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Tomato yellow leaf curl virus (TYLCV), a whitefly-transmitted 
geminivirus, is a major tomato pathogen world-wide1,2 that causes 
extensive (up to 100%) crop losses.3 Geminiviridae family of 
plant viruses characterized by their ssDNA genomes, which rep-
licate and transcribe in the host-cell nucleus. Although TYLCV 
is a DNA virus that replicates by a dsDNA intermediate, it is 
capable of inducing RNA silencing in infected plants.4 This anti-
TYLCV reaction is counteracted by RNA-silencing suppressor 
proteins encoded by the virus. One of such suppressor protein 
is V2, identified in two TYLCV isolates, Israeli (TYLCV-Is)5,6

and Chinese (TYLCV-China).7 The TYLCV-Is V2 most likely 
suppresses RNA silencing via its interaction with the host RNA 
silencing machinery component SGS3.6

Intriguingly, the counter-defense function of TYLCV-Is V2 
may not be limited to silencing suppression. Our present data 
suggest that V2 interacts with a member of the family of papain-
like cysteine proteases (PLCPs) which are involved in plant 
defense against pathogens via hypersensitive response (HR).8-11

This PLCP of tomato (CYP1) belongs to an intriguing class of 
papain-like Cys proteases (PLCPs) typified by the presence of a 
C-terminal granulin domain which is removed during the sub-
sequent maturation step, resulting in mature CYP1 (mCYP1). 
Indeed, TYLCV induces HR in some plants (e.g., Nicotiana 
benthamiana),12,13 but not in others (e.g., tomato), suggesting its 
ability to suppress this defense in the latter host species. This role 
of PLCPs in plant anti-pathogen response and their targeting by 
pathogen-derived inhibitors is well documented for pathogenic 
fungi and bacteria. For example, RCR3, a tomato PLCP, triggers 
HR in plants carrying the Cf-2 resistance gene upon infection 
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by the fungal pathogen Cladosporium fulvum.14 Similarly, the 
Arabidopsis PLCP RD19 is required for RRS1-R-mediated resis-
tance against the bacterial pathogen Ralstonia solanacearum.15

Consistent with the key role of PLCPs in disease immunity, 
many pathogens have evolved effectors that target these prote-
ases. For instance, the PopP2 effector of R. solanacearum inter-
acts with RD19 and relocalizes it from vesicles to the nucleus.15

RCR3 is inhibited by the Avr2 effector of C. fulvum16 as well as 
by EPIC1 and EPIC2B, two closely related cystatine-like pro-
teins of the oomycete pathogen Phytophthora infestans.17,18 Unlike 
pathogenic bacteria and fungi or oomycetes, plant viruses have 
not been known to target host PLCPs. Here, we identify the first 
plant viral protein, the V2 of TYLCV-Is, that interacts with the 
tomato PLCP CYP1 within living plant cells.

To produce a bait construct, the PCR-amplified ORF of 
TYLCV-Is V25 was inserted into the EcoRI-XhoI sites of 
pEG202,19 resulting in pEG202-V2.

For subcellular localization studies, TYLCV-Is V2 was tagged 
at its C terminus with CFP by cloning a PCR-amplified V2 ORF 
into the BglII-EcoRI sites of pSAT6A-ECFP-N1,20 resulting in 
pSAT6A-V2-ECFP. mCYP1 was tagged at its N terminus with 
YFP by cloning PCR-amplified mCYP1 cDNAs into the XhoI-
BamHI sites, of pSAT6-EYFP-C1,20 resulting in pSAT6-EYFP-
mCYP1. All PCRs were performed using a high-fidelity Pfu 
DNA polymerase (Promega) and their products were verified by 
DNA sequencing.

