β_3 Receptors: role in cardiometabolic disorders

Shraddha V. Bhadada, Bhoomika M. Patel, Anita A. Mehta and Ramesh K. Goyal

Abstract: Pharmacological and molecular approaches have shown that an atypical β -adrenoceptor (AR), called β_3 -AR, that is distinct from β_1 -ARs and β_2 -ARs, exists in some tissues in heterogeneous populations such as β_{3a} -ARs and β_{3b} -ARs. β_3 -ARs belong to a superfamily of receptors linked to guanine nucleotide binding proteins (G proteins). The β_3 -AR gene contains two introns whereas the β_1 -AR and β_2 -AR genes are intronless, leading to splice variants. β_3 -ARs can couple to G_i and G_s and they are reported to be present in brown adipose tissue, vasculature, the heart, among other tissues. β_3 -ARs cause vasodilation of microvessels in the islets of Langerhans and may participate in the pathogenesis of cardiac failure, during which modification of β_1 -AR and β_2 -AR expression occurs. The development of β_3 -AR agonists has led to the elaboration of promising new drugs, including antiobesity and antidiabetic drugs. This article reviews the various pharmacological actions of β_3 -ARs and their clinical implications for diabetes and cardiovascular diseases.

Keywords: β_3 -adrenoceptors, antidiabetic, vascular smooth muscles

Introduction

The pressor effect of adrenal extracts was first shown by Oliver and Schafer in 1895. The active principle was named epinephrine by Abel in 1899. The existence of more than one adrenergic receptor was first proposed by Ahlquist in 1948. He proposed the terms α and β for receptors on smooth muscle where catecholamines produce excitatory and inhibitory responses respectively. Almost 50 years after Ahlquist first discovered evidence of the heterogeneity of adrenergic receptors [Ahlquist, 1948], the number of receptor subtypes is still unclear. β -Adrenoceptors (β -ARs) were later subdivided into β_1 and β_2 , which are present in the myocardium and smooth muscle respectively. Pindolol, a nonselective β -AR antagonist with significant agonist activity, was found to cause relaxation of canine-isolated perfused mesenteric vessels [Clark and Bertholet, 1983] and rat aorta precontracted with potassium chloride [Doggrell, 1990]. In both instances, the vasorelaxant effect of pindolol was not significantly antagonized by propranolol, suggesting the presence of a β -AR subtype different from the conventional β_1 -ARs and β_2 -ARs. The effect of isoprenaline was ascribed not only to activation of β_1 -ARs and

 β_2 -ARs, but also to that of an additional adrenoceptor [Doggrell, 1990; Clark and Bertholet, 1983]. Later on, the existence of a third β -AR came into light and Gauthier et al. [1996] found that stimulation of β_3 -AR in human cardiac muscle, in contrast with β_1 - and β_2 -AR stimulation, resulted in a profound dose-dependent negative inotropic effect and hence suggested the participation of β_3 -AR in the pathogenesis of cardiac failure. Moreover, various in vivo studies have also demonstrated that positive β_3 -ARrelated chronotropic effects were prevented by β_1 - or β_2 -AR antagonists and are likely due to baroreflex activation in response to β_3 -adrenoceptor agonist- induced vasodilation [Wheeldon et al. 1994; Takayama et al. 1993; Wheeldon et al. 1993; Tavernier et al 1992].

Studies using molecular and biochemical techniques are likely to provide additional new and unexpected insights into the role of AR subtypes in both normal physiologic functions and diseases. Initially the presence of β_3 -ARs was demonstrated in vasculature and heart, but later they were shown in adipocytes. β_3 -ARs mediate lipolysis in white adipose tissues and thermogenesis in brown adipose tissues [Lönnqvist *et al.* 1993; Langin Review

Ther Adv Endocrinol Metab (2011) 2(2) 65–79

DOI: 10.1177/ 2042018810390259

© The Author(s), 2011. Reprints and permissions: http://www.sagepub.co.uk/ journalsPermissions.nav

Correspondence to: Dr Ramesh K. Goyal, MSc(Medical), PhD(Pharmacy), F.I.C., FAMS, FICN, FIPS, FIACS, FNASc Vice Chancellor, MS

University of Baroda, Vadodara, Gujarat, India goyalrk@rediffmail.com

Shraddha V. Bhadada, MPharm

Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India

Bhoomika M. Patel, MPharm, PhD, D.P.M.M., D.P.Q.C.Q.A.M. Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India

Anita A. Mehta, MPharm, PhD, MAMS

Department of Pharmacology, LM College of Pharmacy, Ahmedabad, Gujarat, India et al. 1991; Zaagsma and Nahorski, 1990]. β₃-ARs represent a heterogeneous population, such as β_{3a} -ARs and β_{3b} -ARs, as suggested by the studies in Chinese hamster ovary cells. Furthermore, the activation and signal transduction of such a β_{3a} -AR and β_{3b} -AR complex may prevent the full potency of the β_3 -AR agonist [Hutchinson *et al.*] 2002]. The regulation of adrenergic receptors by receptor-specific agonists and antagonists has been actively studied for many years and is important clinically because alterations in these receptors have been suspected in many pathological states. The development of β_3 -AR agonists has led to the elaboration of promising new drugs and they are a target for antiobesity and antidiabetic drugs [Lowell and Flier, 1995; Pietri-Rouxel and Strosberg, 1995]. Although considerable information is available on β_3 -AR physiology in fat, there are many other areas in which β_3 -ARs are involved. The existence of an atypical β -AR, called β_3 -AR, distinct from β_1 -ARs and β_2 -ARs, has been demonstrated in various tissues by pharmacological [Berlan et al. 1993; Holloway et al. 1992; Tavernier et al. 1992; Langin et al. 1991; Mc Laughlin and MacDonald, 1990; Hollenga and Zaagsma, 1989; Bojanic et al. 1985] and molecular approaches [Granneman et al. 1991; Muzzin et al. 1991; Tate et al. 1991; Emorine et al. 1989]. The overview of location of β_3 receptors is given in Table 1. This review aims to provide an overview of the presence of β_3 -ARs in various tissues, with special emphasis on the clinical implications for diabetes and cardiovascular diseases.

Molecular structure and signal transduction mechanism of β receptors

ARs are members of a large superfamily of receptors linked to guanine nucleotide binding proteins (G proteins). All G-protein coupled receptors share structural features, such as extracellular amino terminals with sites for N-linked glycosylation, seven α -helical domains that span the plasma membrane, and intracellular carboxy terminals containing amino acid sequences that indicate probable sites of phosphorylation by one or more protein kinases. The G proteins, linked to adrenergic receptors, are heterotrimeric proteins with α , β , and γ subunits. Each subunit is part of a family consisting of multiple members [Simon et al. 1991]: approximately 20 a subunits that have been divided into four subfamilies $-\alpha_s$, α_i , α_q and α_{12} ; at least five β subunits (β_{1-5}); and at least six γ subunits (γ_{1-6}). Although several hundred different subunit combinations

(heterotrimers) are theoretically possible, the repertoire of G proteins used by a particular receptor system is limited [Hescheler and Schultz, 1994]. Each type of G protein can be used for signaling by more than one type of receptor. β_1 , β_2 and β_3 share approximately 60% amino acid sequence identity within the presumed membrane spanning domains. The β_3 -AR gene contains two introns [Lelias et al. 1993; Granneman et al. 1992] in contrast to β_1 -AR and β_2 -AR genes, which are intronless. This structure leads to splice variants. The B and C isoforms contain 12 and six additional amino acids, respectively, at their C terminus in comparison with the A isoform [Lelias et al. 1993; Granneman et al. 1992]. In rat adipocytes, a unique isoform is expressed that is close to the B isoform, whereas in human brown adipocytes, the C isoform is predominant [Lelias et al. 1993; Van Spronsen et al. 1993]. It was hypothesized that the physiological response to β_3 -AR stimulation differs depending on the isoform expressed in a given species [Levasseur *et al.* 1995]. The human β_3 -AR exists in at least two different agonist conformations with a similar high-affinity and low-affinity pharmacology analogous to β_1 -AR. Both conformations are present in living cells and can be distinguished by their pharmacological characteristics [Baker, 2005].

All β -AR subtypes signal by coupling to the stimulatory G protein $G_{\alpha s}$, leading to activation of adenvl cyclase and accumulation of the second messenger cAMP [Emorine et al. 1989; Frielle et al. 1987; Dixon et al. 1986]. Gs can directly enhance the activation of voltage-sensitive Ca²⁺ channels in the plasma membrane of skeletal and cardiac muscle. However, some recent studies indicate that, under certain circumstances, β_3 -AR can couple to G_i as well as to G_s [Gauthier et al. 1996; Xiao et al. 1995; Chaudry et al. 1994]. Multiple mechanisms control the signaling and density of G-proteincoupled receptors. Catecholamines, which are hydrophilic, do not bind to the highly charged extracellular domains of the receptors, as might be expected, but bind in the more hydrophobic membrane-spanning domains [Caron and Lefkowitz, 1993; Jasper and Insel, 1992].

