist G15.58 In primates, GPER contributes to 17β-estradiol-mediated
regulation of luteinizing-hormone-releasing hormone neurons, which maintain gonadal
function and fertility.101 This effect probably also involved additional mechanisms.102

However, whereas GPER activation promoted short latency prolactin secretion, G-1 did not
affectthe 17β-estradiol-mediated negative feedback inhibition of either luteinizing hormone
secretion or lordosis behavior in rats.103 Studies with ERα-knockout mice showed that ERα
is required for 17β-estradiol regulated positive feedback control of hypothalamic
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gonadotropin release,104 which suggests that the actions of GPER are complex and possibly
also require the presence of ERα.

Immune system
17β-estradiol displays multiple effects in the regulation of immune responses, including the
development of T cells,105 autoimmune disease106,107 and inhibition of inflammation.106

Studies in ER-knockout and GPER-knockout mice have shown that GPER, along with ERα,
contributes to 17β-estradiol-induced thymic atrophy;79 ERα mediated the early blockage of
thymocyte development whereas GPER mediated thymocyte apoptosis. Furthermore, in
GPER-knockout mice engineered to express LacZ from the GPER promoter, numbers of L-
selectin-expressing T cells decreased, consistent with an altered production of these T cells
in the thymus.76 By contrast, other studies using GPER-knockout mice could not find any
difference in either 17β-estradiol-induced thymic atrophy108 or in 17β-estradiol-induced
ameliorative effects on arthritis or bone loss in a model of postmenopausal rheumatoid
arthritis.109 These findings suggest complex roles for 17β-estradiol and GPER in the
immune system.

Estrogens are increasingly receiving attention as potential anti-inflammatory agents for the
treatment of autoimmune diseases, particularly multiple sclerosis.107 In a mouse model of
multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), knocking out GPER
impaired the protective role of 17β-estradiol.55 In two other studies, treatment with G-1
reproduced the ability of 17β-estradiol to protect against the clinical and histological
manifestations of EAE through enhancing the immunosuppressive activity of CD4+Foxp3+

T cells, resulting in upregulation of programmed cell death55 and inhibition of inflammatory
cytokine production by macrophages.54 These findings suggest a protective role of GPER in
multiple sclerosis.

Although the protective effects of G-1 against EAE were absent in GPER-knockout mice,
17β-estradiol-mediated effects were partially retained, showing that ERα and GPER could
activate independent, yet overlapping, mechanisms. Further research showed that the
therapeutic effect of ethynyl estradiol in established EAE was mediated via GPER, but not
via ERα, and possibly involved production of the anti-inflammatory cytokine IL-10.110

Recent studies showed that G-1 treatment elicits de novo production of IL-10 in T helper
type 17 polarized cells, in vitro as well as in vivo, via an ERK1/2-dependent pathway.111

Thus, the immunomodulatory effects of G-1 mediated by activation of GPER indicate that
GPER agonists might have novel clinical applications in chronic inflammatory diseases.

Cardiovascular system
Endogenous 17β-estradiol is implicated in sex-specific differences observed in arterial
hypertension and cardiovascular disease,112,114 as the loss of 17β-estradiol production
following menopause accelerates these conditions.112,149 However, the cellular mechanisms
and signaling pathways conferring this protective effect of 17β-estradiol are only partially
understood.115 Although ERα and ERβ are implicated in the cardiovascular protective
effects of 17β-estradiol, a protective effect of 17β-estradiol is also seen in the absence of
both ERα and ERβ.116–118 These observations provided the initial evidence for the
existence of alternative receptors, such as GPER, and signaling pathways involved in 17β-
estradiol-mediated regulation of cardiovascular function.

GPER is expressed in mouse77 and human137 myocardium, as well as in cultured
cardiomyocytes.138 17β-Estradiol-mediated inhibition of calcium influx and contraction in
mouse cardiomyocytes is independent of ERα and ERβ,116 and deletion of GPER from
these cells leads to left ventricular dilatation and elevation of end-diastolic pressure in male,
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but not female, mice.139 In patients with myocardial infarction, ischemia–reperfusion injury
after reopening of the occluded coronary artery is a critical determinant of outcome and
complications, such as arrythmia and heart failure.140,141 Myocardial hypoxia owing to
infarction142 is an important stimulus that upregulates GPER expression in
cardiomyocytes.138 Several groups have independently demonstrated that G-1 treatment
after myocardial infarction led to reduced reperfusion-related injury and infarct size, and
improved contractile function in structurally normal hearts from rodents and humans of both
sexes.137,140,143–145 Similar benefits were also obtained for G-1 treatment in
cerebrovascular occlusion-related reperfusion injury, in animal models of stroke.97,146

