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Parietal Cortex and Insula Relate to Evidence Seeking
Relevant to Reward-Related Decisions

Nicholas Furl and Bruno B. Averbeck
Unit on Learning and Decision Making, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda Maryland 20892

Decisions are most effective after collecting sufficient evidence to accurately predict rewarding outcomes. We investigated whether
human participants optimally seek evidence and we characterized the brain areas associated with their evidence seeking. Participants
viewed sequences of bead colors drawn from hidden urns and attempted to infer the majority bead color in each urn. When viewing each
bead color, participants chose either to seek more evidence about the urn by drawing another bead (draw choices) or to infer the urn
contents (urn choices). We then compared their evidence seeking against that predicted by a Bayesian ideal observer model. By this
standard, participants sampled less evidence than optimal. Also, when faced with urns that had bead color splits closer to chance (60/40
versus 80/20) or potential monetary losses, participants increased their evidence seeking, but they showed less increase than predicted by
the ideal observer model. Functional magnetic resonance imaging showed that urn choices evoked larger hemodynamic responses than
draw choices in the insula, striatum, anterior cingulate, and parietal cortex. These parietal responses were greater for participants who
sought more evidence on average and for participants who increased more their evidence seeking when draws came from 60/40 urns. The
parietal cortex and insula were associated with potential monetary loss. Insula responses also showed modulation with estimates of the
expected gains of urn choices. Our findings show that participants sought less evidence than predicted by an ideal observer model and

their evidence-seeking behavior may relate to responses in the insula and parietal cortex.

Introduction
Animals, including humans, act overtly to seek evidence that
can inform future attempts to obtain rewards. However, evi-
dence seeking entails potential costs such as expenditure of
time, energy and cognitive resources, delay of reward and even
exposure to danger. It is thus beneficial to minimize these
potential costs, even if more informed decisions are more
likely to lead to reward. Normative models of decision making
frame this issue as an “optimal stopping problem” (Puterman,
1994; Bertsekas, 1995), which prescribes when a rational agent
should optimally terminate evidence seeking. These agents
balance the value of continued evidence seeking against the
value of acting immediately based on the evidence at hand.
Because humans need not behave like normative rational
agents, in the current study, we characterized how human
evidence-seeking behavior compared with optimal actions as
predicted by a normative model.

The current study also investigated areas of the brain that
potentially compute the costs and benefits associated with evi-
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dence seeking and may therefore determine how much evidence
people seek. Decision making studies show the striatum, parietal
cortex, insula, and dorsolateral prefrontal cortex may be involved
in the accumulation of relevant evidence (Shadlen and Newsome,
2001; Ivanoffetal., 2008; Basten et al., 2010; Ding and Gold, 2010;
Stern et al., 2010). Building on this previous research, we inves-
tigated evidence accumulation by these brain areas, but using
instead a previously developed behavioral task (see also Cisek et
al., 2009), where participants must act overtly to control the
amount of evidence they accumulate. In the “beads task” (Huq et
al., 1988; Averbeck et al., 2011), participants choose between
evidence-seeking actions and actions leading to potential rewards
or losses. Participants view sequences of colored beads drawn
from a hidden urn and receive monetary rewards when they cor-
rectly infer the majority bead color of the urn. For each new draw,
participants can seek more evidence about the urn’s contents by
choosing to draw another bead (draw choices) or they can at-
tempt to judge the urn’s contents (urn choices).

Using the beads task, we compared the amount of evidence
sought by the participants against optimal choices derived from a
Bayesian ideal observer model. We found that participants on
average sampled less evidence than optimal. We also manipu-
lated how informative draws were about the urn contents and we
introduced monetary losses for incorrect urn choices. Both of
these manipulations led to larger increases in evidence seeking
for the ideal observer model than for the participants. Partici-
pants, therefore, appear to treat evidence seeking as a more costly
activity than the ideal observer, compared with the potential ben-
efits of winning money. Using functional magnetic resonance
imaging (fMRI), we found that the insula and parietal cortex
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Figure1. Beadstask design. Each sequence of bead presentations was preceded by an instruction screen informing the participant of the color probability (0.8 or 0.6 majority bead color) and the

potential monetary loss for incorrect urn choices (510 or $0). After the presentation of each color, participants either chose to draw another bead or they chose an urn. Draw choices led to the
presentation of another bead color and cost $0.25, while urn choices led to a feedback screen which displayed either a win of $10 for correct urn choices (blue is correct in this example) or a loss of

$0 or $10 for incorrect urn choices.

could communicate the relative values of evidence seeking and
urn choices. Bead draws that led to urn choices evoked parietal
responses that: (1) correlated with how willing participants were
to seek evidence; (2) correlated with how willing participants
were to increase their evidence seeking when draws were less
informative; and (3) were associated with potential ($10) losses.
Insula responses were also associated with potential losses and,
further, related to expected gains for urn choices.

Materials and Methods

Participants. Eighteen healthy volunteers of either sex were enrolled in
the experiment, which was approved by the National Institute of Mental
Health Institutional Review Board. One participant was excluded for
failing to follow instructions. All participants were right handed, had
normal or corrected to normal vision, and were given a physical and
neurological examination by a licensed clinician to verify that they were
free of psychiatric and neurological disease.

