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Abstract

In many clinical trials, baseline covariates could affect the primary outcome. Commonly used 

strategies to balance baseline covariates include stratified constrained randomization and 

minimization. Stratification is limited to few categorical covariates. Minimization lacks the 

randomness of treatment allocation. Both apply only to categorical covariates. As a result, serious 

imbalances could occur in important baseline covariates not included in the randomization 

algorithm. Furthermore, randomness of treatment allocation could be significantly compromised 

because of the high proportion of deterministic assignments associated with stratified block 

randomization and minimization, potentially resulting in selection bias. Serious baseline covariate 

imbalances and selection biases often contribute to controversial interpretation of the trial results. 

The National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen 

activator Stroke Trial and the Captopril Prevention Project are two examples. In this article, we 

propose a new randomization strategy, termed the minimal sufficient balance randomization, 

which will dually prevent serious imbalances in all important baseline covariates, including both 

categorical and continuous types, and preserve the randomness of treatment allocation. Computer 

simulations are conducted using the data from the National Institute of Neurological Disorders and 

Stroke recombinant tissue plasminogen activator Stroke Trial. Serious imbalances in four 

continuous and one categorical covariate are prevented with a small cost in treatment allocation 

randomness. A scenario of simultaneously balancing 11 baseline covariates is explored with 

similar promising results. The proposed minimal sufficient balance randomization algorithm can 

be easily implemented in computerized central randomization systems for large multicenter trials.
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Introduction

Confidence in the findings of randomized clinical trials is directly related to the quality of 

randomization and blinding.1 Serious baseline imbalances often lead to suspicion of 

selection bias and unconvincing interpretations of trial results. Berger discussed this in his 

book in which he provided evidences of such selection biases in 30 trials.2 Serious and 

consistent imbalances in multiple baseline covariates are considered to be the manifestation 

of selection bias. Among the 30 trials cited in Berger, 13 used pre-generated randomization 

code lists stratified by clinical center, a method vulnerable to malpractice in randomization. 

The suspicion of selection bias has resulted in controversial interpretation and acceptance of 

results of these trials. The National Institute of Neurological Disorders and Stroke 

recombinant tissue plasminogen activator (NINDS rt-PA) Stroke Study 0 and the Captopril 

Prevention Project (CAPPP) trial 0 are two such examples discussed by Berger. The NINDS 

rt-PA Stroke Study claimed an improvement in clinical outcome at three months among 

subjects treated with intravenous rt-PA compared to the placebo group within 3 h of onset of 

acute ischemic stroke.3 At first glance, one of the key prognostic factors, stroke severity, as 

measured by the baseline National Institutes of Health Stroke Scale (NIHSS) score, was 

similar between the two treatment groups (rt-PA group:14.4±7.5; placebo group:15.2±6.8; 

p=0.14).5–10 However, reanalysis of the trial data conducted by an independent committee 

found that when patients were grouped into five strata (approximate quintiles [Q]) according 

to baseline NIHSS (Q1, 0–5; Q2, 6–10; Q3, 11–15; Q4, 16–20; and Q5 > 20), there was a 

statistically significant difference in the distribution of patients between the t-PA and 

placebo treatment groups.10 The Food and Drug Administration (FDA) clinical review of 

the NINDS rt-PA Stroke Study revealed that 13 subjects were randomized out of sequence. 

All these 13 subjects received placebo, where only two should have. In addition, 18 subjects 

were randomized in the wrong stratum (time from stroke onset to treatment: 0–90 min 

versus 91 to 180 min) and changed the assignments for 11 subjects, 10 had been changed 

from rt-PA to placebo, and only 1 from placebo to rt-PA. Among the 22 subjects whose 

treatment assignments were switched, the proportion of subjects switched from rt-PA to 

placebo was over 95%,11 which leads to suspicion of selection bias.2 The CAPPP trial 

compares the effects of angiotensin-converting-enzyme inhibitor (captopril) and 

conventional therapy on cardiovascular morbidity and mortality in patients with 

hypertension. Sealed and sequentially numbered envelopes with pre-generated 

randomization codes were used for randomization. A total of 10,985 subjects were enrolled 

from 536 health centers in Sweden and Finland. The primary endpoint was a composite of 

fatal and nonfatal myocardial infarctions, stroke, and other cardiovascular deaths. The 

primary endpoint events occurred in 363 patients in the captopril group and 335 in the 

conventional-treatment group with relative risk (RR) of 1.05 (95% CI: 0.90–1.22; p=0.52). 