Under these conditions, activation of GPER by G-1 resulted in reduced myocardial
expression of proinflammatory cytokines (IL-1β, IL-6 and tumor necrosis factor),145

increased activation of Akt,132 ERK1/2,132,143 increased phosphorylation of eNOS132 and
decreased mitochondrial permeability .144 These cardioprotective effects were blocked by an
inhibitor of PI3 kinase.132

GPER is expressed in human endothelial23,119 and smooth muscle cells,57,120 as well as in
intact arteries (Table 1).120 Expression of GPER in macrophages,128 which contribute to
atherogenesis, also suggests a functional role for GPER in atherosclerosis and the associated
inflammation (Table 1). In human endothelial cells, activation of GPER (but not of ERα) 121

inhibits cell proliferation,119 indicating an antiangiogenic role for this ER. In human and rat
vascular smooth muscle cells, activation of GPER by either G-157,122 or raloxifene123

stimulates the ERK1/2 pathway and inhibits growth, similar to the effect of ERα activation
in these cells.124 These findings are in keeping with the antiproliferative effects of 17β-
estradiol on vascular smooth muscle cells in ERα and ERβ double-knockout mice.117

Moreover, the GPER agonists G-1,57,60,125,126 genistein127 and fulvestrant125 cause
vasodilatation in human, porcine and rodent arteries, whereas this effect is blocked by the
GPER antagonist G1560 and is absent in GPER-deficient mice.57

Elevated vascular resistance is a key feature of arterial hypertension.114 Although GPER-
deficient mice exhibit a normal mean arterial blood pressure that does not change with
age,77 infusion of the GPER agonist G-1 markedly lowers blood pressure in normotensive57

and hypertensive rats.60,129,130 In rats with hypertensive cardiomyopathy, G-1 treatment
ameliorates diastolic dysfunction, reduces cardiac hypertrophy and decreases the size of
myocytes.129 This effect is probably mediated through direct vasodilatory actions of
G-157,126,131 or 17β-estradiol, as this hormone also has vasodilatory effects (which are
derived at least in part from GPER, as they are blocked by the GPER antagonist G15).60

Vasodilatory actions of G-1 involve both nitric-oxide-dependent and nitric-oxide-
independent pathways and have been observed in human, pig and rat arteries.57,60,126,130

Phosphorylation of eNOS as a result of GPER activation might contribute to this
response.49,132 At least some of the vasoprotective effects mediated by GPER are probably
the result of interference with endothelial cell dysfunction—a vascular abnormality common
to hypertension and coronary artery disease.113,133

Altogether, these data indicate a central regulatory role for GPER in cardiovascular function
and suggest that GPER agonists have potential roles in the treatment of vascular and
myocardial disease in both men and women.

Renal system
Endogenous 17β-estradiol is also implicated in the sex-specific differences in renal
disease,113 and GPER is implicated as it is expressed at high levels in renal tubules,90 as
well as in renal epithelial cells.135 In humans, the GPER locus is associated with low-renin
hypertension,134 which leads to kidney injury and vascular dysfunction (the latter
abnormality is ameliorated by G-1 treatment).130 Endothelial cell dysfunction is also present
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in animals with glomerulosclerosis, which leads to proteinuria due to loss of the glomerular
filter function. In hypertensive rats, GPER activation reduces proteinuria and improves
creatinine clearance despite continued hypertension.136 These findings suggest
renoprotective potential for GPER agonists in hypertensive nephropathy.