On the basis of many pharmacological and molecular studies, the existence of a fourth β -AR subtype was postulated [Brodde and Michel, 1999; Galitzky *et al.* 1998; Strosberg *et al.* 1998; Kaumann, 1997; Strosberg, 1997;

Summers *et al.* 1997; Strosberg and Pietri-Rouxel, 1996; Barnes, 1995; Arch and Kaumann, 1993]. To date, at least nine subtypes of adrenergic receptors (three subtypes each of α_1 -ARs, α_2 -ARs, and β -ARs) have been identified. The precise function of all these receptors has not yet been defined, in part because of a dearth of highly specific agonists and antagonists. An alternative way to examine receptor function is to use molecular genetic techniques to overexpress or to knock out the expression of particular subtypes in laboratory animals [Milano *et al.* 1994a, 1994b; Bertin *et al.* 1993].

Pharmacological actions

Adipose tissue and diabetes

 β_3 -ARs mediate lipolysis in white adipose tissues and thermogenesis in brown adipose tissues [Lönnqvist et al. 1993; Langin et al. 1991; Zaagsma and Nahorski, 1990]. The presence of the Arg64 allele in the first intracellular loop of the β_3 -AR gene may predispose patients to abdominal obesity, which may in turn predispose them to insulin resistance and the earlier onset of type 2 diabetes mellitus (T2DM) [Widén et al. 1995]. A naturally occurring variation, $Trp^{64}Arg \beta_3$ -AR mutation, found in about 8% of Europeans and North Americans, actually restores the arginine residue in humans, which is found present in animals [Strosberg, 1997]. This variation was found to be associated with the following:

- 1. An increased capacity of obese French patients to gain weight [Clément et al. 1995].
- 2. An early onset of T2DM in obese Pima Indians by altering the balance of energy metabolism in visceral adipose tissue and tend to have a lower resting metabolic rate [Walston *et al.* 1995]. Similar observations were also reported in Japanese participants [Fujisawa *et al.* 1996].
- An early onset of T2DM and clinical features of the insulin resistance syndrome in Finns [Widén *et al.* 1995].

The Trp⁶⁴Arg β_3 -AR genotype is associated with mild gestational diabetes and this polymorphism is associated with increased weight gain during pregnancy [Festa *et al.* 1999]. The increased amount of adipose tissue after menopause is considered to elevate estradiol production, which in turn increases the risk for breast cancer. Thus, genetic traits that are related to obesity may influence the risk of postmenopausal breast cancer in an indirect manner [Huang et al. 2001]. A missense mutation in codon 64 of the β_3 -AR gene that results in substitution of tryptophan by arginine $[Trp^{64} \rightarrow Arg]$ in the first intracellular loop of the receptor protein has been reported in various ethnic groups, including the Japanese [Kadowaki et al. 1995]. A review [Arner and Hoffstedt, 1999] identified a link between obesity and the Trp64-Arg polymorphism in 13 studies. Also a polymorphism in codon 27 of the ADR β_2 gene that features a replacement of glutamine by glutamic acid $[Gln27 \rightarrow Glu]$ is linked with obesity [Large et al. 1997]. Thus, β_3 -ARs may constitute a target for antiobesity and antidiabetic drugs [Lowell and Flier, 1995; Pietri-Rouxel and Strosberg, 1995].

BRL 26830 (see Table 2), a selective β_3 -AR agonist, caused a marked increase in blood flow to brown adipose tissue in the anesthetized rat [Takahashi et al. 1992]. The increase in blood flow may well be secondary to an augmented metabolic process [Shen and Claus, 1993], since BRL 37344 (see Table 2) causes marked increases in the plasma levels of free fatty acids and insulin. In vitro studies have demonstrated that in rat [Granneman, 1992] and dog [Galitzky et al. 1993] fat cells, catecholamines stimulate β_3 -ARs at higher concentrations than those required to activate β_1 -ARs or β_2 -ARs. Similar results were demonstrated in dog in vivo studies [Pelat et al. 2003]. Also, BRL 26830A causes stimulation of insulin secretion in pancreas β cells [Yoshida et al. 1991].

In diabetic ZDF rats, CL 316243, a β_3 selective agonist (see Table 2) did not reduce hyperglycemia when given under acute conditions (single intravenous injections or subcutaneous infusions for a few days). However, long-term treatment of CL 316243 progressively normalized glycemia, reduced insulinemia and decreased the levels of circulating free fatty acids in obese diabetic ZDF rats. This treatment also markedly improved their glucose and insulin responses during an intravenous glucose tolerance test [Liu et al. 1998]. Hyperinsulinemic-euglycemic clamps combined with the [2-3H]deoxyglucose method revealed that chronic CL 316243 treatment markedly increased insulin responsiveness in obese rats and that it increases glucose uptake in brown adipose tissue, white adipose tissue, the diaphragm, and skeletal muscles, but not in the heart. The maximal capacity of various tissues for glucose

Table 1. Location of β_3 -adrenoceptors.

Organ	Species	Reference
Heart		
Atria	Human	Krief <i>et al.</i> (1993); Berkowitz <i>et al.</i> (1995)
Ventricle	Human	Gauthier <i>et al.</i> (1999)
Vascular smooth muscles		
Veins		Viard <i>et al.</i> (2000)
Cutaneous vascular smooth muscles	Canine	Berlan <i>et al.</i> (1994)
Vasculature		Tavernier <i>et al.</i> (1992); Shen <i>et al.</i> (1994);
		Rohrer <i>et al.</i> (1999)
Thoracic aorta	Rat	Trochu <i>et al.</i> (1999)
Internal mammary artery	Human	Rozec <i>et al.</i> (2005)
Non-vascular smooth muscles		
Gastrointestinal tract, brain, and prostate		Granneman et al. (1991); Emorine et al. (1989);
•		Bensaid <i>et al.</i> (1993); Rodriguez <i>et al.</i> (1995)
lleum	Rat	Roberts <i>et al.</i> (1995); Roberts <i>et al.</i> (1999)
Rectum and IAS membranes	Western blot studies	Rathi <i>et al.</i> (2003)
Urinary tract		Tomiyama <i>et al.</i> (1998)
Near-term myometrium	Human	Bardou <i>et al.</i> (2000)
Brown adipose tissues		Emorine <i>et al.</i> (1994)

Table 2. Agonists and antagonists of β_3 -adrenoceptors (ARs).

β_3 -Agonist	Chemical name
BRL 26830A BRL 35135 BRL 37344 CGP 12177 CGP 20712A	methyl 4-[2-[[2-hydroxy-2-phenethyl]amino]propyl]benzoate-2-butanedioate methyl 4-[2-[2-hydroxy-2-[3-chlorophenyl]ethylamino] propyl] phenoxyacetate 4-[-[[2-hydroxy-[3-chlorophenyl] ethyl]- amino] propyl] phenoxyacetate 4-[3-t-butylamino-2-hydroxypropoxy]benzimidazol-2-one 2-hydroxy-5-[2-[{2-hydroxy-3-[4-[1-methyl-4-trifluoromethyl-2-imidazolyl]phenoxy]propyl}amino]ethoxy] benzamide
CL 316243 FR-149175	disodium[<i>R</i> , <i>R</i>]-5-[2[[2-[3-chlorophenyl]-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate ethyl-[[S]-8-[[R]-2-[3-chlorophenyl]-2-hydroxyethylamino]-6,7,8,9-tetrahydro-5H-benzocyclohepten- 2-yloxylacetate_monobydrochloride_monobydrate
ICI 198157 ICI D7114 L 742,791 L 750355	methyl [4-[2-[[2-hydroxy-3-phenoxypropyl]amino]ethoxy]phenoxy]acetate [S]-4-[2-hydroxy-3-phenoxypropylaminoethoxy]-N-[2-methoxyethyl]phenoxyacetamide [S]-N-[4-[2-{[3-[4-hydroxyphenoxy]-2-hydroxypropyl]amino}ethyl]phenyl]-4-iodobenzenesulfonamide 3-pyridyloxypropanoloamine derivative
L755,507	4-[[[Hexylamino]carbonyl]amino]- <i>N</i> -[4-[2-[[[2 <i>S</i>]-2-hydroxy-3-[4-hydroxyphenoxy] propyl] amino]ethyl]phenyl]- benzenesulfonamide
L 770,644	[<i>R</i>]-4-[4-[3-cyclopentylpropyl]-4,5-dihydro-5-oxo-1 <i>H</i> -tetrazol-1-yl]- <i>N</i> -[4-[2-[[2-hydroxy-2- [3-pyridipyl]etbyl]amipol_etbyl]phenyl]- benzenesulfonamide
L 796568	[R]-N -[4-[2-[2-hydroxy-2-[3-pyridinyl]ethyl]amino]ethyl]-phenyl]-4-[4-[4-[trifluoromethyl]phenyl]thiazol-
LY 79771 R0363 SB 251023	[R-[R*,S*]] alpha-[[[3-[4-hydroxyphenyl]-1-methylpropyl]amino]methyl]benzenemethanol [-]-1-[3,4-dimethoxyphenethylamino]-3-[3,4-dihdroxyphenoxy]-2-propanol] oxalate [4-[1-{2-[S]-hydroxy-3-[4-hydroxyphenoxy]-propylamino} cyclopentyl methyl]phenoxymethyl]phenylphosphonic pecid lithium colt
SR 58611	[RS]- <i>N</i> -[[25]-7-ethoxycarbonylmethoxy-1,2,3,4-tetrahydronapth-2-yl]-[2R]-2-[3-chlorophenyl]- 2-hydroxyethanamine hydrochloride
SR 58611A	[N2S]-7-carbethoxymethoxy-1,2,3,4-tetrahydronaphth-2-yl-[2R]-2-hydroxy-2-chlorophenyl ethanamine hydrochloride
SR 59104A	N-[[6-hydroxy-1,2,3,4-tetrahydronaphthalen-[2R]-2-yl]methyl]-[2R]-2-hydroxy-2-[3-chlorophenyl]ethanamine hydrochloride
SR 59119A	N-[[7-methoxy-1,2,3,4-tetrahydronaphthalen-[2R]-2-yl]methyl]-[2R]-2-hydroxy-2-[3-chlorophenyl]ethanamine
ZD2079 ZD 7114 ZM 215001	4-[2-[[(2 <i>R</i>]-2-Hydroxy-2-phenylethyl] amino]ethoxy]-benzeneacetic acid hydrochloride [<i>S</i>]-4-[2-hydroxy-3-phenoxypropylaminoethoxy]- <i>N</i> -[2-methoxyethyl]phenoxyacetamide [S]-4-[2-hydroxy-3-phenoxy-propylamino-ethoxy] phenoxyacetic acid [<i>R</i>]- <i>N</i> -[4-[2-[[2-hydroxy-2-[3-pyridinyl]ethyl]amino]ethyl]phenyl]-1-[4-octylthiazol-2-yl]-5-indolinesulfonamide
β ₃ -Antagonist L 748328 SR 59230A	Chemical name [S]-N-[4-[2-{[3-[3-{aminosulfonyl}phenoxy]-2-hydroxypropyl]-amino}ethyl] phenyl]benzenesulfonamide 3-[2-ethylphenoxy]-1[1 <i>S</i>]-1,2,3,4-tetrahydronaphth-1-ylaminol-[2 <i>S</i>]2-propanol oxalate