Stroke (both fatal and non-fatal were significantly more common with captopril with RR of 

1.25 (95% CI: 1.01–1.55; p=0.044). The investigators speculated that the difference in 

stroke risk is probably due to the lower levels of blood pressure obtained initially in 

previously treated patients randomized to conventional therapy.4 Although no significant 

test results were reported in Table 1 of the original study article for the comparison of the 19 

baseline covariates, subsequent correspondence pointed out that small but highly significant 

differences between the two treatment groups exist in baseline height, weight, systolic and 
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diastolic blood pressure (with respective p-values of 10−4, 10−3, 10−8, and 10−18).10 

Frequent violations of the process of randomization by sealed numbered envelopes were 

blamed for the significant imbalances. A reanalysis based only on “those centers where 

randomization can be trusted” was recommended but was rejected by the original study team 

for practical reasons.12 Researchers suggested that the result of the CAPPP trial be 

interpreted cautiously.1

Both NINDS rt-PA Stroke Study and CAPPP trial used randomization code lists pre-

generated with permuted block stratified by clinical centers.3,4 Permuted block stratified by 

center is the most commonly used method in multicenter clinical trials, and has been 

recommended in the literature13 and in regulatory guidelines.14 Permuted block 

randomization provides a consistent balanced treatment allocation. When stratified by a 

baseline covariate, it attempts to balance the distribution of that covariate between treatment 

groups. Most multicenter trials are stratified by center either for practical reasons and/or 

because center is expected to be confounded with other known or unknown prognostic 

factors. However, in spite of its many documented advantages, permuted block 

randomization stratified by center has its limitations. First, stratification can only 

accommodate relatively few categorical baseline covariates, because the number of strata 

increases exponentially with the number of covariates included in the stratification. As a 

consequence, some well-known important prognostic covariates, such as baseline NIHSS 

score and age in the NINDS rt-PA Stroke Study and baseline blood pressure in the CAPPP 

trial, are left uncontrolled. Second, the permuted block randomization may yield a high 

proportion of deterministic assignments which could lead to selection bias when perfect 

blinding of treatment assignment is not possible. When a block size of two, four, or six is 

used, the proportion of deterministic assignment is 50%, 33%, or 25%, respectively.15 

Contrary to common expectations, varying block size actually increases the proportion of 

deterministic assignment under the same maximal imbalance level.15 In multicenter trials, 

site investigators generally are limited to access study information for their own center only. 

Without stratification by center, deterministic assignments may not necessarily lead to 

selection bias. However, when the randomization is stratified by center, deterministic 

assignments create a threat of selection bias and could adversely affect the validity of the 

trial results, as shown in the 13 trials discussed in Berger.2 In spite of these disadvantages, 

the stratified permuted block randomization remains the most popular method in clinical 

trials.

It is widely believed that the distribution of any known or unknown confounding factor 

tends to be balanced when the sample size is large, because the variance of the mean value 

of a random variable decreases as the sample size increases. However, at the end of the trial, 

if a test is conducted for the balance of a baseline covariate that is not included in the 

randomization algorithm, one in 20 such tests will show significant imbalance (p<0.05) 

purely by chance no matter how large the sample size; such is the meaning of type I error.16 

This phenomenon has been reported in several journal articles. Altman and Dore17 found 

that among the 600 covariate balance tests from 80 trials published in the British Medical 

Journal, the Journal of the American Medical Association, the a, and the New England 

Journal of Medicine in 1987, 24 (4%) were significant at 0.05 level. Pocock and Assmann18 
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reviewed 50 trials published in these four journals during July to September 1997 and found 

