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SUMMARY

The mammalian nervous system is the most complex organ of any living organism. How this
complexity is generated during neural development is just beginning to be elucidated. This
article discusses the signaling, transcriptional, and epigenetic mechanisms that are involved in
neural development. The first part focuses on molecules that control neuronal numbers
through regulation of the timing of onset of neurogenesis, the timing of the neuronal-to-glial
switch, and the rate of progenitor proliferation. The second part focuses on molecules that
control neuronal diversity by generating spatially or temporally distinct populations of neuro-
nal progenitors. Most of the studies discussed in this article are focused on the developing
mammalian cerebral cortex, because this is one of the main model systems for neural devel-
opmental studies and many of the mechanisms identified in this tissue also operate elsewhere
in the developing brain and spinal cord.

Outline

1 Introduction

2 Controlling neuronal number
in the embryonic brain

3 Generating neuronal diversity in the
embryonic brain

4 Concluding remarks

References

Editors: Patrick P.L. Tam, W. James Nelson, and Janet Rossant

Additional Perspectives on Mammalian Development available at www.cshperspectives.org

Copyright # 2012 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a008359

Cite this article as Cold Spring Harb Perspect Biol 2012;4:a008359

1



1 INTRODUCTION

The primordium of the central nervous system (CNS), the
neural plate, originates from the ectoderm of gastrulating
vertebrate embryos. It is made of a single sheet of neuro-
epithelial (NE) cells, which undergo rapid symmetric divi-
sions that result in planar expansion of the neural plate and
in generation of the neural tube. At mid-gestation, between
embryonic day 9 (E9) and E10 in the mouse, the first neurons
of the CNS are born, heralding an important developmental
transition in the development of the neural progenitor cells
of the brain. Coincident with the acquisition of neurogenic
potential, the progenitors acquire the identity of radial glial
(RG) cells and begin to express glial markers such as GLAST
(Glutamate-aspartate transporter) and BLBP (Brain lipid-
binding protein). In addition, the tight junctions that couple
early NE progenitors are replaced by apically located adhe-
rens junctions (Gotz and Huttner 2005; Kriegstein and Al-
varez-Buylla 2009). RG stem cells persist as the principal
progenitor type during development of the embryonic and
postnatal CNS. Importantly, RG cells are thought to be the
primary progenitors of most neurons throughout the CNS
and also to give rise, via lineage-restricted intermediate pre-
cursors, to the two main macroglial cell types, astrocytes and
oligodendrocytes (Kriegstein and Alvarez-Buylla 2009). In
the nervous system, there is a distinct progression of lineage
differentiation whereby RG cells first give rise to neurons and
later to astrocytes and oligodendrocytes.

Following the transition to the RG fate, some progen-
itor cells begin to divide asymmetrically to generate anoth-
er radial glial cell and a more differentiated daughter cell,
which migrates away from the apical progenitor domain
and commences neuronal differentiation. In the forebrain,
the cell lineages that produce neurons have become signifi-
cantly more complex, with the insertion of fate-restricted
progenitor stages between stem cells and postmitotic cells.
These intermediate cells have been called basal or abven-
tricular progenitors (BPs). They are generated in the devel-
oping telencephalon by asymmetric division of radial glial
stem cells (Haubensak et al. 2004; Miyata et al. 2004; Noc-
tor et al. 2004). BPs are not attached to the ventricular
surface and divide away from it in the subventricular
zone (SVZ). To maintain their self-renewing asymmetric
divisions, RG stem cells must localize the cell polarity de-
terminants of the Par family, including Par3 and Par6 and
their regulator, the small Rho GTPase Cdc42, to their
ventricular end feet. Disruption of the Par complex results
in premature generation of BPs (Cappello et al. 2006; Costa
et al. 2008; Bultje et al. 2009). In the dorsal telencephalon
(which gives rise to the cerebral cortex), BPs divide sym-
metrically only once or a few times and are thought to
generate most cortical projection neurons, including

early-born neurons in deep cortical layers and late-born
neurons in superficial cortical layers (Farkas and Huttner
2008). The number of divisions of BPs in the ventral telen-
cephalon (which gives rise to the basal ganglia and inter-
neurons of the cortex) and the extent of their contribution
to the generation of basal ganglia neurons and cortical
interneurons are less well characterized.