uptake in CL 316243-treated animals varied in the following order: brown adipose tissue > heart > diaphragm > skeletal muscles > white adipose tissue [Liu et al. 1998]. This sequence of potencies agrees with previous observations for normal rats treated with insulin [Vallerand et al. 1987] or norepinephrine [Liu et al. 1994] as well as with cold-exposed animals [Vallerand et al. 1990]. Acute treatment of obese rodents with CL 316243 causes a number of diverse metabolic effects, including an increase in oxygen consumption and insulin levels, and a decrease in food intake. The mechanism by which CL 316243 increases insulin secretion in rodents is not known. Nevertheless, the stimulus for insulin secretion is extremely potent as it causes a 50 to 100-fold increase in insulin levels, which remain elevated (24-fold increase) despite the presence of hypoglycemia. This effect cannot be mediated by the direct effects of CL 316243 on pancreatic β cells because pancreatic islets appear not to express detectable levels of β_3 -AR mRNA and because insulin secretion is not stimulated following addition of CL 316243 to cultured pancreatic islets [Grujic et al. 1997].

In another study by Fu and colleagues [Fu et al. 2007], CL 316243 and BRL 37344 downregulated adiponectin, but upregulated adiponectin receptor 2 (not receptor 1) in epididymal and/or subcutaneous white adipose tissue and in brown adipose tissue. Tumor necrosis factor- α (TNF- α) expression was upregulated only in epididymal adipose tissue, which suggests that upregulation of TNF- α and downregulation of adiponectin by β-AR activation may contribute to the pathogenesis of catecholamine-induced insulin resistance, and that upregulation of adiponectin receptor 2 may be a feedback result of reduced adiponectin [Fu et al. 2007]. In addition, the effects of CL 316243 were investigated in obese diabetic KKAy mice by Fu and colleagues [Fu et al. 2008]. Two weeks' subcutaneous administration of CL 316243 reduced serum levels of glucose, insulin, triglyceride, free fatty acid and TNF- α , and increased adiponectin. CL 316243 recovered the mRNA expressions of adiponectin, adiponectin receptors and β_3 -ARs, which were reduced in epididymal white adipose tissue in KKAy mice. Meanwhile, CL 316243 suppressed the overexpressed mRNA level of TNF-a in both epididymal white adipose tissue and brown adipose tissue. These data suggest that the normalization of adiponectin, adiponectin receptors and

TNF- α may result in the amelioration of obesityinduced insulin resistance [Fu *et al.* 2008].

 β_3 -Agonists appear to be of significance not only in obesity but also in terms of the risks of cardiovascular disorders because visceral obesity is the most dangerous form of regional fat accumulation, the form of obesity that is more directly linked to β_3 -AR activity [Arner, 1995].

Vascular smooth muscles

 β_3 -ARs produce sustained peripheral vasodilation that is predominant in skin and fat [Shen et al. 1994; Berlan et al. 1993]. A study showed that the relaxation of rat thoracic aorta was caused by selective β_3 -AR agonists like CGP 12177 [Mohell and Dicker, 1989], cyanopindolol [Engel et al. 1981], ZD 2079 [Grant et al. 1994], ZM 215001 [Tesfamariam and Allen, 1994], and SR 58611 [Trochu et al. 1999] (see Table 2), further supporting the presence of β_3 -ARs [Brawley et al. 2000a, 2000b]. A β_3 -AR-mediated vasorelaxation was also observed in the canine pulmonary artery, an effect that was exerted through a cAMP-dependent pathway [Tagaya et al. 1999]. In the rat carotid artery, the selective β_3 -AR agonist BRL 37344 and the selective β_2 -AR agonist, salbutamol, were not antagonized by propranolol (100 nM), and pretreatment of the artery segments with BRL 37344 did not desensitize the tissue to the relaxant effect of isoprenaline and salbutamol [Oriowo, 1994]. In the same tissue, MacDonald and colleagues [MacDonald et al. 1999] confirmed the presence of β_3 -AR by the relaxant effects of two selective β_3 -AR agonists, BRL 37344 and ZD 2079. In normal dogs, the infusion of BRL 37344 or CL 316243 or CGP 12177 induced an increase in heart rate and cutaneous blood flow (evaluated in the internal part of the ear) [Berlan et al. 1994].

The Trp⁶⁴Arg mutation of β_3 -AR has been suggested to confer susceptibility to essential hypertension [Morris *et al.* 1994] and this was confirmed by Tonolo and colleagues [Tonolo *et al.* 1999]. These authors concluded that the Trp⁶⁴Arg polymorphism of the β_3 -AR gene is associated more often with high blood pressure than with normal blood pressure. Isoproterenol, BRL 37344 and CGP 12177 are reported to produce a reduction in arterial blood pressure. In sinoaortic denervated animals, isoproterenol infusion provoked tachycardia and hypotension [Tavernier *et al.* 1992]. It was demonstrated that a higher dose of isoproterenol is required

to obtain *in vivo* β_3 -mediated vasodilation than that necessary for β_1 - or β_2 -mediated vasodilation. The reason for this may be that β_3 -AR is a 'back-up' receptor activated during extreme or stressful conditions [Pelat *et al.* 2003].

Significant increases in systolic blood pressure and Doppler stroke distance occurred with BRL 37344 and salbutamol, which were unaffected by pretreatment with bisoprolol and completely blocked by nadolol, in keeping with the β_2 -mediated effects. BRL 37344 and salbutamol produced significant chronotropic effects, which were unaffected by β_1 -AR blockade [Wheeldon *et al.* 1994]. In a clinical study, isoprenaline produced an increase in systolic blood pressure and left ventricular stroke distance that was not attenuated by a dose of nadolol, which produced complete blunting of β_1 - and β_2 -mediated responses but not of β_3 -mediated effects [Wheeldon *et al.* 1993].

Experimental in vivo studies have demonstrated that positive β_3 -AR-related chronotropic effects were prevented by β_1 -AR or β_2 -AR antagonists and are likely due to baroreflex activation in response to β_3 -AR agonist-induced vasodilation [Tavernier et al. 1992; Takayama et al. 1993]. Apart from this, positive chronotropic effects were not observed in denervated animals and thus it was concluded that tachycardia resulted from a baroreceptor-mediated reflex in response to a drop in blood pressure caused by the vasodilating action of β_3 -AR agonists [Berlan *et al.* 1994; Shen et al. 1994]. In normal dogs, infusion of isoproterenol, BRL 37344 or CGP 12177 increased heart rate with the following order of potency: BRL 37344 > isoproterenol >> CGP 12177. Isoproterenol stimulated adenylate cyclase activity in heart membranes from normal dogs, whereas CGP 12177 and BRL 37344 were without any stimulating action [Tavernier et al. 1992]. In vitro studies are more suitable in analyzing the cardiac effects of β_3 -ARs. A typical example of the masking effects of baroreflex activation lies with 1,4-dihydropyridines, which induce a negative inotropic effect in vitro, but a positive chronotropic and inotropic effect in vivo as a consequence of vasodilation [Piepho, 1991].