18 (6%) of the 299 baseline covariate balance tests reached p<0.05. In other words, every 

confounding factor has the same chance of having a significant imbalance distribution if its 

imbalance is not controlled by the randomization algorithm. If a trial has 10 such covariates 

and assume they are all independent to each other, the chance that at least one covariate has 

a significant imbalance at 0.05 level is greater than 40%. These imbalances could be 

attributable to chance, but in terms of the trial data, the empirical imbalances that are 

observed may complicate clinical interpretation of the data. This is what occurred in the 

NINDS rt-PA Stroke Study. The only way to prevent serious imbalances in the distribution 

of prognostically important baseline covariates is to include them in the randomization 

algorithm. Stratification can achieve balances, but limited to a few categorical covariates.

The minimization method independently proposed by Taves19 and Pocock and Simon20 

controls the treatment allocation imbalances in each of the baseline covariate margins in 

order to simultaneously achieve balances in the distribution of several covariates between 

treatment groups. Replacing covariate strata with covariate margins as the imbalance control 

unit, the minimization method allows more baseline covariates to be controlled by the 

randomization algorithm. However, the deterministic assignment dilutes the randomness of 

treatment allocation, leading to resistance of its use in clinical trials.21,22

Atkinson23,24 proposed an optimal biased coin algorithm aimed to minimize the variance of 

the estimate of the treatment for linear models. In general, using Atkinson’s algorithm leads 

to a high efficiency of the trial when compared to minimization.25 The cross-product matrix 

calculation involved in the implementation of Atkinson’s algorithm can be simplified for 

implementation. In theory, Atkinson’s algorithm applies to both continuous and categorical 

covariates. The use of Atkinson’s algorithm in clinical trial practices is rarely reported, 

possibly because of the limitation on the linear model.

For clinical trials, most researchers agree that randomization is the best method for 

achieving comparability and the basis for statistical inference.13 Therefore, protection of 

treatment allocation randomness and prevention of serious baseline covariate imbalances are 

the primary goals of randomization. In this article, we propose a new randomization 

strategy, called minimal sufficient balance (MSB), to prevent serious imbalances in 

clinically justified important baseline covariates, with minimal but sufficient constraint on 

the simple randomization in order to preserve the randomness of the treatment allocation. 

This new randomization method is applied to the NINDS rt-PA Stroke Study data by 

computer simulation. Results show that serious imbalances can be prevented for five 

baseline covariates with minimal cost in treatment allocation randomness.

Methods

With random treatment assignments in sequentially enrolling clinical trials, baseline 

covariate imbalances are never entirely avoidable. Perfect balance on every important 

covariate is neither possible nor necessary. Baseline covariate imbalances should not be 

minimized without the consideration of the randomness of treatment allocation. The 

objective of the proposed new randomization strategy is to preserve treatment allocation 
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randomness while preventing serious imbalance from all a priori specified important 

baseline covariates. The scheme has the following features.

1. Important baseline covariates identified based on clinical practices and previous 

clinical trials can be included in the randomization algorithm in order to prevent 

serious imbalances in any of them, thereby enhancing the comparability of the 

treatment groups with respect to these covariates.

2. Baseline covariates will be treated on the same data scale as they were collected. 

No categorization or dichotomization is needed for continuous covariates for 

randomization. Keeping the original data scale will increase the efficiency of 

covariate imbalance control.

3. Covariate imbalances are measured descriptively. One approach is with the p-value 

of the t-test for equality of the means of the two treatment groups for continuous 

covariates and the chi-squared test for categorical covariates. For multicenter 

clinical trials with a large number of centers, a one-sample binomial test can be 

used to evaluate the treatment imbalance within each clinical center. We recognize 

that testing for the homogeneity of baseline covariates at the end of randomized 

controlled clinical trials is strongly discouraged26–29 because of the concerns for 

the invalid interpretation and misuse of the results of such tests. We use the p-

values of these tests during the trial in the randomization algorithm as a quantitative 

measure for covariate imbalances only. If preferred, other measures for imbalances 

can also be considered.