As neurogenesis progresses, there is an ever-increasing
propensity for progenitorsto undergo a symmetric terminal
division, in which both daughters differentiate. Conse-
quently the expansion of the progenitor pool gradually
slows and then stops. Many studies over the last decade
have shed light on specific signaling, transcriptional, and
epigenetic mechanismsthat are integrated to ensure atimely
and coordinate switch in progenitor properties. This is dis-
cussed in the first section of this article, which examines the
molecular mechanismsthat instruct theacquisitionofradial
glial features, the proliferation of neural progenitors, the
promotion of neurogenesis, and the subsequent termina-
tion of neurogenesis and concomitant switch to gliogenesis.

In most regions of the CNS, different types of neurons
are generated at different times during neurogenesis. In the
cerebral cortex, for example, neurons located in deep layers,
which mostly project to subcortical targets such as the
thalamus and spinal cord, are generated before neurons in
more superficial layers, which project to other parts of the
cortex. Premature transition from proliferative symmetric
divisions to neurogenic asymmetric divisions, which is
thought to underlie several developmental brain abnor-
malities such as microcephaly (Manzini and Walsh 2011;
Rubenstein 2011), therefore reduces brain size but also
alters the balance between different neuronal populations.
Conversely, protraction of the phase of progenitor expan-
sion over evolutionary time is thought to contribute greatly
to an increased number of late-born cortical neurons con-
necting different cortical areas in humans compared with
lower primates (Rakic 1995). The second section of this
article discusses the mechanisms that promote the genera-
tion of different types of neurons by progenitors in differ-
ent brain regions and by the same progenitors over time.
Most of the examples discussed refer to studies performed
in the cerebral cortex, but many of the principal mecha-
nisms also operate in other CNS regions.

2 CONTROLLING NEURONAL NUMBER
IN THE EMBRYONIC BRAIN

2.1 Onset and Progression of Neurogenesis

2.1.1 Signaling Mechanisms Regulating the Onset
and Maintenance of Neurogenesis

The onset of neurogenesis and the transition from NE to
RG coincides with the onset of Notch signaling in the
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dorsal telencephalon, as detected by the expression of the
major Notch ligand Delta-like 1 (Dll1) and the downstream
transcription factors Hes1 and Hes5 (Hatakeyama et al.
2004). In support of the idea that Notch signaling pro-
motes the NE-to-RG transition, Gaiano and Fishell (Gai-
ano et al. 2000) showed that premature Notch pathway
activation strongly induces RG markers and cellular phe-
notype. Notch signaling has also been reported to inhibit
the generation of BPs by RG cells (Mizutani et al. 2007;
Ohata et al. 2011). It is not clear what initiates Notch sig-
naling in the cortex, although the induction of Dll1 coin-
cides with the appearance of the pro-neural proteins Ngn2
and Ascl1, which are major transcriptional regulators of
neurogenesis (see below) and have been shown to directly
regulate Dll1 (Castro et al. 2006). Notch can instruct ac-
quisition of RG identity, but strong perturbation of the
pathway via deletion of Hes1, Hes5, or of the Notch effector
transcription factor RBPJ did not block the appearance of
RG, although Notch-deficient RGs commenced neurogen-
esis prematurely and lost their apico–basal polarity (Hata-
keyama et al. 2004; Imayoshi et al. 2010). Thus Notch is
important, if not essential, for the instigation of RG devel-
opment and to maintain neurogenic RG in an undifferen-
tiated state (Fig. 1B).

Consistent with the specification of RG cells continuing
in the absence of Notch signaling, other pathways are clear-
ly implicated in this process. For example Neuregulin 1
(Nrg1) is expressed in the developing cortex and signals
through its receptors ErB2 and ErB4 to promote RG iden-
tity and to suppress the differentiation of RG into astrocytes
(Schmid et al. 2003; Sardi et al. 2006). Interestingly, ErB2
seems to be a target of the Notch pathway, suggesting that it
might account for some of the Notch pathway’s RG-pro-
moting activity (Fig. 1B) (Schmid et al. 2003).