The presence of β_3 -ARs has also been reported in veins. In the rat portal vein, activation of β_3 -ARs stimulates L-type Ca^{2+} channels through a G\alpha_s-induced stimulation of the cyclic AMP/ protein kinase, a pathway and the subsequent

phosphorylation of the channels [Viard *et al.* 2000]. In rats, the selective β -AR agonist CL 316243 induced marked increases in islet blood flow and plasma insulin level, and these increases were stopped by bupranolol, a β_1 -AR, β_2 -AR and β_3 -AR antagonist, but not by nadolol, a β_1 -AR and β_2 -AR antagonist, indicating that β_3 -ARs caused a vasodilation of microvessels in the islets of Langerhans [Atef *et al.* 1996].

Cardiac effects

 β_3 -AR stimulation of the human cardiac muscle, in contrast with β_1 -AR and β_2 -AR stimulation, resulted in a profound dose-dependent negative inotropic effect. This unexpected finding suggests that β_3 -ARs may participate in the pathogenesis of cardiac failure, during which modification of β_1 -AR and β_2 -AR expression occurs [Brodde, 1993]. Functional β_3 -ARs stimulation, which occurs in the normal left ventricle, causes direct inhibition on $(Ca^{2+})_{iT}$ and $I_{Ca,L}(L-type$ Ca channels) and produces a negative inotropic action [Cheng et al. 2001]. In another study, it was found that β_3 -AR activation inhibits the L-type Ca^{2+} channel in both normal and heart failure rat myocytes. In heart failure, β_3 -AR stimulation-induced inhibition of Ca²⁺ channels is enhanced, which is responsible for reduced inotropic response [Zhang et al. 2005]. β_3 -AR agonists induce negative inotropic effects with the following order of potency: BRL 37344 > SR 58611 = CL 316243 > CGP 12177, similar to that observed in Chinese hamster ovary cells transfected with human β_3 -ARs [Pietri-Rouxel and Strosberg, 1995; Dolan et al. 1994]. In another study, the mechanical effects of BRL 37344 were not modified by pretreatment with metoprolol (β_1 -AR antagonist) or nadolol, indicating that this effect was not mediated by β_1 -ARs or β_2 -ARs. By contrast, bupranolol, which possesses β_3 -AR antagonist properties [Pietri-Rouxel and Strosberg, 1995; Galitzky et al. 1993; Sugasawa et al. 1992], antagonized the negative inotropic effects of BRL 37344 with a pA₂ value similar to that determined in adipocytes [Galitzky et al. 1998; Pietri-Rouxel and Strosberg, 1995].

In heart failure, increased activity of the sympathetic nervous system leads to downregulation of cardiac β_1 -ARs and β_2 -ARs [Brodde, 1993] resulting from their phosphorylation by cAMP-dependent protein kinase or β -AR kinase. Reduced β_1 -ARs and β_2 -ARs lead to a decrease in the contractile response to β -AR agonists

[Strosberg, 1993]. Contrary to β_1 -ARs and β_2 -ARs, the abundance of the negatively inotropic β_3 -ARs increases in the failing myocardium [Moniotte et al. 2001]. B₃-ARs lack phosphorylation sites for cAMP-dependent protein kinase or β -AR kinase [Strosberg, 1993], and thus may not be downregulated in heart failure. According to this hypothesis, the high adrenoceptor tone during heart failure may alter the cardiac contractile activity as a result of unmasked β_3 -AR stimulation in the presence of reduced β_1 -ARs and β_2 -ARs [Gauthier *et al.* 1996]. Overstimulation of the relatively desensitization-resistant β_3 -AR [Liggett et al. 1993] after increased sympathetic tone and norepinephrine release in the setting of heart failure in humans may further decrease cardiac inotropy [Moniotte et al. 2001]. The levels of β_3 -AR mRNA and proteins show an increase in the failing heart compared with the nonfailing heart. The β_3 -AR agonist BRL 37344 was found to markedly aggravate the cardiac function and stimulate cardiac myocytes apoptosis in the failing heart. If the levels of β_3 -AR are too high, they might contribute to the loss of cardiac function and be the foundation of the functional degradation of heart failure [Kong et al. 2004]. Moreover, another study in isoproterenolinduced chronic heart failure rats suggests that the myocardial upregulation of β_3 -AR in heart failure is associated with increased oxidative stress [Kong et al. 2010]. These studies open the perspective for correcting the disordered adrenergic regulation of the failing heart with specific antagonists of the human cardiac β_3 -AR. By contrast, Rasmussen *et al.* (2009) reported that as increased intracellular myocyte Na+ levels represent a key adverse pathophysiological feature of heart failure, and the β_3 -AR mediates the stimulation of the only export route for Na+ - the Na+-K+ pump - the upregulation of this receptor may also represent a useful compensatory mechanism. Data from animal studies and circumstantial observations from clinical trials suggest that β_3 -AR activation is beneficial in severe heart failure, and that β_3 -AR agonists are a promising therapeutic option for the treatment of this disease (Rasmussen et al. 2009). In transgenic mice with cardiac-specific overexpression of protein of the human β_3 -AR (TG β_3 mice), the human β_3 -AR is quiescent until stimulated with a selective agonist L 755,507, at which point there is a marked augmentation in left ventricular contractility. In addition, because β 3-AR is relatively insensitive to catecholamines, it would be

minimally activated by endogenous catecholamines. This approach could have important therapeutic potential in patients with heart failure, in which delivery of the human β 3-AR by gene therapy could provide a functionally inactive signaling protein that becomes activated only when a highly selective agonist is exogenously administered [Kohout *et al.* 2001].

In congestive heart failure (CHF), β_3 -AR expression is increased. This augmentation is proposed to exacerbate the dysfunctional $[Ca^{2+}]_i$ regulation, enhance inhibition of cardiac contraction and relaxation, and lead to worsening of cardiac failure [Cheng et al. 2001]. In CHF, when marked increases in sympathetic tone and cardiac norepinephrine release have rendered the positive inotropic β_1 -AR system relatively unresponsive, the upregulated β_3 -AR pathways would continue to exhibit a negative inotropic effect. This altered balance between opposing inotropic influences of β_1 -ARs and β_3 -ARs in CHF may contribute to progressive cardiac dysfunction in CHF. The enhanced response to β_3 -AR stimulation in CHF may also be related to increased numbers of β_3 -ARs or an altered signal transduction [Cheng et al. 2001]. As shown in Figure 1, in CHF, NO-cGMP signaling may be altered [Mohan et al. 1996], thereby altering CHF myocyte response to β_3 -AR stimulation [Cheng *et al.* 2001]. The enhanced contractile response to β_3 -AR stimulation in CHF myocytes of dogs may be coupled to G_i through both NO-dependent and NO-independent mechanisms [Cheng et al. 2001]. The activation of G_i also has the potential to couple β_3 -ARs to other important signaling pathways such as mitogen-activated protein kinase [Soeder et al. 1999]. The increase in other neurohormonal activation, such as TNF- α , endothelin 1, and angiotensin II, may also differentially modulate β_3 -AR expression and function. These studies indicate that using β_3 -AR agonists for the treatment of obesity and diabetes [Arch et al. 1984] may have cardiac side effects, especially in patients with CHF [Cheng et al. 2001]. Also, these studies suggest several novel therapeutic strategies for the treatment of CHF, such as the use of β_3 -AR antagonists or G_i inhibitors. Gan and colleagues [Gan et al. 2007a] reported that a β_3 -AR antagonist SR 59230A can block the β_3 -AR-nitric oxide synthase (NOS)-cyclic GMP pathway and improve cardiac function in heart failure in rats if administered long term. SR 59230A can also attenuate cardiac remodeling by inhibition of interstitial

Figure 1. Postulated changes in β -adrenoceptor signaling in cardiomyocytes from nonfailing to failing myocardium.

eNOS, endothelial nitric oxide synthase.

fibrosis to a certain degree, which may help to improve cardiac function in heart failure [Gan *et al.* 2007b]

 β_3 -ARs are involved in the vasomotor control of the internal mammary artery and thus open new fields of investigation in coronary bypass graft management, heart failure, and hypertension [Rozec *et al.* 2005]. In the hearts of long-term diabetic rats, the expression of β_1 -ARs decreases, whereas that of β_3 -ARs increases. This may suggest that a decrease in β_1 -AR together with an increase in β_3 -AR expression might be involved in the development of diabetes-induced cardiac dysfunction [Dincer *et al.* 2001].

In cardiac myocytes, repolarization of the action potential is produced by several potassium currents [Barry and Nerbonne, 1996] like very slow activating and deactivating delayed rectifier potassium current (IKs). This current represents the predominant repolarizing current during increased heart rate [Zeng et al. 1995; Jurkiewicz and Sanguinetti, 1993; Varnum et al. 1993]. The channel underlying IKs is formed by the assembly of two transmembrane proteins, the KvLQT1 and MinK protein [Barhanin et al. 1996; Sanguinetti et al. 1996]. The IKs current amplitude in the heart is increased by catecholamines, which are mediated by β -ARs [Lo and Numann, 1998; Sanguinetti et al. 1991; Duchatelle-Gourdon et al. 1989]. Catecholamines develop negative inotropic effects and shorten the human cardiac action potential through β_3 -ARs [Gauthier *et al.*] 1996]. The shortening of the human cardiac action potential under β_3 -AR stimulation may be because they can couple functionally to the KvLQT1/MinK potassium channel in the Xenopus oocyte expression system, which involves G proteins [Kathofer et al. 2000]. The shortening of cardiac action potentials is expected to affect the repolarization process, thereby potentially triggering arrhythmias. The coupling of the KvLQT1/MinK channel to the β_3 -AR may have important implications for arrhythmogenesis in the heart and thus may open new perspectives for the prevention and treatment of cardiac arrhythmias [Kathofer et al. 2000]. The findings of Zhou and colleagues [Zhou et al. 2008] suggested that β -AR blocking agents with β_3 -AR agonist properties might be useful for cardiac arrhythmia control after myocardial infarction, especially in treating ventricular tachycardia storms.