4. In order to preserve the randomness of the treatment allocation, a biased coin 

assignment will be used only if: (1) some covariate imbalances exceed their pre-

specified limits; and (2) these imbalances could be effectively reduced by a biased 

coin assignment for the current subject. Otherwise, a simple randomization will be 

used. The first condition has been used by several randomization designs, such as 

the Big Stick Design proposed by Soares and Wu,30 and the Maximal Procedure 

proposed by Berger et al.31 that aims to balance the treatment allocation. We 

introduce the second condition in order to avoid the use of biased coin assignments 

in circumstances where placing the current subject in either treatment arm will have 

little or no difference in the imbalance of covariates or reduce the imbalance in 

some covariates and raise similar amount of imbalance in some other covariates.

The implementation of the MSB randomization strategy is illustrated with an example. 

Consider a two-arm balanced trial with m baseline covariates to be balanced in the 

randomization process. When a subject is ready for randomization, distributions of each 

baseline covariate between the two groups are evaluated based on the p-values of the 

imbalance tests (i.e., t-test for continuous and chi-squared test for categorical covariates).

For a continuous baseline covariate k, let na and nb be the total number of subjects 

previously allocated to treatments A and B, respectively. Let x̄ka, ska, x̄kb, and skb be the 

mean and SD of covariate k for the two patient treatment groups. Let tk, pk, , and 

represent the observed test statistic, the corresponding p-value, and their control limits, 

respectively. The test statistic of the t-test for the equality of the two means is: 
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. For the current subject to be randomized, the choice 

between a biased coin and simple random assignment will be based on the test results and 

the current subject’s baseline covariate value xk

(1)

Based on rule (1), if the current subject has a covariate value between the two treatment 

groups’ average values, neither treatment is favored because the two possible allocations, A 

or B, for the current subject yield little difference in the imbalance of the covariate.

For categorical covariate k with a small number of categories, such as gender (two 

categories) and stroke subtype (four categories), a chi-squared test can be used to 

descriptively assess the imbalance between the two treatment arms. Assume the covariate 

has g categories. Let nkja, nkjb represents the observed number of subjects in the category j 

of covariate k previously randomized to treatments A and B, respectively. Let Ekja, Ekjb be 

the expected number of subjects in the j category being allocated to treatments A and B

(2)

(3)

Based on the chi-squared distribution with (g − 1) degrees of freedom, if the corresponding 

p-value, pk, is less than its control limit, , the following rule is invoked

(4)

For multicenter clinical trials, randomization is often stratified by clinical center. With the 

MSB method, clinical center is considered as a categorical baseline covariate, and its 

marginal imbalance will be controlled in the same way as for other categorical covariates. 

However, for multicenter trials with many centers (say more than 10), the imbalance within 

a center can be measured by the difference between the observed allocation ratio within the 

center and the observed overall or target allocation ratio. In this case, a one-sample test for a 

binomial proportion can be used. Assume the current subject is in center j. Let nja, njb be the 

number of subjects in the center j previously randomized to treatments A and B, 

respectively. Let na, nb be the total number of subjects previously randomized in the two 

treatment arms. When nj = (nja + njb) ≥ 20, the normal-theory method can be used for the 

test. The test statistic is
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(5)

Here, n is the total number of previously randomized subjects. When nj = (nja + njb) < 20, 

the exact method will be used. The p-value for the exact method test is

(6)

For both the normal-theory and the exact methods, if the p-value of the one-sample binomial 

test, p, is less than its control limit, p*, a vote is registered based on the following rule

(7)

After all baseline covariate imbalances are checked, the probability for assigning the current 

subject to treatment A is determined by rule (8)

(8)

Here, ξ is the biased coin probability. The value of the biased coin probability can be 

selected based on the background of the trial. For two-arm balanced trials, ξ=0.65–0.70 is 

suggested. In practice, one can enforce a balanced allocation for the initial proportion of the 

trial with the random allocation rule32 within each clinical center in order to balance the risk 

of operation glitches that often occur in the early phase of the trial. A proper size of this 

initial proportion can be selected based on the total sample size and the number of clinical 

centers.