Experimental procedure. Before the experiment, participants were in-
structed that they should imagine two urns filled with blue and green
beads, one (the “blue urn”) contained mostly blue beads and the other
(the “green urn”) contained mostly green beads. They were told that they
would be viewing sequences of bead colors, each drawn from one of these
two urns and that they were to infer the majority bead color of each
“hidden urn” from the bead colors drawn. Each sequence (Fig. 1) began
with an instruction screen (2.5 s) that informed the participant of the
proportion of bead colors in the two urns (either an 80/20 or a 60/40
color split) and the cost for incorrect urn choices ($10 or $0). Participants
then viewed a bead color (1 s) followed by a response prompt (2.5 s),
where they either decided that the beads were coming from the Blue Urn,
the Green Urn, or they chose to draw another bead. Participants could
make their responses anytime during the 3.5 s between the onset of the
bead color and the offset of the response prompt. Participants were lim-
ited to nine draw choices per sequence, after which they were required to
choose an urn. After a 0—4 s randomly jittered fixation period, the next
stimulus was either a new bead color, if the participant chose to draw, or
the feedback screen (3 s), if the participant chose an urn. The feedback
screen informed the participants about whether they had been correct or
incorrect, and how much money they won or lost. Each bead presenta-
tion included only the color of the current bead and participants did not
view the number of accumulated colors. Each scanning session com-
prised 24 sequences of bead events, with six sequences in each cell of a 2 X
2 factorial design with bead probability (0.6 or 0.8 majority bead color in
the urns) and loss ($0 or $10) as repeated measures factors. Participants

accumulated wins and losses throughout the experiment based on their
choices. They always incurred a cost of $0.25 for each draw choice, and
won $10 for correct urn choices. After the experiment, participants were
paid 5% of their total winnings. This resulted in a final average earning of
$29.93, with a SE of $2.34. Approximately 1 week before the scanning
sessions, each participant underwent the entire experiment outside the
scanner in a behavioral training phase. Participants were informed of the
possible wins and losses before beginning this behavioral training and
were then reminded of the instructions, including the payment schedule,
before the scanning session.

Bayesian model. We used a Bayesian model to evaluate behavioral
performance and to search the brain for responses covarying with mod-
eled quantities. In brief, this model is designed to balance the expected
financial costs of actions that seek more evidence (i.e., drawing more
beads) versus the cost of reward-related actions (choosing an urn). It
formalizes parameters for the financial costs of making incorrect urn
decisions as well as the costs incurred by repeated drawing. It then uses
these costs, together with conditional probabilities favoring each of the
two urns, to derive the “value,” or expected gain, associated with each of
the three possible actions (draw, choose green or choose blue urn). These
action values are updated with every new bead presentation and an urn
choice is generated when the action value for one of the urn choices
exceeds the action value for continued evidence seeking. When this oc-
curs, the probable value of continued evidence seeking will be lower than
the probable value of choosing an urn immediately and so choosing an
urn will be the optimal choice.

The model was used first as an ideal observer to determine optimal
behavior, where optimal is defined as the number of bead draws before
an urn decision, to maximize rewards, given the actual sequence of beads
drawn. This analysis was parameter-free as the task instructions provided
all of the necessary information for each sequence ($0 or $10 cost of being
inaccurate). Second, we wished to compute action values that the partic-
ipants were likely to have used instead. The participants tended to draw
less than this ideal observer (see Results). Therefore, in this second, “pa-
rameterized” model, we also allowed costs in the model to vary as a free
parameter, and we fit these costs to individual participant choice data to
describe participant behavior. In this case, we assumed that the partici-
pants used a different cost in their decision process than the cost specified
by the experimenter. It follows that the parameter value that allowed the
model to best describe the participants’ behavior was our estimate of that
cost. We searched for cost parameters that optimized the fit (negative
log-likelihood) between the model’s choices and the participants’
choices. From these empirically estimated cost parameters, we derived
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new participant-specific action values. We
then compared the trial-by-trial variation of
these action values with that of the fMRI data to
test whether any brain areas might be com-
municating the action values that the partic-
ipants used. Below, we specify our model
implementation in more formal detail. We
describe first the ideal observer model and
then introduce our fitting procedure for the
parameterized model.

For each draw, we used the total number
of beads the participant had seen n,, the
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Correspondingly, the probability of B, the blue
urn, was p(B|n,, ny) =1~ p(Glny, ng).

To determine the value of each available op-
tion, these conditional probabilities were mul-
tiplied by the costs associated with the options.
To estimate the action value of deciding either
the blue or green urn, the costs of being correct
C.orrece (always $10) and incorrect C,, ., (either
—$10 or $0 depending upon the loss condi-
tion) were multiplied by the probability of be-
ing correct or incorrect. The value of a blue urn
choice, Q,, for example was given by:

Qb(nd’ ng) = Cerror X P(G|”d; ng)

+ Ccurrect X P(B|”d) ng)~ (2)

The action value for draw choices Q, was based
on the “cost to sample,” associated with choos-
ing to draw another bead C, (—$0.25) and the
expected value of future states. Computation
of the value of future states was performed re-
cursively, as it entailed consideration of the tree
of possible outcome expectations that could re-
sult from all future bead draws. Thus, the value
of draw choices was given by

Qi =
+ V(g ”g)P(b|G)] + P(B|”d) ”g)[v(”d+1> ﬂg+1)P(g\B)
+ V(g n) P(0|B)]. (3)

Figure 2.

C, + P(G|”m ”g)[v(”dﬂ, T’lg+1)P(g|G)

The conditional probability of drawing a green bead, given that the green urn
was the correct urn was P( g|G) = g and the probability of drawing a blue
bead, given that the green urn was the correct urn was P(b|G) = 1 — q. The
conditional probabilities for drawing blue and green beads, given that the
blue urn was correct, were defined correspondingly. The value of future
states was given, under the ideal observer model, by the action with the
highest value in each future state. For example, if another draw led to a green
bead, the value would be given by,

V(”d+1> ”g+1) =

max{Qu(144, ng+l)) Qg(nd+1) ng+1))

$10
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Behavioral performance as a function of color probability and loss. a, Mean and SE of the number of draws chosen by
participants. b, Optimal number of draws derived from ideal observer. Although the same ideal observer model was always used to
compute optimal performance for all sequences, we organized our results so that ideal observer performance scores could be separately
matched to each participant’s performance. These participant-matched scores were used to compute SEs (error bars) and statistical con-
trasts with participants. ¢, Mean and SE of the participants’ accuracy. d, Optimal accuracy for ideal observer (SEs computed over participant-
matched scores. e, The cost of incorrect urn choices C,,, estimated from participant behavior using parameterized Bayesian model.

Qy(14415 ”g+1)}- (4)

In general, the maximum Q values determined the optimal action at each
point in the sequence of draws. If Q,; was greater than either Q, or Q,
another bead should be drawn. However, if Q, or Q, was greater than Q,,
the participant should choose the corresponding urn.