Pancreatic function and glucose metabolism
The increased prevalence of obesity, insulin resistance and diabetes after menopause
indicates a protective role for endogenous 17β-estradiol in premenopausal women.147,148

These protective effects are largely attributed to signaling via nuclear ERα, 150,151 as its
deletion results in obesity and insulin resistance.147,148 However, other forms of ERα
signaling are also involved in metabolic diseases;151,152 for example, insulin secretion
mediated by 17β-estradiol occurs through rapid signaling via membrane-bound ERs.160–162

Although ERα and ERb individually affect insulin action,147,148 mice deficient in GPER
develop insulin resistance and obesity in a sex-dependent manner.57,77,153 GPER activation
also has anti-inflammatory properties in pancreatic islets through attenuating the effects of
proinflammatory cytokines154 that are important for maintenance of metabolic function.155

The protective, antidiabetic effects of 17β-estradiol in islet cells seem to involve activation
of both membrane-bound ERα and GPER,56,156 and might also be induced by GPER
agonists, such as genistein.158

GPER is expressed in whole adipose tissue in humans and rodents,57,159 as well as in the
human liver,18–20,22,23 key target organs of insulin resistance.155 However, the role of
GPER in 17β-estradiol-mediated metabolic protection is not clearly defined. GPER is
expressed in the pancreatic islets of mice56,77,154,156,157 and humans,156 and in female mice
it maintains normal metabolic function.77 GPER deficiency results in a reduction in insulin
secretion (stimulated by 17β-estradiol, G-1 and glucose) from the pancreas, but does not
affect the morphology of pancreatic β-cells, which suggests that GPER has a key role in
maintaining the metabolic functions of insulin in mice77,163 and humans.164 Furthermore,
the protective effect of 17β-estradiol on survival of pancreatic β-cells in a mouse model of
type 1 diabetes mellitus is absent in GPER-deficient animals.56 Whether GPER contributes
to peripheral insulin resistance is currently not known. However, expression of GPER has
been reported in human skeletal muscle,56,77,154,156 and is unaffected by menopause.165

Bone growth and chondrocyte metabolism [heading level 2]
Bone and articular cartilage are hormone-sensitive tissues,166 and serum 17β-estradiol levels
inversely correlate with the risk of hip fracture in both women and men.167 Perhaps the best
evidence of a role for endogenous 17β-estradiol in overall bone health and formation of
trabecular bone in particular is the postmenopausal onset of osteoporosis. The bone-
preserving effects of estrogen therapy, especially with SERMs and SERDs,168 which act as
GPER agonists, indirectly suggest a role for GPER in bone metabolism. Endogenous 17β-
estradiol also has an important role in bone metabolism in men, since lack of 17β-estradiol
owing to aromatase deficiency169 or mutations in ESR1 (which encodes ERα)170 in men
leads to osteopenia, enhanced bone remodeling through increased bone resorption and
osteoclast activity and suppression of bone growth-plate closure.171 Although part of this
effect is mediated through ERα and ERβ,168 several avenues of research now suggest a role
for GPER in bone and cartilage metabolism. In bone, GPER is expressed in osteocytes,
osteoclasts and osteoblasts,172,173 and is also detected in chondrocytes,172,174 differentiation
of which is regulated by GPER.174 In addition, GPER expression also regulates bone
growth, as illustrated by several models of GPER-deficiency, albeit in a sex-dependent
manner. GPER deficieny inhibits bone growth in female mice;77 similar results were
reported in ovariectomized, estrogen-treated animals,108 suggesting a role for GPER in
estrogen-induced bone growth and development. By contrast, GPER-deficient male mice
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had increased femur size, bone mineral density, trabecularization and cortical bone
thickness.153 Tamoxifen, a GPER agonist, decreases tibia length independently from ERα or
ERβ.52 Although in vitro studies and clinical trials with SERMs show beneficial effects on
bone structure in postmenopausal women,168 the role of GPER in bone and chondrocyte
metabolism in humans is still not clear and warrants further study.

GPER in cancer growth and metastasis
17β-Estradiol is a critical mediator of breast carcinogenesis and is involved in a number of
other hormone-sensitive cancers. Normal breast tissue is highly sensitive to 17β-estradiol,
which stimulates proliferation of this tissue during puberty and pregnancy; thus, the majority
of breast cancers are highly responsive to 17β-estradiol and utilize 17β-estradiol signaling
pathways in cancer initiation, progression and metastasis.175 This understanding has led to
development of various cancer therapies that target 17β-estradiol signaling, the most widely
used of which is tamoxifen.176 Antiestrogen therapy has been extended to include SERDs
(such as fulvestrant), aromatase inhibitors (for postmenopausal women) and other SERMs
(such as raloxifene).50 Many of these agents, particularly tamoxifen and fulvestrant, are also
GPER agonists and have complex physiological and therapeutic actions. For example, long-
term 17β-estradiol deprivation in the weakly metastatic human breast cancer cell line
MCF-7 increased expression of GPER,197 whereas tamoxifen treatment of these cells
stimulated proliferation via GPER-mediated transactivation of EGFR.198