Results

The proposed MSB randomization strategy is applied with computer simulation to the 

NINDS rt-PA Stroke Study data obtained from the National Technical Information Service 

(http://www.ntis.gov). All 624 subjects are included in the computer simulation with their 

data on 11 baseline covariates, including eight continuous covariates and three categorical 

covariates (Table 1). In the original study, only imbalances in clinical center and 

dichotomized (0–90 min and 91–180 min) stroke symptom onset to treatment time (OTT) 

were controlled by a stratified permuted block randomization.
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In this simulation study, five baseline covariates (clinical center, NIHSS score, age, OTT, 

and glucose), are included in the randomization algorithm. A random subject enrollment 

sequence is generated for each simulation run. The first 20 subjects in each simulation run 

are assigned with the random allocation rule. Subsequently, the MSB algorithm is applied 

with imbalance control limit set to p-value ≥ 0.3 for the five covariates. The biased coin 

probability varies from 0.55 to 1.0. At the end of each simulation run, tests for imbalances 

between the two treatment groups are conducted for all 11 baseline covariates, including 

those not balanced by the randomization algorithm. The p-values of these tests are recorded, 

together with the proportion of biased coin assignments. At the end of 5000 simulation 

replicates, the performance of the randomization algorithm is evaluated based on the 

covariate imbalance as measured by the p-values of imbalance tests, and the allocation 

randomness as measured by the proportion of biased coin assignments. Figure 1 shows the 

distribution of p-values of imbalance tests based on the computer simulation results.

As shown in Figure 1(a), for those baseline covariates not included in the randomization 

algorithm, the p-value for imbalance test is uniformly distributed on [0, 1]. As the biased 

coin probability increases, the distribution of the p-values of baseline covariate imbalance 

tests is pushed to the right, as shown in Figure 1(b) and 1(c). When deterministic assignment 

(ξ = 1.0) is used, the chance that an imbalance test having a p-value less than the control 

limit 0.3 is trivial, as shown in Figure 1(d). In practice, a biased coin probability of 0.65 is 

sufficient to prevent serious imbalances. The results shown in Figure 1 demonstrate the 

effectiveness of the MSB algorithm in the control of baseline covariate imbalance. When a 

biased coin probability ξ ≥ 0.65 is used, serious imbalances, defined as p<0.05, can be 

completely prevented for the distribution of NIHSS, age, OTT, glucose, and clinical center 

between the two treatment groups. On the other hand, all baseline covariates not included in 

the randomization algorithm have a p-value with a uniform distribution on [0,1], as shown in 

Figure 1(a). The chance of having a p<0.05 for the imbalance test for any of these covariates 

is always 5%. Table 2 lists the cumulative probability distribution of p-values for the 

imbalance tests for all 11 baseline covariates obtained from computer simulations.

In this simulation, a biased coin assignment (ξ = 0.65) could be used when some of the five 

baseline covariates have imbalance test p-value greater than 0.3. Computer simulation 

results show that there is a 97.5% chance that the p-value of imbalance test for a baseline 

covariate included in the randomization is greater than 0.30. This result addresses the 

concerns about the comparability of the treatment groups, and to prevent controversial 

interpretation of trial results.

The cost of baseline covariate balance is the randomness of treatment allocation. With the 

proposed MSB randomization algorithm, the treatment allocation randomness can be 

evaluated by the proportion of pure random assignments and the correct guess probability of 

the treatment allocation. A higher biased coin probability is associated with a higher 

proportion of pure random assignments. However, this does not mean that a high biased coin 

probability leads to an overall high randomness of treatment allocation. In the MSB 

randomization process, treatment allocations are either done purely randomly or using the 

biased coin probability. The correct guess probability for the purely random proportion is 

always 50%. The correct guess probability for the other equals the biased coin probability. 
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Table 3 shows the relationship between the biased coin probability used in the MSB 

randomization and the overall randomness of treatment allocation.