The model was also fit to individual participant choice data by allow-
ing a cost parameter to float and optimizing it to best predict the actual
choice sequences of each participant. We found that the fitting procedure
did not converge when we attempted to fit both the C,,,,. and C_,,,..,
terms. As we were always fitting the model to a single condition and a
single subject, we only have the number of times a subject drew when the
costs and probabilities were fixed and they were viewing sequences of
beads. Adjusting either C,,,,,, or C,,,,, would cause the model to draw
less. Formally, this means the parameters were correlated in the model
and not uniquely identifiable. Nevertheless, our experiment was de-
signed so that, in practice, only losses varied (i.e., C,,,,,), while gains were
held constant (i.e., C,,,,..)- Thus, to capture the variation due to losses,

we collapsed the two parameters into one, C,,, which is approximately the
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Table 1. Behavioral ANOVA results
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Effect

Draws

Accuracy

Participants

Ideal observer

Participants

Ideal observer

Probability
Loss
Probability X loss

Fog = 6.82,p = 0.02
Foie = 20.79,p < 0.01
n.s.

Fore = 336.16,p < 0.01
Farg = 515.86,p < 001
Fog = 28.90,p < 0.01

Fog = 501,p = 001
n.s.
Forg = 454 p = 005

Fi1e) = 97.83,p < 0.01
Fa1e) = 58.96,p < 0.01
Fae = 13.39,p < 0.01

Comparison of agent type (human vs ideal observer)
Agent type
Agent type X probability
Agent type X loss
Agent type X probability X loss

Fi1e) = 50.84, p < 0.01
Fie) = 24.84,p < 0.01
ns.p = 0.07

Fi16 = 6.61,p = 0.02

Forg = 107.64,p < 0.01
n.s.

Faie = 14.55,p < 0.01
Faie = 18.64,p < 0.01

n.s., Not significant.

@  mean beta values for urn choices are greater than for draw choices

y=-38

From the action values, the probability that
the participant would take each of the actions
was given by the softmax rule. For example, for
Green urn choices, this was given as:

|: ng(nm ng) :|
mng,n) = | ~———-|-
g s Eisg)h’demnd, )

(6)

As the participants chose stochastically, based
on the action values, the value of future states
in the parameterized model was given by

anjea-;

right insula right parietal cortex right striatum
4412 -6 54 -26 30 8-182 Vo= Qs )
. . 4 CJos where we have dropped the n,, 1, notation for
g 1 o 1 @ 1 Jos clarity.
3 '_l_rl-l | 3 3 The parameter C,, was fit by minimizing the
0 [ | g0 g0 log-likelihood of the model fit to each partici-
£ ; g ; g L|—I_|_| pant’s choices, using a simplex search method
; - = in MATLAB (The MathWorks). The log-
~ K ~ likelihood was given b
: S0 %0 2 S0 %0 2 S0 %0 By
raw choices raw choices raw choices ll - _ E TE”[ lOg( Eifg,b’dDim,-),

(8)

2 -|_ 2 2
a1 + -I_-I_ c 1 g 1 . . .. Lo
E E | | g where D; is a 1 if the participant chose action i
g0 g0 1 g0 ~‘:FF|=—+=|=— on a particular bead presentation and a 0 oth-
g g g erwise. This sum was taken over sequences of
=1 - -1 bead presentations, T and all choices in each
2 2 3 sequence, n.. We found this procedure resulted
$10 %0 $10 . %o $10 %0 in reasonable mean proportion correct predic-

urn choices urn choices urn choices . . > .

tions of participants’ choices. These values
Figure3.  Urn choices versus draw choices contrast. a, Results of contrast um choices > draw choices thresholded at p < 0.001 (and associated SEs over participants) in the

uncorrected, as observed in anterior cingulate, insula and striatum (left), and bilateral parietal cortex (right). b, Mean beta values
and 90% confidence intervals at peak coordinates of areas in a, as a function of color probability and loss.

difference between C,,,,,, and C_,, .., after omitting a constant term. This
gave the action value, in the case of green urn choices, as,

Qung ny) = C, X p(Blng, ). (5)
The parameter C,, was estimated separately for each of our four bead
color probability and loss conditions in each participant. In pilot analy-
ses, we also allowed the cost to sample (C,) parameter to float. Increasing
the cost to sample or decreasing the cost of being wrong both led to a
decrease in the number of draws, so allowing either parameter to float
allowed the model to account for the behavior of the participants. Our
main goal was to use the model to generate accurate action value esti-
mates for the individual participants, and allowing either parameter to
float led to similar action value estimates. However, we chose to model
C,,, as we manipulated potential losses in the experiment, while we did
not manipulate C,.

four conditions were (probability condition/
loss condition: fraction correct) 0.8/ —$10: 0.84
(0.02); 0.6/—$10: 0.81 (0.03); 0.8/$0: 0.86
(0.02); 0.6/$0: 0.79 (0.04). Please note that, al-
though the fitted model achieved reasonably
high prediction accuracy, it was not intended
to optimize mean proportion correct. Our parameters instead optimized
the log-likelihood.