Similar to the effect of enforced early activation of the
Notch pathway, expression of a constitutively active form of
a receptor for fibroblast growth factors, Fgf receptor 2
(Fgfr2), also promotes precocious acquisition of RG cell
identity (Yoon et al. 2004). A recent study has shed light
on which of the many fibroblast growth factors (Fgf ) li-
gands is likely to be most relevant in the NE-to-RG transi-
tion. Fgf10 expression appears in the cortical ventricular
zone (VZ) at E9.5, and its overexpression promotes expres-
sion of RG markers, whereas Fgf10 mutant mouse embryos
show an extended period of NE expansion and delayed
neurogenesis (Fig. 1B) (Sahara and O’Leary 2009). FGF
signaling is also required to slow down the progression
from RG to BPs (Fig. 1E) (Kang et al. 2009).

In addition to this role in the maturation of cortical
progenitors, FGF ligands have been shown to promote
the proliferation of cortical progenitors and inhibit neuro-
genesis, by regulating the duration of the cell cycle. Cell

cycle length and, specifically, the duration of the G1 phase
of the cycle increase markedly as neurogenesis progresses
in the mammalian brain. The cell cycle is also longer for
progenitors undergoing neurogenic divisions, that is, pro-
ducing postmitotic neurons, than for neighboring cells di-
viding to produce more progenitors (Calegari et al. 2005).
Experimental manipulations of cortical progenitors have
shown that cell cycle lengthening is, indeed, sufficient by
itself to increase the fraction of progenitor divisions that
produce neurons and to promote the generation and ex-
pansion of BPs (Lukaszewicz et al. 2005; Lange et al. 2009;
Pilaz et al. 2009). FGF2 maintains the proliferation of pro-
genitors at the onset of neurogenesis (Raballo et al. 2000)
by controlling the duration of their divisions. FGF2 up-
regulates expression of cyclin D1 and down-regulates ex-
pression of the cyclin-dependent kinase (cdk) inhibitor
p27(kip1), thereby shortening the G1 phase of the cycle
and decreasing the proportion of neurogenic divisions (Lu-
kaszewicz et al. 2002). Another important mitogen for neu-
ral progenitors, Insulin-like growth factor-1 (IGF-1), also
promotes the division of neural progenitors by inducing
the expression of cyclin D1 as well as cyclin D3 and E while
simultaneously reducing the expression of the cdk inhibi-
tors p27(KIP1) and p57(KIP2) (Mairet-Coello et al. 2009).
A related molecule, IGF-2, is secreted in the cortico–spinal
fluid by the choroid plexus and provides a mitogenic signal
to cortical progenitor cells lining the ventricular cavity
(Lehtinen et al. 2011).

Until recently, it was not clear whether the acquisition
of RG properties was inextricably linked to the ability to
undertake asymmetric, neurogenic divisions. In mice mu-
tant for Foxc1, a transcription factor expressed in the cor-
tical meninges, where it is required for the production of
retinoic acid (RA), there is a dramatic increase in the num-
ber of RG cells and a severe block in neuronal differen-
tiation (Fig. 1D) (Siegenthaler et al. 2009). Thus, in the
absence of RA signaling, RG are specified, apparently nor-
mally, yet they go through repeated rounds of symmetric,
expanding divisions without producing neuronal progeny.
Treatment of RA-deficient mice with dietary RAwas able to
prevent the lateral expansion of the cortex and rescued the
production of differentiated neurons. The downstream
transducers of RA signaling that promote neurogenesis
are not known, although the pro-neural factors, Neuroge-
nin1 and 2, might be involved (Ribes et al. 2008; Lee et al.
2009).