GPER is expressed in ~50% of all breast cancers, regardless of their ER status,186 although
conflicting results have been reported regarding coexpression of GPER and human
epidermal growth factor receptor 2 (Her2).184,186,188 Nevertheless, in general, GPER
expression in breast cancers correlates with clinical and pathological biomarkers of poor
outcome. High levels of GPER protein expression in samples of human breast cancers also
correlate with increased tumor size and metastasis.186 Importantly, in patients treated only
with tamoxifen, GPER protein expression increased and survival was significantly lower in
patients with initial GPER-positive tumors, suggesting breast cancer patients with high
GPER expression should not be treated with tamoxifen alone.{Ignatov, 2011 #2254} In
addition, GPER is widely expressed in cancer cell lines and primary tumors of the
breast,17,18,34,177,184–188 endometrium,178–180,189,190 ovaries,47,53,181,191,192 thyroid,180

lung,182 prostate,183 testicular germ cells193 and the brain (unpublished work). In cell lines
of thyroid, ovarian, endometrial and breast cancers, stimulation of GPER with 17β-
estradiol53,180,194 or other estrogenic compounds, such as atrazine,47 genistein,180 bisphenol
A46,195 or tamoxifen194 activates a signaling mechanism that typically promotes
proliferation, although inhibition of proliferation has also been reported.69 In particular,
genistein can stimulate MCF-7 cell growth via induction of acid ceramidase, which occurs
through a GPER-dependent mechanism.196 In endometrial cancer190 and ovarian cancer,191

high levels of GPER expression also predicted poor survival, whereas among post-pubertal
testicular germ cell tumors, GPER was highly expressed in intratubular germ cell tumors,
seminomas and embryonal carcinomas, with little expression in teratomas.193

Importantly, treatment of the ERα-negative human breast cancer cell line SKBr3 with 17β-
estradiol or tamoxifen increased the expression of several transcription regulators (including
c-Fos) and cytokines (particularly connective tissue growth factor, which promotes cancer
cell proliferation and migration).199 These data indicate that tamoxifen treatment might have
a cancer-promoting effect through GPER as discussed above. In support of this view,
endometrial GPER expression also correlated with tamoxifen-induced uterine pathology,
including bleeding and abnormal endometrial thickening,189 which correlates with an
increased incidence of endometrial cancer.201,202
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The overall role of GPER in breast cancer progression is complex. Genistein stimulates the
proliferation of MCF-7 cells through a GPER-dependent mechanism.196 Moreover, GPER is
implicated in 17β-estradiol-mediated activation of cancer-associated fibroblasts, which
promote tumor cell proliferation and metastasis through direct association of GPER with
chromatin.200 GPER expression was induced in breast cancer cells under hypoxic
conditions, which also suggests a cancer-promoting role for this ER, including a role in
hypoxia-induced angiogenesis.138 However, G-1 inhibits endothelial cell proliferation,
which indirectly suggests that GPER activity also inhibits angiogenesis.119 Despite these
conflicting data on the role of GPER in cancer, targeting its activity represents an important
new approach for cancer therapy.

Conclusions
The salutary effects of estrogens are well established in many diseases, and selective
activation of GPER by G-1, phytoestrogens, SERDS, or SERMS can reproduce the
beneficial effects of 17β-estradiol. The pace of research into the physiological and
pathological functions of GPER has been accelerating over the past 5 years, and potential
roles for GPER have now been identified in almost every system of the body. Thus, GPER-
selective agents that mimic the beneficial effects of 17β-estradiol without its associated
feminizing or other adverse effects could represent an important new family of drugs.