After the model was fit to each participant, we derived, for each choice, the
action value, Q, of each chosen action. We also extracted the information-
theoretic measure of surprise for each bead color outcome as: s = —log,( p(G]
14 n,)) if a green bead was shown and s = —log,( p(B|ny, n,)) if ablue bead
was shown. Conditional probabilities for each bead presentation, the asso-
ciated surprise and the action values were all included as regressors in the
analysis of the fMRI data. This allowed us to search the brain for voxels which
covaried with these quantities.

fMRI scanning. Using a 3T GE Signa scanner (GE Medical Systems)
and 8-channel head coil, we collected whole-brain T2*-weighted
echoplanar imaging volumes with 35 slices, 3.5 mm thick, matrix:
64 X 64 mm, in-plane resolution 3.75 mm, TR 2 s, TE 30 ms, flip angle
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Table 2. Areas differentiating urn choices and draw choices

Brodmann areas MNI® Size (2 mm > voxels) Peak t-value

Urn choices > draw choices

Right insula 13, 44, 45 44 12 —6 1751 8.03

Anterior cingulate 24,32,8,9 4 4 38 1166 7.90

Left parietal cortex 40,2,7,5 —58 —28 42

Left insula 13,47 —32 20 —16

Left putamen, caudate, globus pallidus —14 10 —4 3817 7.80

Thalamus, substantia nigra, red nucleus 8 —18 2 442 443

Right parietal cortex 40,2 54 —26 30 1042 431

Right caudate, putamen 10 8 6 600 419
Draw choices > urn choices

Left superior frontal gyrus 6,8 -20 32 58 337 7.87

Right visual cortex 18 20 —86 —10 384 442

Precuneus, posterior cingulate 7,30,29,23,30 —4 —50 4 839 6.59

Left superior frontal gyrus 6 —14 4 64 307 6.33

Left temporoparietal junction 39,7 =50 —66 2 276 5.76
“MNI coordinates x, y, z.

a positive linear relationship between

mean beta values for urn choices and the average number of draws

y=28 y=-40 0
b right parietal cortex c right parietal cortex
40 -40 40 40 -40 40
6. draw choices 08/s10 * o urn choices
5l 0.6/$10 °
4l 0.8/50
©
3l 0.6/50 ..

mean beta
mean beta

2+

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
average number of draws average number of draws

Figure4. Parietal cortex s associated with number of draw choices. a, Areas in right dorsolateral prefrontal cortex (left) and right parietal cortex (right) where beta values corresponding to urn
choices showed positive linear relationships with average number of draws, thresholded at p << 0.001 uncorrected. b, Scatter plot of beta values for draw choices at the peak voxel in right parietal
cortex, showing no positive associations with the number of draws. ¢, Scatter plot of beta values for urn choices for the same peak voxel, showing a positive association with the number of draws
separately for all four conditions.

90°. All participants underwent six scanning sessions, except for one fMRI data preprocessing and statistical analysis. We preprocessed and
who underwent five due to time constraints. The first five “dlummy  analyzed the fMRI data using MATLAB and the SPM5 software (Well-
scans” of each session were discarded to allow for magnetization = come Trust Centre for Neuroimaging, London; http://www.fil.ion.ucl.ac.
equilibration effects. uk/spm/). Functional scans were realigned then normalized to the



Furl and Averbeck e Evidence Seeking in Decision Making

standard Montreal Neurological Institute (MNI) echo-planar image
template. All statistical analyses were performed and are reported using
the matrix and voxel sizes associated with the MNI template space (MNI
matrix size: 79 X 95 X 68 voxels; MNI voxel size: 2 mm>). Before statis-
tical analysis, normalized data were smoothed using an 8 mm FWHM
Gaussian kernel.

We used the conventional methods for estimating the magnitude of
the blood oxygenation level-dependent (BOLD) hemodynamic response
to each stimulus event (see Friston et al., 1998 for a summary of this
procedure). At the individual-participant level, we computed “first level”
mass-univariate time series models for each participant. The aim of the
first level model is to predict the fMRI time series using regressors con-
structed from delta or stick functions representing stimulus onset times,
convolved with a canonical BOLD response function. The canonical
BOLD response function captures the temporal profile of the BOLD
response to a stimulus event. For each regressor and its associated event
type, a beta value was computed to estimate the magnitude of the BOLD
response evoked by the events. Beta values for different event regressors
can then be contrasted statistically to test whether the BOLD responses
evoked by different events significantly differ in magnitude. In more
detail, our first-level analyses used proportionately scaled data, an AR(1)
autocorrelation model and a high-pass filter of 128 s. The term beta value
or beta weight comes from the fact that it is indeed a coefficient from a
linear regression model.

We chose regressors for our first-level models that corresponded to the
onset times of our experimental events of interest. We first included as
regressors the feedback events (data not shown), entered separately for
positive and negative feedback events and for the different loss condi-
tions ($10 and $0). Our primary hypotheses, however, concerned BOLD
responses related to bead presentations. We used separate regressors for
bead presentations leading to draw choices and urn choices so that BOLD
responses evoked by these two event types might be analyzed separately
as well as contrasted directly. These draw and urn choice regressors were
also included separately for each of the four cells in our factorial design.
Note that our analysis estimates the magnitude of the BOLD response
evoked by the stimulus presentation of the bead colors. We did not
employ the onset or offset of the motor response or the time of the
decision (which is not known).

These “stick function” regressors specify the time of the onset of each
event and thereby allow us to evaluate the magnitude of the BOLD re-
sponse evoked by the onset of an event type (stick). Although these
regressors provide a weighted average of the peak BOLD response, it also
may be true that the evoked BOLD magnitude may be higher on some
trials than others, and that this trial-by-trial variability might be predict-
able using parametric regressors. We refer to this type of trial-by-trial
inference about the magnitude of the event-related BOLD response as
“parametric modulation”. In particular, we were interested in whether
the BOLD responses evoked by bead presentations were parametrically
modulated by quantities derived from our Bayesian model. All our first-
level models tested for parametric modulation by the action values Q
computed from the Bayesian ideal observer model, corresponding to the
participants’ chosen actions. Three total sets of first-level models were
run, each including a different parametric modulator in addition to the
action values. One set used as the additional parametric modulator the
surprise associated with the bead color on each draw. A second set used
instead the conditional probabilities of the bead color on each draw. A
third set was a measure of Bayesian confidence, computed as the inverse
of the width of the posterior distribution. All three measures were in-
tended to quantify the confidence or certainty with which each bead
presentation event could be predicted. Because surprise, conditional
probability and Bayesian confidence are highly correlated, they are in-
cluded in separate first level models to avoid colinearity. However, none
of these additional regressors correlated highly with the action values,
thus action values could be included with surprise, conditional probabil-
ity or Bayesian surprise at the same point in time, and they would account
for independent variability in the fMRI data. These three types of first
level models did not produce appreciable differences in results. Unless
otherwise noted, we report all our results using surprise as a first-level
parametric modulator, rather than the conditional probabilities or
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Table 3. Relationships between beta values and the number of draws