Endothelium

After L-NAME treatment or removal of endothelium, relaxant responses to isoprenaline were found to be unaffected by propranolol, suggesting that they were mediated by β_3 -ARs and/or the low-affinity state of β_1 -ARs, formerly proposed as putative β_4 -ARs [Brawley *et al.* 1998].

In the rat thoracic aorta, β_3 -ARs act in conjunction with β_1 -ARs and β_2 -ARs to mediate relaxation through activation of an NOS pathway and subsequent increase in cyclic GMP levels [Trochu et al. 1999]. In human vessels, β_3 -AR relaxation was also found to be mediated partly through NO production. This was evidenced by its complete abrogation by NOS inhibition under circumstances when both prostanoids and endothelium-derived hyperpolarizing factors (EDHFs) are inoperative (that is, after cyclooxygenase inhibition and preconstriction with high potassium chloride respectively) [Dessy et al. 2004]. This may be caused by functional coupling of β_3 -AR agonists to NO production in whole human ventricular muscle through $G_{\alpha i}$ proteins [Moniotte et al. 2001; Gauthier et al. 1998]. Endothelial cells produce a hyperpolarization leading to vascular muscle relaxation through activation of calcium-dependent K⁺ channels [Busse et al. 2002]. Dessy and colleagues [Dessy et al. 2004] demonstrated vessel hyperpolarization in response to β_3 -AR agonists and the abrogation of β_3 -AR-mediated relaxation after vessel pretreatment with the K⁺ channel inhibitors charybdotoxin and apamin, two signatures of an EDHF response. These results are also in agreement with the recent proposition of β_3 -AR-mediated relaxation through K⁺ channel activation in rat aorta [Rautureau et al. 2002].

Functional β_3 -AR vasorelaxation mediated in part by EDHFs in human coronary resistance arteries may have a major bearing on our understanding of regulating coronary perfusion in circumstances such as dyslipidemia, diabetes and atherosclerosis, all associated with decreased NO production and/or bioavailability.

Conclusions

Almost 50 years after Ahlquist first uncovered evidence of the heterogeneity of adrenergic receptors, the number of receptor subtypes is still unclear, although nine subtypes are well documented (three subtypes each of α_1 -ARs, α_2 -ARs and β -ARs). Adrenergic receptors are members of a large superfamily of receptors linked to G proteins. The identification of new subtypes of receptors offers the promise of new therapeutic agents. β_3 -ARs, which are found at unique sites such as in brown adipose tissue and the gallbladder, are potential targets for antiobesity drugs. Although considerable information is available on β_3 -AR physiology in fat, there are many other areas in which β_3 -ARs are involved. The presence of β_3 -ARs in vasculature and heart provides new avenues for the development of innovative type-specific drugs. Since alterations in adrenergic receptors have a role in many clinical settings, the development of such agonists and antagonists may give therapeutic potential for the treatment of various disorders, including diabetes mellitus, hypertension, dyslipidemia, cardiac arrythmias, heart failure and diabetesinduced cardiac dysfunction . It is known that using β_3 -AR agonists to treat obesity and diabetes may have cardiac side effects, especially in patients with CHF. However, with the knowledge that there are two types of β_3 -ARs (β_{3a} and β_{3b}), it may be possible to develop subtype-specific drugs that are more effective and have fewer side effects than those currently available.

Conflict of interest statement

This article received no specific grant from any funding agency in the public, commercial, or notfor-profit sectors.

References

Ahlquist, R.P. (1948) A study of the adrenotropic responses. Am J Physiol 153: 586–600.

Arch, J.R., Ainsworth, A.T., Cawthorne, M.A., Piercy, V., Sennitt, M.V., Thody, V.E. *et al.* (1984) Atypical β -adrenoceptor on brown adipocytes as target for antiobesity drugs. *Nature* 309: 163–165.

Arch, S.J. and Kaumann, A.J. (1993) Beta 3 and atypical beta-adrenoceptors. *Med Res Rev* 13: 663–729.

Arner, P. (1995) The β_3 -adrenergic receptor-a cause and a cure of obesity? *N Engl J Med* 333: 382–383.

Arner, P. and Hoffstedt, J. (1999) Adrenoceptor genes in human obesity. *J Intern Med* 245: 667–672.

Atef, N., Lafontan, M., Doublé, A., Hélary, C., Ktorza, A. and Pénicaud, L. (1996) A specific β_3 -adrenoceptor agonist induces increased pancreatic islet blood flow and insulin secretion in rats. *Eur J Pharmacol* 298: 287–292.

Baker, J. (2005) Evidence for a secondary state of the human β_3 -adrenoceptor. *Mol Pharmacol* 68: 1645–1655.

Bardou, M., Loustalot, C., Cortijo, J., Simon, B., Naline, E., Dumas, M. *et al.* (2000) Functional, biochemical and molecular biological evidence for a possible β_3 -adrenoceptor in human near-term myometrium. *Br J Pharmacol* 130: 1960–1966.

Barhanin, J., Lesage, F., Guillemare, E., Fink, M., Lazdunski, M. and Romex, G. (1996) K_vLQT1 and IsK (minK) proteins associate to form the I_{KS} cardiac potassium current. *Nature* 384: 78–80.

Barnes, P.J. (1995) Beta-adrenergic receptors and their regulation. Am J Respir Crit Care Med 152: 838–860.

Barry, D.M. and Nerbonne, J.M. (1996) Myocardial potassium channels: Electrophysiological and molecular diversity. *Annu Rev Physiol* 58: 363–394.

Bensaid, M., Kaghad, M., Rodriguez, M., Le Fur, G. and Caput, D. (1993) The rat beta 3-adrenergic receptor gene contains an intron. *FEBS Lett* 318: 223–226.

Berkowitz, D.E., Nardone, N.A., Smiley, R.M., Price, D.T., Kreutter, D.K., Fremeau, R.T. *et al.* (1995) Distribution of β_3 -adrenoceptor mRNA in human tissues. *Eur J Pharmacol* 289: 223–228.

Berlan, M., Galitzky, J., Bousquet-Melou, A., Lafontan, M. and Montastruc, J.L. (1993) β_3 -Adrenoceptor-mediated increase in cutaneous blood flow in the dog. *J Pharmacol Exp Ther* 268: 1444–1451.

Berlan, M., Galitzky, J., Bousquet-Melou, A., Lafontan, M. and Montastruc, J.L. (1994) Beta-3 adrenoceptor-mediated increase in cutaneous blood flow in the dog. *J Pharmacol Exp Ther* 268: 1444–1451.

Bertin, B., Mansier, P., Makeh, I., Briand, P., Rostene, W., Swynghedauw, B. *et al.* (1993) Specific atrial overexpression of G protein coupled human beta 1 adrenoceptors in transgenic mice. *Cardiovasc Res* 27: 1606–1612.

Bojanic, D., Jansen, J., Nahorski, S. and Zaagsma, J. (1985) Atypical characteristics of the β -adrenoceptor mediating cyclic AMP generation and lipolysis in the rat adipocyte. *Br J Pharmacol* 84: 131–137.

Brawley, L., MacDonald, S. and Shaw, A.M. (1998) Role of endothelium in classical and atypical β -adrenoceptor-mediated vasorelaxation in rat isolated aorta. *Br J Pharmacol* 122: 395.

Brawley, L., Shaw, A.M. and MacDonald, A. (2000a) β_1 - β_2 - and atypical β -adrenoceptor-mediated relaxation in rat isolated aorta. *Br J Pharmacol* 129: 637–644.

Brawley, L., Shaw, A.M. and MacDonald, A. (2000b) Role of endothelium/nitric oxide in atypical β -adrenoceptor-mediated relaxation in rat isolated aorta. *Eur J Pharmacol* 398: 285–296.

Brodde, O.E. (1993) β -Adrenoceptors in cardiac disease. *Pharmacol Ther* 60: 405–430.

Brodde, O.E. and Michel, M. (1999) Adrenergic and muscarinic receptors in the human heart. *Pharmacol Rev* 51: 651–689.

Busse, R., Edwards, G., Félétou, M., Fleming, I., Vanhoutte, P.M. and Weston, A.H. (2002) EDHF: Bringing the concepts together. *Trends Pharmacol Sci* 23: 374–380.

Caron, M.G. and Lefkowitz, R.J. (1993) Catecholamine receptors: Structure, function, and regulation. *Recent Prog Horm Res* 48: 277–290.