As a comparison, the commonly used permuted block randomization has a proportion of 

deterministic assignment of 20%, 25%, 33%, and 50%, and a correct guess probability of 

66%, 68%, 71%, and 75% when the block size is 8, 6, 4, and 2, respectively.15 Data in Table 

3 show that the MSB randomization has much higher treatment allocation randomness than 

the permuted block design. The value of the biased coin probability affects the effectiveness 

of covariate imbalance control. Although the imbalance control limit is set to p-value > 0.3 

in the simulations, when an imbalance exceeds this limit, the chance the imbalance being 

reduced equals the biased coin probability. Figure 2 shows the impact of the biased coin 

probability on the low 5% boundary of the p-values of imbalance tests for baseline 

covariates controlled by the MSB randomization algorithm. For example, when ξ = 0.6, the 

chance a covariate controlled by the randomization algorithm having a p-value of imbalance 

test less than 0.27 is 5%. In other words, there is a 95% chance the p-value of imbalance test 

is greater than 0.27. Based on computer simulation results shown in Figure 2, as the biased 

coin probability increases, a better covariate balancing is expected. However, the benefit of 

large biased coin probability gradually decreases when the biased coin probability is greater 

than 0.6. In practice, we recommend that a biased coin probability be selected between 0.6 

and 0.7.

To further evaluate the baseline covariate balancing capacity of the MSB randomization 

algorithm, computer simulation was conducted to balance all 11 baseline covariates listed in 

Table 1. In clinical trial practice, a need to balance this number of baseline covariates would 

be rare. The purpose of this simulation is to examine the potential capacity of the proposed 

MSB method. Results of this simulation are shown in Table 4. For any of the 11 baseline 

covariates, the chance of having a p-value less than 0.2 in the imbalance test is smaller than 

2.5%. There is a 95% chance the p-value of such test will be greater than 0.27. The cost of 

maintaining balance on 11 baseline covariates is a median of 40% biased coin assignments 

at ξ = 0.65.

Discussion

Baseline covariates could have strong prognostic value on the primary outcome in many 

clinical trials. Sometimes the baseline disease severity measured by NIHSS, age, time from 

stroke onset to treatment, and glucose could explain more on the variation in the outcome of 

an acute stroke trial than the study treatment. In a randomized study, the objective is to 

equalize the distribution of such factors within each treatment groups so as to minimize 

biases due to covariate imbalances.32 Having a balanced distribution of these important 

baseline covariates between the treatment arms can facilitate acceptance of trial results and 

minimize potential for controversial interpretations. Currently available randomization 

methods are limited to balance few categorical baseline covariates and at a cost in treatment 

allocation randomness. The proposed MSB randomization strategy provides a practical 

solution to this problem.
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Interim analyses are commonly used in clinical trials. Balanced baseline covariates are 

expected at interim analyses in order to reduce the potential confounding effects from 

baseline covariates. Using the MSB, serious imbalances are prevented throughout the entire 

study for continuous as well as categorical covariates. Although the computer simulation 

results presented in the previous section refer to the end of the trial with 624 subjects, 

similar results have been obtained at the time points when 100, 200, or 300 subjects were 

randomized. This should allow a data safety and monitoring board to make decisions on 

futility or overwhelming efficacy with the knowledge that their decision is maximally 

protected against undue influence by random imbalance on a critical covariate or 

combination of covariates.