B P F (1,15) P
Right dorsolateral prefrontal
cortex (MNI:“ 54 16 28)

Urn choice events
0.8/%10 0.96 0.53 578 0.03
0.6/510 0.63 0.36 24.53 0.01
0.8/910 1.25 0.72 28.26 <0.01
0.6/%10 0.67 0.44 16.29 <0.01

Draw choice events
0.8/510 —0.01 —0.01 0.001 0.97°
0.6/$10 0.75 0.76 15.25 <0.01°
0.8/510 0.38 0.30 0.85 038
0.6/$10 0.52 0.82 9.42 <0.01°

Right parietal cortex
(MNI: 40 —40 40)

Urn choice events
0.8/510 1.02 0.63 10.04 <0.01
0.6/510 0.48 0.43 33.36 <0.01
0.8/510 1.12 0.61 22.15 0.01
0.6/$10 0.75 0.47 53.10 <0.01

Draw choice events
0.8/510 0.26 0.23 0.64 0.44°
0.6/$10 0.09 0.48 0.67 0.43°
0.8/510 —0.07 —0.30 0.02 0.88°
0.6/510 0.16 0.10 157 0.23°

“MNI coordinates x, y, z.

®Included voxels failed to reach the thresholds necessary for significance in whole-brain analysis of either p << 0.001
uncorrected or P(FWE) << 0.05 cluster level.

Bayesian confidence. Note that these parametric modulators also act as
nuisance regressors. Because beta values in the general linear model con-
trol for variability in other regressors, the beta values from which Figures
3-7 (see below) are derived all control for trial-by-trial variability ac-
counted for by the other parametric modulators. In addition, our first
level models further statistically controlled for head motion in the same
way by including as nuisance regressors the six motion parameters de-
rived from the realignment step.

Once we had computed the beta value (estimated BOLD response
magnitude) for each of our events of interest, as well as contrasts over
these beta values (see Results), we then brought these to a “second level”
of analysis where they were entered into one-sample t tests, treating par-
ticipants as a random effect. This allowed us to test whether beta values
were statistically constant across participants. All results reported below
were observed at p < 0.001 and then tested for familywise error (FWE)
correction at the cluster level at P(FWE) < 0.05 using Gaussian random
field theory. This is a conventional method (Brett et al., 2003; Friston et
al., 2007) that uses the estimated smoothness of the data to correct for the
massive number of multiple comparisons at all voxels in the whole brain.

Results

Behavioral results

Behavioral results from the scanning sessions are shown in Figure
2 and statistics are reported in Table 1. Figure 2 and Table 1 also
show estimated optimal choices from our Bayesian ideal observer
model. We computed these optimal choices by submitting to the
ideal observer model the same bead sequences available to each of
the 17 participants, including the extra beads that the participants
could have drawn. The average ideal observer performance could
thus be computed separately for the sequences specific to each
participant. We can refer to the performance obtained from the
ideal observer model that corresponded to a specific participant
as “participant-matched ideal performance.” In this way, the
ideal observer model could provide an estimate of what each
individual participant should have chosen. Considering both the
participants and their participant-matched ideal observer coun-
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terparts as comparable decision making a
agents, we could statistically contrast their
decision making performance using an
“agent type” factor.

On the average, the ideal observer
drew more beads than the participants
(see Agent type main effect, Table 1, and
compare Fig. 2a,b). Both the participants
and ideal observer significantly increased
the number of draws for 0.60 probability
sequences, compared with 0.80 se-
quences. However, the ideal observer
showed a significantly larger drawing in-
crease than the participants (see Agent
type X probability interaction, Table 1).
This increased drawing led to increased
accuracy for 0.60 sequences, compared
with 0.80 sequences, for both the partici-

right parietal cortex
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positive linear relationship between
the difference in beta values 0.6 - 0.8
and the difference in the number of draws 0.6 - 0.8

y =-40 0

right parietal cortex

pants and the ideal observer (Fig. 2¢,d). b Cc
However, because the drawing increase 32-4040 32-4040
was greater for the ideal observer, it draw choices urn choices
showed a significantly larger accuracy in- 9 15 ® 15
S S S
crease than for the participants (see Agent & i @ .
type X probability interaction, Table 1). A ?; ?;
similar pattern was observed for the loss 2 o5 . . 2 05 . . .
conditions. Both the participants and the 2 e p ‘ /
. . - 0 o . . = 0 % .
ideal observer increased the number of 9 e b e .
draws for $10 loss sequences, compared £ .05 £ o5 .
. . Q Q ~ .
with $0 loss sequences, although the ideal g 2
. g o 1
observer showed a larger increase than the ] ]
participants (see Agent type X loss inter- 5 15 0 o g 8 T A,

action, Table 1). This increased drawing
also significantly benefited accuracy in the
$10 loss condition more for the ideal ob-
server compared with the participants
(see Agent type X loss interaction, Table
1). Last, the ideal observer disproportion-
ately drew more beads when there was
both a 0.60 probability and a potential $10
loss, while the participants did not. Con-
sequently, the ideal observer showed a significant probability X
loss interaction for draws while the participants did not
and, moreover, there was a significant agent type X probability X
loss interaction (Table 1). These interaction effects on the num-
ber of draws were accompanied by a corresponding agent type X
probability X loss interaction effect on accuracy. In summary,
the ideal observer drew more beads overall, and was more willing
to increase drawing rates in response to low majority color prob-
ability or potential $10 losses. Consequently, the ideal observer
benefitted more from its increased drawing with increased accu-
racy and therefore winnings.

We also examined our Bayesian model-based parameter esti-
mates for the subjective cost of incorrect urn choices C,,. One
participant was excluded as an extreme outlier (produced values
of <—270, compare with Fig. 2¢) and we further applied a log
transformation to the data to satisfy ANOVA assumptions of
normality for computation of the statistics. The pattern of C,, values
paralleled that of accuracy and the number of draws. The absolute
magnitude of C,, values was greater (more negative) for 0.6 than the
0.8 color probability conditions (F(, ;5 = 4.53, p = 0.05). Although
numerically C,, values showed greater absolute magnitude in the $10
loss condition than that of $0, neither the loss main effect nor the
value X loss interaction achieved significance.