Another extracellular signal that may not be required
for the specification of RG cells but is an important regu-
lator of neuronal production in the developing cortex is the
Wnt activity. Some gain- and loss-of-function studies have
implicated Wnt in promoting proliferation and self-renew-
al of RG progenitors (Fig. 1C) (Chenn and Walsh 2002;
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Machon et al. 2003; Woodhead et al. 2006; Zhou et al.
2006), while other studies have shown that at subsequent
stages, Wnt signaling promotes the maturation of RG cells
into BPs and proliferation of the latter, through regulation
of N-myc and the pro-neural gene Neurogenin1 (Viti et al.
2003; Hirabayashi et al. 2004; Kuwahara et al. 2010). Other
work has also suggested that Wnt can act instructively to
promote neuronal differentiation of BPs (Fig. 1E) (Munji
et al. 2011). Thus the effects of Wnt signaling in cortical
development are complex and tightly regulated in space
and time. It should be noted that several of these studies

involved the manipulation of b-catenin, which is a major
transducer of canonical Wnt signaling but also has non-
Wnt-associated functions, for example, in cadherin cell–
cell adhesion complexes. Thus, the observed phenotypes
may not be due solely to changes in Wnt pathway activity.

Another important pathway, with similarly elusive and
complex inputs into the regulation of cortical neurogene-
sis, is the BMP (bone morphogenetic protein) pathway.
Treatment of early (mouse E12–E13) cortical progenitors
with BMP in culture induces neurogenesis (Li et al. 1998;
Mabie et al. 1999), and deletion of BMP receptors in vivo
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Figure 1. Molecular pathways regulating the onset, progression, and termination of neurogenesis in the rodent
cerebral cortex. The onset of neurogenesis is concomitant with the transformation of neuroepithelial stem cells (A)
into radial glial (RG) stem cells (C). Several signaling pathways, including the Dll1/Notch, Nrg1/ErB, and Fgf10/
Fgfr2 pathways have been implicated in this transformation (see text). RG cells then generate neurons directly (D) or
via basal progenitors (E). Several transcription factors (Ap2g, Ngn2, Insm1, Tbr2) have been shown to promote the
generation of basal progenitors from RGs, whereas the Notch and FGF pathways and the epigenetic regulator Ezh2
inhibit this step. Whether AP2g, Ngn2, and Insm1 act primarily by inducing Tbr2 expression or also via Tbr2-
independent mechanisms is unclear. Other transcription factors and signaling molecules promote the self-renewal
of RGs (Wnt, Myc) and the proliferation of basal progenitors (Foxg1, Wnt/n-Myc). Whether the same factors and
pathways that promote the direct generation of neurons by RGs (Pax6, Ngn1/2, RA) also drive the generation of
neurons by basal progenitors (data not shown) is unclear. The termination of neurogenesis results from the terminal
differentiation of RGs into astrocytes (G). Multiple signaling pathways (Jack/Stat, Notch, BMP, FGF) synergize to
elicit the neurogenic-to-gliogenic switch (see text). It is noteworthy that the same pathways frequently operate in
different temporal contexts to exert contrasting cellular effects.
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causes localized reduction of neurogenesis in caudal re-
gions of the CNS (Fig. 1D) (Wine-Lee et al. 2004). Later
in cortical development (after E14), BMPs block neuro-
genesis and, instead, promote astrocyte differentiation
(Fig. 1F) (Gross et al. 1996; Nakashima et al. 2001).

The difficulty in pinning down the effects of these sig-
naling pathways in the regulation of cortical neurogenesis
illustrates an important theme that applies to embryonic
development generally. Frequently, the same signaling path-
way operating in two neighboring cells, or in the same cell
at different times, can cause completely different cellular
effects, presumably due to the varying availabilityof effector
molecules and epigenetic states of the target genes of sig-
naling pathways. There is also extensive and complex cross
talk between signaling pathways such that they modulate
each other’s effects. These mechanisms allow a relatively
small number of signaling pathways to evoke the complex
spectrum of cellular behaviors required to build a function-
al brain.

2.1.2 Transcriptional Mechanisms Regulating
Cortical Neurogenesis

Cell-intrinsic genetic controls and cell-extrinsic signaling
mechanisms ultimately influence cell fate via the precise
modulation of gene expression. A great deal of effort has
been made in recent years in understanding the transcrip-
tional control of neurogenesis in the cerebral cortex by
sequence-specific transcription factors. Here we focus on
some of the key transcription factors that have clearly dem-
onstrated roles in the regulation of embryonic neurogenesis
(Fig. 1B,D,E).