Implementation of the proposed MSB method requires the support of a computerized real-

time central randomization system, such as a web-based system or an interactive voice 

response system. As the availability of modern information technology increases in trial data 

management and coordinating centers, this requirement should not hinder implementation of 

the MSB method. With the central randomization system, randomization problems 

associated with sealed envelopes can be fully eliminated. As the entire randomization 

algorithm is programmed in to the computer system, no human involvement is necessary to 

perform imbalance checks. Therefore, there is no concern for unblinding. The proposed 

MSB has a much higher level of allocation randomness than commonly used randomization 

designs, such as permuted block and minimization. For example, when the MSB design is 

implemented with three covariates, pure random assignments will be used for a median of 

about 90% of subjects, compared to 42% in permuted block design with a block size of 4, 

and almost zero in minimization. In practice, even if information on baseline covariates and 

treatment assignments is available for all previously randomized subjects within a specific 

clinical center, such as the case of open-label trials, site investigators will have no basis to 

incur selection bias if the treatment allocation is actually purely random, and the 

randomization is performed in real-time. Therefore, the risk of selection bias for the 

proposed MSB design is practically negligible.

In comparative clinical trials, the type I error (false positive), the type II error (false 

negative), and the variance of the estimator of the treatment effect can be affected by 

baseline covariates if these covariates affect both the primary outcome and the treatment 

allocation. A balanced baseline, achieved with MSB or other constrained randomization 

designs, reduces the variability of the difference in the outcomes between treatment groups, 

and therefore helps to reduce both type I and type II errors.33 The actual amount of benefit 

varies based on the type of the outcome and the data analysis model. Rosenkranz studied the 

impact of randomization method on the analysis of clinical trials with computer simulation, 

and elaborated that the impact can be substantial. We noticed that this conclusion was made 

based on a special scenario which in our mind is unlikely in large phase III trials. Further 

works are needed to quantify the impact of randomization methods, including the MSB, on 

the type I, type II errors, and the variance of the estimators under specific trial conditions.

In the proposed approach, one of the inherent assumptions is that the covariates are 

independent. It is not uncommon in clinical trials that some covariates are strongly 

correlated to each other. To accommodate the correlations, a multivariate extension could be 
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considered. One could also consider data reduction methods such as principle components to 

combine the correlated covariates using optimal linear combinations. Subsequently, 

proposed method could be applied to the imbalance observed in this linear combination. 

This approach would be especially appealing when clinical interpretations of these linear 

combinations are available.

In addition to balancing the distribution of baseline covariates in the randomization process, 

other efforts have been made to address the challenges from baseline covariates, including 

covariate adjusted analysis and subgroup analyses.34–38 Unless pre-specified before the trial 

initiation, the value of these post hoc analyses are limited. Most recently, a matching 

algorithm has been proposed to obtain pairs of subjects with close baseline profiles and 

eliminate unmatched “outliers” from the efficacy analysis.9 Such an approach violates the 

intent-to-treat (ITT) principle. Analysis results from such a matched dataset do not have the 

merit of randomized controlled clinical trials.

Although the proposed randomization method can technically prevent serious imbalances in 

a large number of baseline covariates, we do not advocate the balancing of a large number of 

baseline covariates. It is important to point out that, when a covariate in included in the 

randomization algorithm, one should include that covariate in the primary analysis and to 

interpret the trial results accordingly. The European statistical guideline requires that all 

factors used in the stratification and minimization be included in the primary analysis. It also 

recommends that “no more than a few” covariates should be included in the primary 

analysis.14

The cost of clinical trial is rising rapidly.39 Although US FDA generally requires two well-

controlled clinical trials for New Drug Applications, it is difficult to replicate large trials in 

practice with limited resources. Hence, it would behoove the investigators to insure that the 

trial results raise a few, if any, controversial issues by applying randomization procedure 

that prevents serious baseline covariates yet maintaining randomness of treatment allocation, 

like the proposed MSB method.
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Figure 1. 
Baseline covariate balancing with MSB randomization. NINDS rt-PA stroke study data. 

Imbalance control limit p-value >0.3, number of controlled covariate=5, simulations=5000. 

Covariates included in randomization algorithm: clinical center, NIHSS, age, OTT, glucose. 

Imbalance control limit: p-value ≥0.3. NIHSS: National Institutes of Health Stroke Scale.
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Figure 2. 
Impact of bias-coin probability on imbalance control. NINDS rt-PA: National Institute of 

Neurological Disorders and Stroke recombinant tissue plasminogen activator.
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