Figure 5.

difference in number of draws 0.6 - 0.8

difference in number of draws 0.6 - 0.8

Parietal cortex was associated with the majority color probability behavioral effect. a, Area in right parietal cortex
where individual differences in the beta value contrast 0.6 > 0.8 (effect of color probability) predicted corresponding differences
in the number of draw choices (0.6 > 0.8), thresholded at p << 0.001. b, Scatter plot showing no relationship between the color
probability fMRI contrast (beta values at the peak voxel in right parietal cortex) for draw choices and the size of the probability
effect on the number of draws. ¢, Scatter plot showing a positive linear relationship between the probability fMRI contrast (beta
values at the peak voxel in right parietal cortex) for urn choices and the size of the color probability effect on the number of draws.

fMRI responses associated with urn choices

We first contrasted the estimated size of the BOLD response (beta
values) related to urn choices (bead presentations leading to de-
cisions to name either the blue or green urn) to those related to
draw choices (bead presentations leading to decisions to draw
another bead). We chose this contrast to illustrate brain areas that
were related to urn choices, controlling for irrelevant factors such
as visual stimulation and motor execution that were common to
both urn and draw choices. We identified a pattern of areas (Fig.
3, Table 2), all thought to contribute to decision making (see
Introduction). This included a large cluster which encompassed
the left parietal cortex, including the vicinity of intraparietal sul-
cus (IPS), left striatum and left insula (including parts of adjacent
frontal cortex). Other clusters were observed in homologous ar-
eas of the right parietal cortex, also including the vicinity of infe-
rior IPS, right striatum and right insula. Urn choices evoked
larger BOLD responses (beta values) than draw choices also in
anterior cingulate and a cluster encompassing substantia nigra
and posterior thalamus. For completeness, we also tested the re-
verse contrast, draw choices > urn choices. This contrast revealed
effects in visual cortex as well as several areas not predicted a
priori including the superior frontal gyrus and temporoparietal
junction (Table 2). We also observed posterior cingulate, an area



Furl and Averbeck e Evidence Seeking in Decision Making

a main effect of loss ($10 > $0)

Xx=-36
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driven by any subset of conditions (e.g.,
by only the 0.8 or 0.6 conditions), we also
examined regressions separately for each
individual condition. These correlations
were not driven by any subsets of condi-
tions, as we found robust linear effects in all
conditions for both dorsolateral prefrontal
and parietal cortex (See Fig. 4c, Table 3).
Although parietal responses in each of
the individual conditions in the design

anjen-;

b left insula right parietal cortex were related to behavioral disposition to
1E 32022 15 54 -36 32 draw, it is still possible that differences

) ) CJos among conditions could relate to how

1 1 CJos much participants adjusted their drawing

£ 05 £ 05 between these conditions. We thus tested
2 | 2 whether the fMRI data related to differ-
5 0 § 0 ences in drawing between the levels of the
€ -05 € -05 color probability and loss factors. We
41 41 found no correlations relating the fMRI
data to differences in the number of draws

-1.5 $10 $0 -1.5 $10 $0 for individual participants for the loss
draw choices draw choices conditions ($10 > $0). Next, we exam-

c ined the contrast 0.6 > 0.8 for beta values
1.5 1.5 associated with urn choices. This contrast,

1 1 when computed for every participant,

- © represents the individual differences in
3 0.5 3 0:6 | | the size of the majority color probability
s 0 - S 0 1 effect on beta values for urn choices. We
£ 05 I | L|_L|_I £ 05 found that the size of this contrast corre-
lated positively with the corresponding

-1 -1 behavioral effect on the number of draws

-1.5 1.5 (0.6 > 0.8) at voxels in right parietal cor-

$10 $0 T 10
draw choices

Figure6.

insula (left) and right inferior parietal cortex (right).

previously implicated in exploratory behaviors in monkeys (Pearson
et al., 2009).

Areas correlated with behavioral

measures

In the next series of analyses, we examined correlations between
the estimated size of the BOLD response (beta values) related to
urn choices and various behavioral measures. We first searched
the whole brain for voxels which showed a significant linear rela-
tionship between beta values related to urn choices and individ-
ual differences in the participants’ average number of draws. We
found voxels that showed these significant effects within two ar-
eas (Fig. 4a): one in the right dorsolateral prefrontal cortex (peak
MNI: 54 16 28, 186 voxels encompassing parts of Brodmann area
9 and 46) and one in the right parietal cortex (MNI: 40 —40 40,
261 voxels within Brodmann area 40). The right parietal area was
near the lower bank of the IPS and overlapped with the right
parietal area observed when we contrasted urn choices with draw
choices (Fig. 3, Table 2). There was no significant correlation
between the average number of draws and beta values for draw
choices (Fig. 4b). For urn choices, we intended our correlation
analysis (Fig. 4a) to identify areas that were correlated in com-
mon across all our conditions. To verify that our results were not

draw choices

Main effect of loss. @, The beta value contrast $10 > $0 yielded two areas: left posterior insula (left) and right inferior
parietal cortex (right), thresholded at p << 0.007 uncorrected. b, Beta values for draw choices are shown for left posterior insula
(left) and right inferior parietal cortex (right). Bars show the mean beta values and error bars show the 90% confidence intervals.
¢, Mean beta values and 90% confidence intervals for urn choices are greater for $10 losses than $0 at peak voxels in left posterior

$0 tex (MNI: 32 —40 40, 322 voxels within
Brodmann area 40; Fig. 5). That is, partic-
ipants who increased their evidence seek-
ing in the 0.6 condition were also more
likely to show larger beta values related to
urn choices. This area was similar to that
observed to be greater for urn choices
than for draw draws. It was further similar
to that correlated with each of the four draw conditions. That is,
we observed all three parietal effects to be overlapping and nearby
and inferior to IPS. We found no negative correlations nor did we
find any corresponding correlations for draw choices (Fig. 5b).