Chaudry, A., MacKenzie, R.G., Georgic, L.M. and Granneman, J.G. (1994) Differential interaction of beta (1)- and beta (3)-adrenergic receptors with G (i) in rat adipocytes. *Cell Signal* 6: 457–465.

Cheng, H., Zhang, Z., Onishi, K., Ukai, T., Sane, D. and Cheng, C. (2001) Upregulation of functional β_3 -adrenergic receptor in the failing canine myocardium. *Circ Res* 89: 599.

Clark, B.J. and Bertholet, A. (1983) Effects of pindolol on vascular smooth muscle. *Gen Pharmacol* 14: 117–119.

Clément, K., Vaisse, C., Manning, B.S.J., Basdevant, A., Guy-Grand, B., Ruiz, J. *et al.* (1995) Genetic variation in the β_3 -adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. *N Engl J Med* 333: 352–354.

Dessy, C., Moniotte, S., Ghisdal, P., Havaux, X., Noirhomme, P. and Balligand, J.L. (2004) Endothelial β_3 -adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. *Circulation* 110: 948–954.

Dincer, U.D., Bidasee, K., Güner, S., Tay, A., Özçelikay, A.T. and Altan, V.M. (2001) The effect of diabetes on expression of β_1 -, β_2 -, and β_3 -adrenoreceptors in rat hearts. *Diabetes* 50: 455–461.

Dixon, R.A., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T. *et al.* (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. *Nature (Lond)* 321: 75–79.

Doggrell, S.A. (1990) Relaxant and beta 2-adrenoceptor blocking activities of $(\pm)-$, (+)- and

(-)-pindolol on the rat isolated aorta. *J Pharm Pharmacol* 42: 444–446.

Dolan, J.A., Muenkel, H.A., Burns, M.G., Pellegrino, S.M., Fraser, C.M., Pietri, F. *et al.* (1994) Beta-3 adrenoceptor selectivity of the dioxolane dicarboxylate phenethanolamines. *J Pharmacol Exp Ther* 269: 1000–1006.

Duchatelle-Gourdon, I., Hartzell, H.C. and Lagrutta, A.A. (1989) Modulation of the delayed rectifier potassium current in frog cardiomyocytes by betaadrenergic agonists and magnesium. *J Physiol (Lond)* 415: 251–274.

Emorine, L., Blin, N. and Strosberg, A.D. (1994) The human β_3 -adrenoceptor: the search for a physiological function. *Trends Pharmacol Sci* 15: 3–7.

Emorine, L.J., Marullo, S., Briend-Sutren, M.M., Patey, G., Tate, K., Delavier-Klutchko, C. *et al.* (1989) Molecular characterization of the human β_3 -adrenergic receptor. *Science (Wash DC)* 245: 1118–1121.

Engel, G., Hoyer, D., Bertold, R. and Wagner, H. (1981) $(\pm)(^{125}$ Iodo)cyanopindolol, a new ligand for β -adrenoceptors: Identification and quantification of subclasses of β -adrenoceptors in guinea pig. *Naunyn-Schmiedeberg's Arch Pharmacol* 317: 277–285.

Festa, A., Krugluger, W., Shnawa, N., Hopmeier, P., Haffner, S. and Schernthaner, G. (1999) $\text{Trp}^{64}\text{Arg}$ Polymorphism of the β_3 -adrenergic receptor gene in pregnancy: Association with mild gestational diabetes mellitus. *J Clin Endocrinol Metab* 84(5): 1695–1699.

Frielle, T., Collins, S., Daniel, K.W., Caron, M.G., Lefkowitz, R.J. and Kobilka, B.K. (1987) Cloning of the cDNA for the human beta 1-adrenergic receptor. *Proc Natl Acad Sci U S A* 84: 7920–7924.

Fu, L., Isobe, K., Zeng, Q., Suzukawa, K., Takekoshi, K. and Kawakami, Y. (2007) β -adrenoceptor agonists downregulate adiponectin, but upregulate adiponectin receptor 2 and tumor necrosis factor- α expression in adipocytes. *Eur J Pharmacol* 569: 155–162.

Fu, L., Isobe, K., Zeng, Q., Suzukawa, K., Takekoshi, K. and Kawakami, Y. (2008) The effects of beta(3)adrenoceptor agonist CL-316,243 on adiponectin, adiponectin receptors and tumor necrosis factor-alpha expressions in adipose tissues of obese diabetic KKAy mice. *Eur J Pharmacol* 584(1): 202–206.

Fujisawa, T., Ikegami, H., Yamato, E., Takekawa, K., Nakagawa, Y., Hamada, Y. *et al.* (1996) Association of Trp64Arg mutation of the beta3-adrenergic-receptor with NIDDM and body weight gain. *Diabetologia* 39: 349–352.

Galitzky, J., Langin, D., Montrastruc, J.L., Lafontan, M. and Berlan, M. (1998) On the presence of a putative fourth β -adrenoceptor in human adipose tissue. *Trends Pharmacol Sci* 19: 164–165.

Galitzky, J., Reverte, M., Carpene, C., Lafontan, M. and Berlan, M. (1993) β_3 -Adrenoceptors in dog

adipose tissue: studies on their involvement in the lipomobilizing effect of catecholamines. *J Pharmacol Exp Ther* 266: 358–366.

Gan, R.T., Li, W.M., Wang, X., Wu, S. and Kong, Y.H. (2007a) Effect of beta3-adrenoceptor antagonist on the cardiac function and expression of endothelial nitric oxide synthase in a rat model of heart failure. *Zhongguo Wei Zhong Bing Ji Jiu Yi Xue* 19(11): 675–678.

Gan, R.T., Li, W.M., Xiu, C.H., Shen, J.X., Wang, X., Wu, S. et al. (2007b) Chronic blocking of beta 3adrenoceptor ameliorates cardiac function in rat model of heart failure. *Chin Med J* (*Engl*) 120(24): 2250–2255.

Gauthier, C., Leblais, V., Kobzik, L., Trochu, J.N., Khandoudi, N., Bril, A. *et al.* (1998) The negative inotropic effect of β 3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. *J Clin Invest* 102: 1377–1384.

Gauthier, C., Tavernier, G., Charpentier, F., Langin, D. and Le Marec, H. (1996) Functional β_3 -adrenoceptor in the human heart. *J Clin Invest* 98: 556–562.

Gauthier, C., Tavernier, G., Trochu, J., Leblais, V., Laurent, K., Langin, D. *et al.* (1999) Interspecies differences in the cardiac negative inotropic effects of β_3 -adrenoceptor agonists. *Pharmacol Expt Ther* 290(2): 687–693.

Granneman, J. (1992) Effects of agonist exposure on the coupling of β_1 - β_3 -adrenergic receptors to adenylyl cyclase in isolated adipocytes. *J Pharmacol Exp Ther* 261: 638–642.

Granneman, J., Lahners, K. and Chaudhry, A. (1991) Molecular cloning and expression of the rat β -adrenergic receptor. *Mol Pharmacol* 40: 895–899.

Granneman, J., Lahners, K. and Rao, D. (1992) Rodent and human beta 3-adrenergic receptor genes contain an intron within the protein-coding block. *Mol Pharmacol* 42: 964–970.

Grant, T.L., Mayers, R.M., Quayle, S.P., Briscoe, M.G., Howe, R., Rao, B.S. *et al.* (1994) Zeneca ZD2079 is a novel β_3 -adrenoceptor agonist. *Br J Pharmacol* 112: 213P.

Grujic, D., Susulic, V., Harper, M.E., Himms-Hagen, J., Cunningham, B., Corkey, B. *et al.* (1997) β 3-Adrenergic receptors on white and brown adipocytes mediate β 3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. *JBC online* 272: 17686–17693.

Hescheler, J. and Schultz, G. (1994) Heterotrimeric G proteins involved in the modulation of voltage-dependent calcium channels of neuroendocrine cells. *Ann N Y Acad Sci* 733: 306–312.

Hollenga, C. and Zaagsma, J. (1989) Direct evidence for the atypical nature of functional beta-adrenoceptors in rat adipocytes. *Br J Pharmacol* 98: 1420–1424. Holloway, B., Howe, R., Rao, B. and Stribling, D. (1992) A novel selective adrenoceptor agonist of brown fat and thermogenesis. *Am J Clin Nutr* 55: 262S–264S.

Huang, X., Hamajima, N., Saito, T., Matsuo, K., Mizutani, M., Iwata, H. *et al.* (2001) Possible association of β_2 - and β_3 -adrenergic receptor gene polymorphisms with susceptibility to breast cancer. *Breast Cancer Res* 3: 264–269.

Hutchinson, D.S., Bengtsson, T., Evans, B.A. and Summers, R.J. (2002) Mouse β_{3a} - and β_{3b} -adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signalling pathways. *Br J Pharmacol* 135: 1903–1914.

Jasper, J.R. and Insel, P.A. (1992) Evolving concepts of partial agonism: The beta-adrenergic receptor as a paradigm. *Biochem Pharmacol* 43: 119–130.

Jurkiewicz, N.K. and Sanguinetti, M.C. (1993) Ratedependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. *Circ Res* 72: 75–83.