A large number of transcription factors have been im-
plicated in the proliferation of neural progenitors, and thus
ultimately in the control of neuronal numbers in the devel-
oping brain. Defects in progenitor divisions and brain
growth have been found in mice mutant for the paired
homeobox factor Pax6 (Arai et al. 2005), the homeobox
proteins Lhx2 (Porter et al. 1997) and Arx (Friocourt
et al. 2008), the winged-helix protein Foxg1 (Hanashima
et al. 2002), and the nuclear receptor Tlx (Roy et al. 2004).
The target genes that are regulated and the types of progen-
itor cells that are induced to proliferate by these factors were
usually not examined, except in a few cases. Pax6, in partic-
ular, has been proposed to promote proliferation early
during cortical development through induction of multiple
target genes, including transcription factors (e.g., Hmga2),
signaling molecules (e.g., Fabp7), and cell cycle regulators
(e.g., Cdk4) (Arai et al. 2005; Sansom et al. 2009).

The basic-helix–loop–helix (bHLH) pro-neural tran-
scription factors are crucial players in the regulation of
neurogenesis, and this appears to be a highly conserved

function (for review, see (Bertrand et al. 2002; Ross et al.
2003). Three of these pro-neural factors—Neurogenin
(Ngn)1, Ngn2, and, at a lower level of expression, Ascl1
(also called Mash1)—are expressed in radial glial cells of
the developing cortex. These factors start to be expressed
around the time of the NE-to-RG transition but do not
appear to be absolutely required for the acquisition of ra-
dial glia features, although in embryos mutant for both
Ngn2 and Ascl1, radial glia are disorganized and differen-
tiate into astrocytes prematurely (Nieto et al. 2001). Corti-
cal neurogenesis is greatly impaired in these pro-neural-
deficient embryos in vivo and in vitro (Nieto et al. 2001).
Consistent with this requirement for pro-neural factors for
neurogenesis, they are also sufficient to induce a full pro-
gram of neurogenesis. If overexpressed in vivo or in vitro in
neural progenitors, Ngn2 or Ascl1 can induce rapid and
full neuronal differentiation (Mizuguchi et al. 2001; Naka-
da et al. 2004; Berninger et al. 2007). Even more impres-
sively, pro-neural factors can respecify cells from other
lineages into cortical projection neurons. For example,
Ngn2 can drive postnatal astroglia to transdifferentiate
into cortical projection neurons (Heinrich et al. 2010),
whereas Ascl1 expression can achieve the remarkable feat
of reprogramming a fibroblast into a neuron, although
the efficiency of this latter step is much improved if Ascl1
is overexpressed in combination with cofactors such as
Brn2 and Myt1l (Vierbuchen et al. 2010).

A recent study of Ascl1 targets provides compelling
evidence that Ascl1 directly activates a wide array of genes
required for neuronal differentiation in the ventral telen-
cephalon (Castro et al. 2011). A genome-wide survey of
Ngn2 targets in the mouse forebrain has not yet been per-
formed, although Ngn2 has been shown to directly activate
specific genes required for differentiation and migration of
cortical projection neurons (Ge et al. 2006; Heng et al.
2008; Ochiai et al. 2009). Thus, rather than inducing a
cascade of downstream transcription factors that, in turn,
induce the program of neurogenesis, pro-neural bHLH
factors are directly involved in activating the effectors of
neuronal differentiation.

Pax6 is required for the progression of cortical neuro-
genesis. Pax6 is expressed in both the early neuroepithelial
progenitors and the neurogenic radial glia in many regions
of the CNS, and when it is mutated, cortical neurogenesis is
impaired in vitro (Heins et al. 2002). Cortical neurogenesis
defects in vivo have proven to be stage dependent and dif-
ficult to analyze because of cell-autonomous loss of dorsal
and acquisition of ventral telencephalic features in Pax6
mutant progenitors (Quinn et al. 2007). Nevertheless,
like Ngn2, Pax6 can instructively promote neurogenesis
in cortical progenitors and in astrocytes (Heins et al.
2002). Pax6 directly induces Ngn2 expression in the cortex
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and the spinal cord (Scardigli et al. 2003), and consequent-
ly drives neurogenesis indirectly. Nevertheless, Pax6 can re-
program astrocytes into neurons without inducing Ngn2
(Heins et al. 2002), and there is evidence that it directly
regulates many genes implicated in the progression of neu-
rogenesis in the cortex (Sansom et al. 2009). Thus, Pax6
appears to act both upstream of and in parallel to pro-neural
bHLH factors in promoting neurogenesis.