In addition, GPER-specific antagonists could be developed as important additions to the
armamentarium of drugs used to treat estrogen-sensitive cancers and other diseases in which
estrogen signaling is important. In this regard, the potential contribution of GPER-mediated
signaling to the effects of existing clinically approved drugs, such as tamoxifen and
fulvestrant, must be considered. GPER-mediated effects should also be taken into account in
the future development of SERMs and SERDs. In addition, further research is required to
determine to what extent the physiological effects of 17β-estradiol involve GPER signaling
and the precise roles of nonselective estrogen receptor ligands in health and disease. The co-
dependent, redundant and independent aspects of 17β-estradiol signaling through ERα, ERβ
and GPER are likely to be very complex and specific to particular cell types, tissues, ligands
and diseases. The data available to date nevertheless pose interesting questions about the
therapeutic potential of specifically targeting GPER in disease.
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Review criteria

A search for original articles was performed in PubMed. The search terms used included
“GPER”, “GPR30”, “estrogen”, “rapid signaling”, “SERM”, “reproduction”, “immune”,
“vascular”, “nervous”, “metabolism”, “bone” and “cancer” with no restriction on the
publication year, language or article type. Additional abstracts were also identified by
searching Google Scholar using similar keywords. Reference lists within identified
papers were also searched.
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Key points

• Estrogen has critical nonreproductive roles in health and disease, including in
the skeletal, nervous, endocrine, immune and cardiovascular systems, as well as
in many diseases and cancers

• The estrogen receptors (ERs) include ERα, ERβ and G-protein-coupled
estrogen receptor 1 (GPER); their expression and signaling mechanisms are
complex, and potentially exhibit redundant, independent, synergistic and/or
antagonistic actions

• Estrogenic compounds (selective ER modulators, ER antagonists, selective ER
downregulators, phytoestrogens and xenoestrogens) have multifaceted effects on
all types of ERs, as well as receptor-specific pharmacological profiles

• GPER -selective agonists, such as G-1, mediate many salutary effects of
estrogen in various tissues and organs without having any reproductive effects

• GPER represents an important diagnostic, prognostic and therapeutic target;
development of GPER-selective agonists and antagonists could contribute to the
diagnosis and treatment of many diseases
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Figure 1.
Structures of selective and nonselective estrogen receptor ligands. Compounds shown
include the three major physiological forms of estrogen (17β-estradiol, estrone and estriol);
the anticancer agent tamoxifen and its active metabolite 4-hydroxytamoxifen (which is both
a selective estrogen receptor modulator and an agonist for GPER); fulvestrant, a selective
estrogen receptor downregulator and agonist for GPER; diethylstilbestrol, a nonselective
GPER agonist; the phytoestrogens genistein and coumestrol; and the xenoestrogen bisphenol
A. Also shown are G-1 (a selective GPER agonist) and G15 (a selective GPER antagonist).
Abbreviation: GPER, G-protein-coupled estrogen receptor 1.
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Figure 2.
Nongenomic and genomic estrogen signaling pathways. Endogenous estrogens including
17β-estradiol (E2) are nonselective activators of the three known estrogen receptors (ERs),
ERα, ERβ and GPER. E2 activates nuclear ERs, inducing receptor dimerization, and
binding of receptor dimers to the promoters of target genes. Alternatively, activated ERs
modulate the function of other classes of transcription factors (TF) through protein–protein
interactions. Subpopulations of ERs at the plasma membrane (mER) activated by E2 interact
with adaptor proteins (adaptor) and signaling molecules such as c-Src, which mediates rapid
signaling via PI3K/Akt and MAPK pathways. E2, or selective agonists such as G-1, or
SERDs such as fulvestrant, or SERMs such as tamoxifen, also activate GPER, which is
predominantly localized intracellularly. GPER activation stimulates cAMP production,
calcium mobilization and c-Src, which activates matrix metalloproteinases (MMP). MMPs
cleave pro-heparin-binding-epidermal growth factor (HB-EGF), releasing free HB-EGF that
transactivates EGF receptors (EGFR). EGFR in turn activates MAPK and PI3K/Akt
pathway, which can induce rapid (nongenomic) effects (X), or genomic effects regulating
gene transcription. E2-mediated transcriptional regulation may involve phosphorylation (P)
of ER or other TFs that may directly interact with ER, or bind independently of ER within
the promoters of target genes.
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Figure 3.
Involvement of GPER action in regulation of physiological responses, including
neuroendocrine and cerebral functions, immune cell function, endocrine regulation and
metabolism, cardiovascular and kidney function, and reproductive functions. In addition,
studies using experimental models of disease and/or human tissue suggest roles for GPER in
diseases (such as diabetes, arterial hypertension, proteinuric renal disease, and immune
diseases such as multiple sclerosis and cancer;) shown in red. Collectively, such studies
suggest the therapeutic potential of regulating GPER activity as a novel approach for the
treatment of these conditions.
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