Kadowaki, H., Yasuda, K., Iwamoto, K., Otabe, S., Shimokawa, K., Silver, K. *et al.* (1995) A mutation in the β 3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. *Biochem Biophys Res Commun* 215: 555–560.

Kathofer, S., Zhang, W., Karle, C., Thomas, D., Schoels, W. and Kiehn, J. (2000) Functional coupling of human β_3 -adrenoreceptors to the KvLQT1/MinK potassium channel. *J Biol Chem* 275: 26743–26747.

Kaumann, A.J. (1997) Four β -adrenoceptor subtypes in mammalian heart. *Trends Pharmacol Sci* 18: 70–76.

Kohout, T., Takaoka, H., McDonald, P., Perry, S., Mao, L., Lefkowitz, R. *et al.* (2001) Augmentation of cardiac contractility mediated by the human β_3 -adrenergic receptor overexpressed in the hearts of transgenic mice. *Circulation* 104: 2485.

Kong, Y.H., Li, W.M. and Tian, Y. (2004) Effect of beta3-adrenoreceptors agonist on beta3-adrenoreceptors expression and myocyte apoptosis in a rat model of heart failure. *Zhongguo Wei Zhong Bing Ji Jiu Yi Xue* 16(3): 142–147.

Kong, Y.H., Zhang, Y., Li, N., Zhang, L., Gao, Y.H., Xue, H.J. *et al.* (2010) Association between beta3adrenergic receptor and oxidative stress in chronic heart failure rats. *Zhonghua Xin Xue Guan Bing Za Zhi* 38(5): 435–439.

Krief, S., Lönnqvist, F., Raimbault, S., Baude, B., Van Spronsen, A., Arner, P. *et al.* (1993) Tissue distribution of β_3 -adrenoceptor receptor mRNA in man. \mathcal{J} *Clin Invest* 91: 344–349.

Langin, D., Portillo, M.P., Saulnier-Blache, J.S. and Lafontan, M. (1991) Coexistence of three β -adrenoceptor subtypes in white fat cells of various mammalian species. *Eur J Pharmacol* 199: 291–301. Large, V., Hellstrom, L., Reynisdottir, S., Lonnqvist, F., Eriksson, P., Lannfeld, L. *et al.* (1997) Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. \mathcal{J} *Clin Invest* 100: 3005–3013.

Lelias, J.M., Kaghad, M., Rodriguez, M., Chalon, P., Bonnin, J., Dupre, I. *et al.* (1993) Molecular cloning of a human beta 3-adrenergic receptor cDNA. *FEBS Lett* 324: 127–130.

Levasseur, S., Pigeon, C., Reyl-Desmars, F., Caput, D. and Lewin, M.J.M. (1995) Adenylyl cyclase stimulation by the human and rat β_3 -adrenergic receptor isoforms expressed in the CHO cell. *Gastroenterol Clin Biol* 19: 668–672.

Liggett, S.B., Freedman, N.J., Schwinn, D.A. and Lefkowitz, R.J. (1993) Structural basis for receptor subtype-specific regulation revealed by a chimeric $\beta 3/\beta 2$ -adrenergic receptor. *Proc Natl Acad Sci U S A* 90: 3665–3669.

Liu, X., Pérusse, F. and Bukowiecki, L.J. (1994) Chronic norepinephrine infusion stimulates glucose uptake in white and brown adipose tissues. *Am J Physiol Regul Integr Comp Physiol* 266: R914–R920.

Liu, X., Pérusse, F. and Bukowiecki, L.J. (1998) Mechanisms of the antidiabetic effects of the β_3 -adrenergic agonist CL-316243 in obese Zucker-ZDF rats. *Am J Physiol Regul Integr Comp Physiol* 274: R1212–R1219.

Lo, C.F. and Numann, R. (1998) Independent and exclusive modulation of cardiac delayed rectifying K^+ current by protein kinase C and protein kinase A. *Circ Res* 83: 995–1002.

Lönnqvist, F., Krief, S., Strosberg, A.D., Nyberg, B., Emorine, L.J. and Arner, P. (1993) Evidence for a functional β_3 -adrenoceptor in man. *Br J Pharmacol* 110: 929–936.

Lowell, B.B. and Flier, J.S. (1995) The potential significance of β_3 -adrenoceptor receptors. *J Clin Invest* 95: 923.

MacDonald, A., McLean, M., MacAuly, L. and Shaw, A.M. (1999) Effects of propranolol and L-NAME on beta-adrenoceptor-mediated relaxation in rat carotid artery. *J Auton Pharmacol* 19: 145–149.

Mc Laughlin, D. and MacDonald, A. (1990) Evidence for the existence of 'atypical' β -adrenoceptors (β_3 -adrenoceptors) mediating relaxation in the rat distal colon. *Br J Pharmacol* 101: 569–574.

Milano, C.A., Allen, L.F., Rockman, H.A., Dolber, P.C., McMinn, T.R., Chien, K.R. *et al.* (1994a) Enhanced myocardial function in transgenic mice overexpressing the beta₂-adrenergic receptor. *Science* 264: 582–586.

Milano, C.A., Dolber, P.C., Rockman, H.A., Bond, R.A., Venable, M.E., Allen, L.F. *et al.* (1994b) Myocardial expression of a constitutively active alpha_{1B}-adrenergic receptor in transgenic mice induces cardiac hypertrophy. *Proc Natl Acad Sci U S A* 91: 10109–10113.

Mohan, P., Brutsaert, D.L., Paulus, W.J. and Sys, S.U. (1996) Myocardial contractile response to nitric oxide and cGMP. *Circulation* 93: 1223–1229.

Mohell, N. and Dicker, A. (1989) The β -adrenergic radioligand (³H)-CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown tissue. *Biochem J* 261: 401–405.

Moniotte, S., Kobzik, L., Feron, O., Trochu, J., Gauthier, C. and Balligand, J.L. (2001) Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. *Circulation* 103: 1649–1655.

Morris, A.D., Petrie, J.R. and Connel, J.M.C. (1994) Insulin and hypertension. *J Hypertens* 12: 633–642.

Muzzin, P., Revelli, J., Khune, F., Gocayne, J., Combie, W.M., Venter, J. *et al.* (1991) An adipose tissue specific β -adrenergic receptor. Molecular cloning and down-regulation in obesity. *J Biol Chem* 266: 24053–24058.

Oriowo, M.A. (1994) Atypical beta-adrenoceptors in the rat isolated common carotid artery. *Br J Pharmacol* 113: 699–702.

Pelat, M., Verwaerde, P., Galitzky, J., Lafontan, M., Berlan, M., Senard, J. *et al.* (2003) High isoproterenol doses are required to activate β_3 -adrenoceptor-mediated functions in dogs. *Pharmacol Expt Ther* 304: 246–253.

Piepho, R.W. (1991) Heterogeneity of calcium channel blockers. *Hosp Pharm* 26: 856–864.

Pietri-Rouxel, F. and Strosberg, A.D. (1995) Pharmacological characteristics and species-related variations of β_3 -adroneceptor receptors. *Fundam Clin Pharmacol* 9: 211–218.

Rasmussen, H.H., Figtree, G.A., Krum, H. and Bundgaard, H. (2009) The use of beta3-adrenergic receptor agonists in the treatment of heart failure. *Curr Opin Investig Drugs* 10(9): 955–962.

Rautureau, Y., Toumaniantz, G., Serpillon, S., Jourdon, P., Trochu, J.N. and Gauthier, C. (2002) Beta3-adrenoceptor in rat aorta: Molecular and biochemical characterization and signalling pathway. *Br J Pharmacol* 137: 153–161.

Rathi, S., Kazerounian, S., Banwait, K., Schulz, S., Waldman, S. and Rattan, S. (2003) Functional and molecular characterization of β -adrenoceptors in the internal anal sphincter. *Pharmacol Expt Ther* 305(2): 615–624.

Roberts, S.J., Papaionanou, M., Evans, B.A. and Summers, R.J. (1999) Characterization of β -adrencoceptor mediated smooth muscle relaxation and the detection of mRNA for β 1-, β 2- and β 3-adrenoceptors in rat ileum. *Br J Pharmacol* 127: 949–961.

Roberts, S.J., Russel, F.D., Molenaar, P. and Summers, R.J. (1995) Characterization and

localization of atypical β -adrenoceptors in rat ileum. Br J Pharmacol 116: 2549–2556.

Rodriguez, M., Carillon, C., Coquerel, A., Le Fur, G., Ferrara, P., Caput, D. *et al.* (1995) Evidence for the presence of β_3 -adrenergic receptor m-RNA in the human brain. *Mol Brain Res* 29: 369–375.

Rohrer, D.K., Chruscinski, A., Schauble, E.H., Bernstein, D. and Kobilka, B.K. (1999) Cardiovascular and metabolic alterations in mice lacking both β_1 and β_2 -adrenergic receptors. \tilde{J} *Biol Chem* 274: 16701–16708.

Rozec, B., Serpillon, S., Toumaniantz, G., Sèze, C., Rautureau, Y., Baron, O. *et al.* (2005) Characterization of beta3-adrenoceptors in human internal mammary artery and putative involvement in coronary artery bypass management. *J Am Coll Cardiol* 46: 351–359.