Main effects of loss and color probability

In addition to regressions of behavioral measures on beta values
related to urn choices, we also directly contrasted the beta values related
to urn choices in the different task conditions. Beta values related to
urn choices in the 0.6 condition did not differ from those in the 0.8
condition when averaged over participants. However, in Figure 6, we
show that beta values for urn choices differed between the two loss
conditions ($10 > $0) in the left posterior insula (MNI: —32 0 22,
475 voxels near Brodmann area 13) and right inferior parietal cortex
(MNI: 54 —36 32, 577 voxels encompassing Brodmann areas 40, 3
and 2). This right inferior parietal area partially overlapped with the
parietal areas described above; however, it is centered somewhat
more inferiorly and is clearly inferior to the IPS.

Action values, surprise, conditional probability, and

Bayesian confidence

At the first analysis level, for each participant’s data, we parametri-
cally modulated our draw choice and urn choice regressors using
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quantities related to the parameterized a
Bayesian ideal observer model (See Materi-
als and Methods). To identify whether any
brain areas were associated on a draw-by-
draw basis with certainty, predictability or
confidence, we ran three separate types of
first-level models (See Materials and Meth-
ods). In the first type of model, our regres-
sors were modulated by the conditional
probability associated with the bead color
revealed to the participant (blue or green).
In the second type of model, our regressors
were modulated by the corresponding
quantity of surprise (the negative log, of the
conditional probability of the bead pro-
duced by the draw). The third type of model
used a measure of Bayesian confidence (See
Materials and Methods). Neither condi-
tional probability nor surprise produced
any significant modulation when tested at
the second, group level. Bayesian confi-
dence showed greater modulation for draw
choices than for urn choices in right low-
level visual cortex (MNI: 12 —78 20 251
voxels peaking in Brodmann area 18). A
more ventral area of the right occipital lobe
showed greater modulation during draw
choices for 0.8 sequences than for 0.6 se-
quences (MNI: 40 —84 —18, 395 voxels
peaking in Brodmann area 18). This con-
trast also revealed an area in left frontal cor-
tex (MNI: —42 0 56, 163 voxels peaking in
Brodmann area 6). All three of these mea-
sures also functioned as nuisance variables (See Materials and Meth-
ods). Thus, the effects reported in Figures 3-7 cannot be simply
accounted for by the increased predictability of the bead shown
when an urn choice was made.

For every first-level analysis, we also parametrically modu-
lated our regressors using the estimated action values Q, corre-
sponding to the action chosen by the participant for each draw.
We examined the parametric modulation of urn choices by Q at
the group level (Fig. 7) by collapsing over the four conditions and
testing whether their mean modulation differed from zero. We
observed a significant effect in the right posterior insula (MNI: 30
—14 6, 398 voxels in Brodmann area 13). We also tested for a
parametric modulation of draw choice events by the action values
for draws but observed no effect.

modulation by action value Q

Figure 7.

Discussion
Using the beads task (Fig. 1), we investigated how people decide
how much evidence to actively collect before acting in expecta-
tion of reward. Compared with a Bayesian ideal observer model,
participants sought less evidence than optimal (Fig. 2). Also, un-
der conditions when the ideal observer increased its optimal evi-
dence seeking, participants increased their evidence seeking by a
smaller amount. Participants’ willingness or disposition to seek evi-
dence (Fig. 4) and to adjust their evidence seeking (Fig. 5) was asso-
ciated with BOLD responses evoked by urn choice events in parietal
cortex. Also, responses in the insula covaried with the action values,
or expected gains, of urn choices (Fig. 7). Together, these areas may
be associated with decisions to terminate evidence-seeking.

Our participants appeared to treat evidence seeking as a costly
activity and sought evidence sparingly, even at the expense of

o
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BOLD responses related to urn choices
covary with the value of chosen action Q,
derived from the parameterized model 7
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Parametric modulation of urn choice responses by model-based estimate of value of the chosen action. We fit a
parameterized version of our Bayesian model to the choices of our participants and thereby derived model estimates of the value
Qassociated with each chosen action. These “action values” were then related statistically to the fMRI data. @, Urn choice responses
in right posterior insula modulated by action values Q, thresholded at p << 0.001 uncorrected. These results derived from testing
whether the mean across all four conditions differed from zero. b, Means and 90% confidence intervals for action value modulation
(beta values) as a function of color probability and loss for bead events leading to draw choices (left) and urn choices (right).