A tomato cDNA library19 was screened with pEG202-
V2 as bait in Saccharomyces cerevisiae strain EGY48 as pre-
viously described,6,19 and positive clones were selected on a 
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domains that include a cysteine-protease domain, a proline-rich 
domain, and a C-terminal granulin domain (Fig. 2A). Similar to 
RD21,31 CYP1 accumulates in two active isoforms; the immature 
isoform, iCYP1, contains a granulin domain which is cleaved off 
(not self-catalytically, but by another, yet unidentified protease), 
producing the mature isoform, mCYP1.31

CYP1 Interacts with TYLCV V2 Protein in Yeast Two 
Hybrid Assay

Interestingly, our Y2H experiments demonstrated that V2 rec-
ognized and interacted with both the mature and the immature 
forms of CYP1, activating the LEU2 reporter gene and enabling 
yeast transformants to grow on a leucine dropout medium (Fig. 
1B and lanes 1 and 2). In contrast, V2 did not interact with the 
granulin domain of CYP1 (Fig. 2B and lane VI). The interaction 
between V2 and CYP1 was specific because it did not occur with 
Bicoid homeodomain (pRFHM1) (Fig. 1B lane 3) or with topoi-
somerase I (not shown), known to eliminate false positives in 
yeast Y2H assays.32,33 Furthermore, no interaction was detected 
between mCYP1 and several other TYLCV-Is proteins, including 
V1/CP, C3 and C4 (not shown). Under non-selective conditions, 
i.e., in the presence of leucine, cells expressing all combinations 
of proteins grew to the same extent (not shown), indicating that 
none of the tested proteins adversely and nonspecifically affected 
yeast-cell physiology.

V2 Interacts with the Cysteine Protease Domain  
of CYP1

We then separated iCYP1 into six fragments that spanned its 
cysteine protease, proline-rich and granulin domains (fragments 
I-VI, Figure 2A) and examined their ability to bind V2 in the 
Y2H assay. Figure 2B shows that only fragment IV, correspond-
ing to the C-terminal of the cysteine protease domain exhibited 
interaction with V2. Next, we further defined the V2-binding 
site of CYP1 with the help of peptide arrays, which allow to nar-
row down large interaction interfaces to relatively short and spe-
cific binding sequences.23 Specifically, we used the CelluSpotsTM 
peptide array that represented the CYP1 amino acid sequence in 
15-amino acid-long peptides overlapping each other by 7 residues 
(Fig. 2A). This array was probed with the recombinant V2 and 
detected by western blot analysis. Figure 2C shows that from all 
peptides that saturated the entire length of the CYP1 protein, 
except its signal peptide domain, only one, peptide 23b, was able 
to bind V2. Consistent with our Y2H data in Figure 2B, peptide 
23b was situated within the fragment IV of the cysteine prote-
ase domain. Thus, the amino acid sequence NWG ENG YLR 
VQR NVA, corresponding to this peptide, most likely represents 
a major binding site for V2 within mCYP1.

CYP1 is Localized in the Cytoplasm of Tobacco 
Protoplasts

Next, we examined the subcellular localization patterns of YFP-
tagged mCYP1 coexpressed with CFP-tagged V2. Figure 3 shows 

leucine-deficient medium, confirmed by β-galactosidase assay21

and isolated as described.6

CelluSpotsTM CYP1-specific peptide arrays immobilized on cel-
lulose sheets were custom-made by INTAVIS (www.intavis.com/
en/). The coding sequence of TYLCV-Is V2 was subcloned into 
the pHIS-parallel1 bacterial expression vector in frame with an 
N-terminal six-histidine tag,22 overexpressed in E. coli BL21(DE3) 
and purified to near homogeneity (95–98% pure) by an ion 
metal affinity chromatography on a Ni-sepharose matrix follow-
ing manufacturer [Adar Biotech Israel (www.adarbiotech.com/)] 
instructions.

2.65 mg of the purified protein were incubated with the pep-
tide array membrane in 8 ml of 5% skim milk blocking solution 
as described,23 and V2 binding to the membrane was detected by 
western blot analysis using anti-His antibodies.