Sanguinetti, M.C., Curran, M.E., Zou, A., Shen, J., Spector, P.S., Atkinson, D.L. *et al.* (1996) Coassembly of K_VLQT1 and minK (IsK) proteins to form cardiac I_{KS} potassium channel. *Nature* 384: 80–83.

Sanguinetti, M.C., Jurkiewicz, N.K., Scott, A. and Siegl, P.K.S. (1991) Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. *Mechanism of action.* Circ Res 68: 77–84.

Shen, Y.T. and Claus, T.H. (1993) Potential mechanisms of β_3 -adrenoceptor-induced peripheral vasodilation in conscious dogs. *Clin Res* 41: 348A.

Shen, Y.T., Zhang, H. and Vatner, S.F. (1994) Peripheral vascular effects of *beta-3* adrenergic receptor stimulation in conscious dogs. *J Pharmacol Exp Ther* 268: 466–473.

Simon, M.I., Strathmann, M.P. and Gautam, N. (1991) Diversity of G proteins in signal transduction. *Science* 252: 802–808.

Soeder, K.J., Snedden, S.K., Cao, W., Della Rocca, G.J., Daniel, K.W., Luttrell, L.M. *et al.* (1999) The β_3 -adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a G_i-dependent mechanism. *J Biol Chem* 274: 12017–12022.

Strosberg, A.D. (1993) Structure, function, and regulation of adrenoceptor receptors. *Protein Sci* 2: 1198–1209.

Strosberg, A.D. (1997) Structure and function of the β_3 -adrenoceptor. *Ann Rev Pharmacol Toxicol* 37: 421–450.

Strosberg, A.D. and Pietri-Rouxel, F. (1996) Function and regulation of the three β -adrenoceptors. *Trends Pharmacol Sci* 17: 373–381.

Strosberg, A.D., Gerhardt, C.C., Gros, J., Jockers, R. and Pietri-Rouxel, F. (1998) Reply on the putative existence of a fourth β -adrenoceptor: proof is still missing. *Trends Pharmacol Sci* 19: 165–166.

Sugasawa, T., Matsuzaki, M., Morooka, S., Foignant, N., Blin, N. and Strosberg, A.D. (1992) *In vitro* study

of a novel atypical beta-adrenoceptor agonist, SM-1044. *Eur J Pharmacol* 216: 207–215.

Summers, R.J., Kompa, A. and Roberts, S.J. (1997) β -Adrenoceptor subtypes and their desensitization mechanisms. *J Auton Pharmacol* 17: 331–343.

Tagaya, E., Tamaoki, J., Takemura, H., Isono, K. and Nagai, A. (1999) Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cyclic adenosine monophosphate-dependent pathway. *Lung* 177: 321–332.

Takahashi, H., Yoshida, T., Nishimura, N., Nakanishi, T., Kondo, M. and Yoshimura, M. (1992) Beta3adrenergic agonist, BRL-26830A, and alpha/beta blocker, arotinolol, markedly increase regional blood flow in the brown tissue in anesthetized rats. *Jap Circ J* 56: 936–942.

Takayama, S., Furukawa, Y., Ren, L.M., Inoue, Y., Sawaki, S. and Chiba, S. (1993) Positive chronotropic and inotropic responses to BRL 37344, a β_3 -adrenoceptor agonist in isolated, blood-perfused dog atria. *Eur J Pharmacol* 231: 315–321.

Tate, K., Briend-Sutren, M., Emorine, L.J., Klutchko, C., Marullo, S. and Strosberg, A.D. (1991) Expression of three human β -adrenergic-receptor subtypes in transfected Chinese ovary cells. *Eur J Biochem* 196: 357–361.

Tavernier, G., Galitzky, J., Bousquet-Melou, A., Montastruc, J.L. and Berlan, M. (1992) The positive chronotropic effect induced by BRL 37344 and CGP 12177, two beta-3 adrenoceptor agonists, does not involve cardiac beta adrenoceptors but baroreflex mechanisms. *J Pharmacol Exp Ther* 263: 1083–1090.

Tavernier, G., Galitzky, J., Bousquet-Melou, A., Montastruc, J.L. and Berlan, M. (1992) The positive chronotropic effect induced by BRL 37344 and CGP 12177, two β_3 -adrenergic agonists, does not involve cardiac β -adrenoceptors but reflex mechanisms. *J Pharmacol Exp Ther* 91: 344–349.

Tesfamariam, B. and Allen, G.T. (1994) β_1 - and β_2 -adrenoceptor antagonist activities of ICI-215001, a putative β_3 -adrenoceptor agonist. *Br J Pharmacol* 112: 55–58.

Tomiyama, Y., Hayakawa, K., Shinagawa, K., Akahane, M., Ajisawa, Y., Park, Y.C. and Kurita, T. (1998) β -Adrenoceptor subtypes in the ureteral smooth muscle of rats, rabbits and dogs. *Eur J Pharmacol* 352: 269–278.

Tonolo, G., Melis, M.G., Secchi, G., Atzeni, M.M., Angius, M.F., Carboni, A. *et al.* (1999) Association of Trp64Arg β_3 -adrenergic-receptor gene polymorphism with essential hypertension in the Sardinian population. *J Hypertens* 17: 33–38.

Trochu, J.N., Leblais, V., Rautureau, Y., Bévérelli, F., Le Marec, H., Berdeaux, A. and Gauthier, C. (1999) Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracia aorta. Br J Pharmacol 128: 69–76.

Vallerand, A.L., Pérusse, F. and Bukowiecki, L.J. (1987) Cold exposure potentiates the effect of insulin on *in vivo* glucose uptake. *Am J Physiol Endocrinol Metab* 253: E179–E186.

Vallerand, A.L., Pérusse, F. and Bukowiecki, L.J. (1990) Stimulatory effects of cold exposure and cold acclimation on glucose uptake in rat peripheral tissues. *Am J Physiol Regul Integr Comp Physiol* 259: R1043–R1049.

Van Spronsen, A., Nahmias, C., Krief, S., Briend-Sutren, M.M., Strosberg, A.D. and Emorine, L.J. (1993) The promoter and intron/exon structure of the human and mouse beta 3-adrenergic-receptor genes. *Eur J Biochem* 213: 1117–1124.

Varnum, M.D., Busch, A.E., Bond, C.T., Maylie, H. and Adelman, J.P. (1993) The Min K channel underlies the cardiac potassium current I_{Ks} and mediates species-specific responses to protein kinase C. *Proc Natl Acad Sci U S A* 90: 11528–11532.

Viard, P., Macrez, N., Coussin, F., Morel, J.L. and Mironneau, J. (2000) Beta-3 adrenergic stimulation of L-type Ca²⁺ channels in rat portal vein myocites. *Br J Pharmacol* 129: 1497–1505.

Walston, J., Silver, K., Bogardus, C., Knowler, W., Celi, P., Austin, S. *et al.* (1995) Time of onset of noninsulin-dependent diabetes mellitus and genetic variation in the β 3-adrenergic–receptor gene. *New Engl J Med* 333(6): 343–347.

Wheeldon, N.M., McDevitt, D.G. and Lipworth, B.J. (1993) Investigation of putative cardiac β_3 -adrenoceptors in man. *Q J Med* 86: 255–261.

Wheeldon, N.M., McDevitt, D.G. and Lipworth, B.J. (1994) Cardiac effects of the β_3 -adrenoceptor agonist BRL 35135 in man. *Br J Clin Pharmacol* 37: 363–369.

Widén, E., Lehto, M., Kanninen, T., Walston, J., Shuldiner, A.R. and Groop, L.C. (1995) Association of a polymorphism in the β_3 -adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. *N Engl J Med* 333: 348–351.

Xiao, R.P., Ji, X. and Lakatta, E.G. (1995) Functional coupling of beta 2-adrenoceptor to a pertussis toxinsensitive G protein in cardiac myocytes. *Mol Pharmacol* 47: 322–329.

Yoshida, T., Hiraoka, N. and Kondo, M. (1991) Effect of a β_3 -adrenoceptor agonist, BRL 26830A, on insulin and glucagon release in mice. *Endocrinol Jpn* 38: 641–646.

Zaagsma, J. and Nahorski, S.R. (1990) Is the adipocyte β -adrenoceptor a prototype for the recently cloned atypical beta 3-adrenoceptor? *Trends Pharmacol Sci* 11: 3–7.

Zeng, J., Laurita, K.R., Rosenbaum, D.S. and Rudy, Y. (1995) Two components of the delayed rectifier K^+ current in ventricular myocytes of the guinea pig

type: Theoretical formulation and their role in repolarization. *Circ Res* 77: 140–152.

Zhang, Z., Cheng, H., Onishi, K., Ohte, N., Wannenburg, Y. and Cheng, C. (2005) Enhanced inhibition of L-type Ca²⁺ current by β_3 -adrenergic stimulation in failing rat heart. *J Pharmacol Exp Ther* 315: 1203–1211. Zhou, S., Tan, A.Y., Paz, O., Ogawa, M., Chou, C. and Hayashi, H. (2008) Antiarrhythmic effects of beta3-adrenergic receptor stimulation in a canine model of ventricular tachycardia. *Heart Rhythm* 5: 289–297.

Visit SAGE journals online http://tae.sagepub.com

©SAGEJOURNALS Online