accuracy and monetary gain. Our ideal observer model chose to
draw more than the participants and achieved higher accuracy
and therefore more winnings. The ideal observer model also
showed alarger increase in the number of draws than participants
when the majority bead color probability was closer to chance
(0.60), as opposed to when it was higher probability (0.80). When
confronted with potential $10 losses, the ideal observer model
also increased evidence seeking more and benefitted from a
greater improvement in accuracy than the participants did. The
participants’ sparing evidence seeking appears suboptimal from a
financial perspective, as the cost of drawing was small ($0.25),
compared with the much larger amount ($10) available to win.
Participants would thus have incurred little monetary cost to
obtain larger winnings using higher drawing rates, as the ideal
observer model did. The choices of this ideal observer model,
though optimal, provide a limited description of participants’
choices, as it considers only monetary outcomes. Our partici-
pants, in contrast, appeared to consider costs, aside from finan-
cial gain, that we did not include in our model. In naturalistic
settings, evidence seeking can be a dangerous activity. It con-
sumes time as well as biological and cognitive resources (e.g.,
working memory, attention, memory), whose limited availability
also may place further time constraints. Humans may therefore
be predisposed to minimize non-monetary costs such as these.
Minimized evidence seeking behavior may have further conse-
quences. Using a paradigm similar to the beads task, participants
appear to underestimate the prevalence of low-probability
events, a phenomenon attributed to reliance on small informa-
tion samples derived from limited evidence-seeking (Hertwig
and Erev, 2009).
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The choice to seek additional evidence might be mediated via
a neural mechanism which, like the Bayesian model, compares
the costs of seeking additional evidence to the potential gains and
losses of an immediate reward-related decision. This process can
be modeled with a threshold mechanism, such that when the
value of acting to obtain a reward exceeds the value of seeking
additional evidence, the action is taken (e.g., See Materials and
Methods for details of Bayesian model). Parietal cortex appears to
be the best candidate suggested by our data for making this com-
parison. First, parietal cortex may play a role in generating an urn
choice, as urn choices evoked larger beta values here than draw
choices (Fig. 3) and no significantly positive beta values were
observed for draw choices. The magnitude of the parietal BOLD
response for urn choices further correlated with participants’ dis-
position to draw (Fig. 4). In addition, parietal responses evoked
by urn choices also correlated with participants’ disposition to
increase the amount of evidence seeking when necessary. Partic-
ipants who drew more for 0.60 majority color sequences than for
0.80 majority color sequences showed a correlated response dif-
ference between these conditions in the right parietal cortex (Fig.
5). Last, parietal cortex was further associated with urn choices
that, if incorrect, could potentially lead to $10 losses (Fig. 6).
Thus, parietal cortex might relate to the increase in evidence
seeking in the $10 condition, compared with the $0 condition. All
these contrasts consistently revealed effects in the right parietal
cortex, nearby and inferior to the right intraparietal sulcus. These
results could be collectively explained if the parietal cortex esti-
mated the value of continuing to perform evidence-seeking ac-
tions relative to the value of making a reward guided action.

These findings are incompatible with alternative accounts of
parietal function. A number of studies concluded that parietal
cortex communicates decision confidence (Kiani and Shadlen,
2009) or stimulus predictability (Huettel et al., 2005; Yang and
Shadlen, 2007; Glascher et al., 2010; Stern et al., 2010). There may
indeed exist neurons in intraparietal sulcus that signal confidence
(Kiani and Shadlen, 2009) although they likely reflect different
populations of neurons than our findings. First, our parietal find-
ings related to increased evidence seeking on the 0.60 condition.
However, urn choices in the 0.6 condition were not likely to be
more confident, as 0.6 condition draws conveyed less informa-
tion and participants were less accurate. Second, the conditional
probability, surprise or Bayesian confidence associated with each
event was not associated with parietal cortex. Third, these regres-
sors acted as nuisance covariates (see Materials and Methods and
Results). Because beta values in a general linear model control for
variation in the other regressors, all of the beta values we report in
Figures 3—7 control for variability in the conditional probability,
surprise and Bayesian confidence. In the context of the beads
task, individual differences in the parietal BOLD responses re-
lated to how much evidence participants were willing to seek to
support their final urn decision, rather than the confidence of the
final decision or the predictability of the final event.

More alternative accounts may also be considered. First,
drawing more beads may place greater demands on cognitive
resources such as working memory and attention (Corbetta and
Shulman, 2002). Second, participants may be counting bead col-
ors and there is evidence that parietal cortex signals number mag-
nitude (Piazza et al., 2007; Arsalidou and Taylor, 2011). These
accounts all predict correlations between the number of draws
and parietal responses to any bead draw, regardless of whether a
draw choice or an urn choice was made. They cannot as easily
explain how response correlations were found for responses to
urn choices but not responses to draw choices.
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Urn choices might be associated with parietal cortex because it
participates in the final decision to select an urn. The absence of
detectable parietal BOLD response for draw choices is surprising
in light of prior studies that suggest that parietal cortex integrates
evidence as it is collected (Huk and Shadlen, 2005; Kiani and
Shadlen, 2009; Domenech and Dreher, 2010). Similarly, the ex-
plore/exploit paradigm has linked exploratory actions with pari-
etal responses (Daw et al., 2006) and other areas including
anterior cingulate (Hayden et al., 2011) and posterior cingulate
(Pearson et al., 2009). Indeed, this last finding may relate to our
result that posterior cingulate was associated with draw choices
(Table 2). Explore/exploit and related paradigms (Behrens et al.,
2007) differ from the beads task because outcomes from reward-
related decisions can inform future reward-related decisions. The
beads task uniquely addresses a specific question these other par-
adigms do not: how does an agent choose between unrewarded
actions which function solely to collect evidence versus actions
that, if properly informed, can be rewarded? The aforementioned
paradigms do not explicitly require this choice, as agents in these
paradigms always act to gain reward (or avoid punishment). We
suspect therefore that our experimental context was necessary to
reveal a population of neurons in parietal cortex that can be
instrumental in choosing a final, reward-related action over an
unrewarded evidence-seeking action.

Along with parietal cortex, the insula is prevalent in a wide
range of decision making contexts including task difficulty, am-
biguity and uncertainty (Heekeren et al., 2004; Huettel et al.,
2005, 2006). Here, we found insula BOLD responses were greater
for $10 than $0 losses (Fig. 7), consistent with previous studies
showing that insula relates to potential losses (Venkatraman et
al., 2009; Xue et al., 2010) and risky decisions (Mohr et al., 2010).
Of relevance to our conclusions is the finding that insula re-
sponses were modulated by the action values, or expected gain of
urn choices, as computed from our parameterized Bayesian
model. This model predicts that evidence seeking ceases and a
final urn choice made when the value of one of the urn choices
exceeds the value of seeking more evidence. Following this
model, it is possible that the termination of evidence seeking and
the execution of a reward-related decision may have been mediated
by a combination of the signals we observed in parietal cortex and
insula, which, respectively, communicated the disposition to seek
evidence and the value of urn choices.

In conclusion, participants were less inclined to seek evidence
in the beads task than predicted by a Bayesian ideal observer
model. Further, several lines of evidence linked parietal responses
associated with reward-related decisions with participants’ will-
ingness to overtly act to seek evidence. The parietal cortex may be
associated with the amount of evidence seeking chosen by the
participant, while insula is associated with weighing the value of
making an urn decision. Together, these two areas might support
the minimization of the costs and risks associated with evidence
seeking.
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