Leaf mesophyll protoplasts were isolated from Nicotiana taba-
cum L. cv Samsun NN,24 and a mixture of 5 μg plasmid DNA 
and 15 μg calf thymus DNA was used for electroporation of 0.5 
ml of protoplast solution.25 Transformed protoplasts were incu-
bated in the dark for 24 h at 27°C prior to imaging.

For confocal imaging, we used an Olympus IX 81 inverted 
laser scanning confocal microscope (Fluoview 500) equipped 
with an argon ion laser and a 60x1.0 N.A. PlanApo water-immer-
sion objective. CFP and YFP were excited at 458 nm and 515 nm 
and imaged using BA480–495 nm and BA535–565 nm emission 
filters, respectively. For chlorophyll autofluorescence, a BA 660 
nm IF emission filter was used. Transmitted light images were 
obtained using Nomarski differential interference contrast (DIC).

The FRET procedure was performed using the acceptor pho-
tobleaching method.26 CFP (donor) and YFP (acceptor) were 
excited at 70% and 3% laser power, respectively; all other condi-
tions were as described for confocal imaging. The microscope 
was configured with a 458/515-nm dichroic mirror for dual exci-
tation, and with a 515-nm beam-splitter to help separate CFP and 
YFP fluorescence. Acceptor was bleached by scanning a region 
of interest (ROI) at 100% laser power, resulting in photobleach-
ing of at least 90% of the original fluorescence. The pre- and 
post-bleach images were collected and ROI fluorescence intensity 
was measured by using Fluoview 500 software. Each measure-
ment was conducted on a set of 10 different cells. The percent-
age of FRET efficiency (E

F
) was calculated as E

F
 = (I

n+1
-I

n
)x100/

I
n+1

, where I
n
 and I

n+1
 are the CFP intensities at the time points 

between which the bleaching occurred.27

To better understand the involvement of V2 in suppression 
of the host defenses, we used a yeast two-hybrid system (Y2H) 
and our tomato two-hybrid cDNA library28 to identify host pro-
teins, in addition to previously identified SGS3,6 with which 
V2 interacts within the host cell. These experiments isolated a 
cDNA clone encoding a protein product that interacted with 
V2. Amino-acid sequence analysis identified the V2 interactor 
as tomato PLCP designated CYP1/C1429,30 (GenBank accession 
number AJ003137, CAA05894) and revealed significant homol-
ogy to PLCPs from Arabidopsis thaliana (RD21a, NP_564497), 
sweet potato (Ipomoea batatas, AAK48495) and potato (Solanum 
tuberosum, CAB53515.1) (Fig. 1A). CYP1 is encoded by a single 
gene located on chromosome 1230 and contains several distinct 
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Figure 1. For figure legend, see page 4.
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interactions within living cells.34,35 V2-CFP was transiently coex-
pressed with YFP-mCYP1 in tobacco protoplasts. FRET between 
these proteins was assayed by focusing on the colocalizing micro-
bodies and photobleaching them as described.6,26,27 Figure 4A 
shows energy transfer between V2-CFP and YFP-mCYP1, i.e., 
reduction in acceptor (YFP) signal and increase in the donor 
(CFP) signal, which is indicative of FRET.6,26,27 Note that these 
images represent magnified signal foci in the protoplast cyto-
plasm, which correspond to microbodies within the V2-CFP/
YFP-mCYP1-expressing protoplasts shown at lower magnifica-
tion in Figure 3. As expected, free coexpressed YFP and CFP did 
not generate detectable FRET (Fig. 4B).

Quantification of the CFP signal after photobleaching of YFP 
revealed an increase in the intensity of the donor fluorescence 
with a FRET efficiency (E

F
) of 19.29 ± 4.22% for YFP-mCYP1/

that, in tobacco protoplasts, mCYP1 was cytoplasmic, accumu-
lating in distinct microbodies. This finding is important because 
it differentiates the tomato CYP1 from its Arabidopsis homolog 
RD21, which is a vacuolar protein in both its mature and imma-
ture forms.31 V2 also exhibited a cytoplasmic localization6 and 
largely colocalized with mCYP1 (Fig. 3). This colocalization of 
mCYP1 and V2 is consistent with their ability to interact with 
each another.

CYP1 and TYLCV V2 Protein Physically Interact in 
planta

Finally, the interaction of V2 with mCYP1 was demonstrated 
directly in planta by fluorescence resonance energy trans-
fer (FRET) microscopy, which allows detection of protein 

Figure 1. identification of tomato CYP1 and its interaction with tYLCV V2 in yeast. (A) Amino acid sequence alignment of the tomato (Solanum lyco-
persicum) CYP1 (CAA05894) with its papain-like cysteine protease homologs from Arabidopsis thaliana (rD21a, nP_564497), sweet potato (Ipomoea 
batatas, AAK48495) and potato (Solanum tuberosum, CAB53515.1). Conserved residues of the cysteine protease active site are indicated by black boxes, 
and gaps introduced for alignment are indicated by dashes. Alignment was performed using the ClustalW algorithm (www.genebee.msu.su/clustal/
advanced.html). (B) interaction in the Y2h system. the indicated cell inocula were plated on a leucine-deficient growth medium. in this assay system, 
growth in the absence of leucine represents selective conditions for protein-protein interaction. Lane 1, tYLCV V2 - iCYP1; Lane 2, tYLCV V2 - mCYP1; 
Lane 3, control plasmid prFhm1.

Figure 2. identification of the V2 binding site within mCYP1. (A) Schematic representation of the CYP1 protein domains. Positions of amino acid 
residues delimiting each of the indicated domains are shown. roman numbers i-Vi indicate locations of the CYP1 fragments assayed in panel B; these 
fragments are delimited by the following amino acid residue positions: i, 139–198; ii, 188–248; iii, 238–301; iV, 292–351; V, 335–393; Vi, 377–433. Peptide 
numbers indicate the positions of each of the tested CYP1 peptides on the array shown in panel C. (B) V2 binding to CYP1 fragments in the Y2h sys-
tem. (C) V2 binding to CYP1 peptide array. the amino acid sequence of peptide 23b, exhibiting binding to V2, is indicated.
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V2-CFP, which is indicative of 
FRET26,27 (Fig. 4C). Confirming 
the Y2H in Figure 2, practically no 
FRET was observed for YFP-iCYP1/
V2-CFP (E

F
 = 1.28 ± 1.15%). As 

expected, free coexpressed YFP and 
CFP generated no detectable FRET 
(Fig. 4C).

In summary, we described the 
first case of interaction between 
a plant viral pathogenesis pro-
tein and a host defense-related 
PLCP. Specifically, we showed that 
TYLCV-Is V2 directly interacts 
with tomato mCYP1 in vitro and 
in vivo. Although the exact role of 
this interaction during the infection 
process remains to be elucidated, it 
is tempting to speculate that V2 
interferes with the defensive activ-
ity of mCYP1, facilitating viral 
invasion and/or spread. Consistent 
with this idea, V2, a known anti-
host defense factor,5,6 specifically 
targets the mCYP1 amino acid 
sequence, located between posi-
tions 323 to 337, which is directly 
adjacent to H298 and N318, the 
two out of three conserved residues 
of the cysteine protease active site 
of CYP1. Conceptually, therefore, 
V2 may function similar to plant 
serpins, which are known to asso-
ciate with and negatively regulate 
PLCPs.36-38 Thus, V2 may represent 
a viral functional analog of cellular 
serpins, acting to downregulate the CYP1 activity. This is by 
analogy to many other plant and animal pathogen-encoded 
proteins which have acquired (potentially by convergent 
evolution) functional features of host proteins required for 
infection.39-41
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Figure 3. Subcellular colocalization of V2 with mCYP1. V2-CFP was coexpressed with YFP-mCYP1 in N. 
tabacum protoplasts. CFP signal is in blue. YFP signal is in green. overlapping signal produced by the 
colocalizing proteins in the merged image is in yellow; plastid autofluorescence in the merged image is 
in red, and it was filtered out in other images. All images are projections of several confocal sections.
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