Several transcription factors, including Ngn2, Insm1,
and AP2g, have been implicated in the crucial step of gen-
eration of basal progenitors from RG stem cells (Fig. 1E).
All three factors share the capacity to induce Tbr2, a tran-
scription factor specifically expressed in the subventricular
zone of the cortex and required for the generation of BPs
(Miyata et al. 2004; Arnold et al. 2008; Farkas et al. 2008;
Sessa et al. 2008; Pinto et al. 2009). Other factors act sub-
sequently to promote the divisions of BPs, including Foxg1
in the cortex and Ascl1 in the ventral telencephalon, which
acts by activating multiple cell cycle regulators including
E2f1 and cyclin-dependent kinases (Siegenthaler et al. 2008;
Castro et al. 2011). How transcription factors interact with
signaling pathways that regulate the generation and expan-
sion of the different populations of neural progenitors re-
mains largely unknown.

Recent studies have highlighted the importance of an-
other layer of control of the genetic program of neurogen-
esis at the posttranslational level (Fig. 1C). TRIM32 is a
TRIM-NHL protein expressed in radial glia that is asym-
metrically inherited by daughter cells during mitosis
(Schwamborn et al. 2009). The TRIM32-inheriting daugh-
ter is more prone to differentiate into a neuron because of at
least two activities of TRIM32. Firstly, it acts as a ubiquitin
ligase that promotes the destruction of the pro-proliferative
transcription factor c-Myc; and secondly, it binds to the
Argonaute complex and enhances the activity of micro-
RNAs including Let-7, which can, in turn, promote neu-
ronal differentiation (Schwamborn et al. 2009). The HECT
domain E3 ubiquitin ligase Huwe1 also promotes neuro-
genesis in the cortex, in this case, by promoting the degra-
dation of n-Myc, which can no longer activate the Notch
ligand Dll3 and promote self-renewing rather than differ-
entiative divisions of RG (Zhao et al. 2009). The E3 ubiq-
uitin ligase TRIM11 acts in the opposite direction and
suppresses neurogenesis by promoting the degradation of
Pax6 (Tuoc and Stoykova, 2008).

2.1.3 Epigenetic Mechanisms

Recently, compelling evidence has emerged to show that
epigenetic modifications of chromatin provide another
crucial level of control of gene expression and underpin
the complex choreography of embryonic neurogenesis in

the cerebral cortex and beyond (Fig. 1D–F) (for review, see
Hirabayashi and Gotoh 2010). Much of the progress in this
area has been achieved by mutating enzymes that catalyze
specific epigenetic modifications. For example, the Poly-
comb complex catalyzes the tri-methylation of lysine 27
on the tail of histone H3 (H3K27me3), a modification
mainly associated with transcriptional repression. When
Polycomb complex members Ring1b or EZH2 were ablated
during cortical neurogenesis, the rate of neurogenesis was
increased, and the length of the neurogenic period was
extended with a corresponding delay in the onset of astro-
gliogenesis (Hirabayashi et al. 2004). At least one of the
important targets for Polycomb-mediated antagonism of
neurogenesis is the promoter of the pro-neural factor
Ngn1, which gradually accumulates the H3K27me3 mark
during extended culture of cortical progenitors, in parallel
with their reduced ability to produce neuronal progeny
(Hirabayashi et al. 2004). Consistently, Polycomb-deficient
cortices showed up-regulation of Ngn1 in vivo (Fig. 1D).
Two other studies have provided evidence that Polycomb
complex activity must be antagonized to sustain cortical
neurogenesis. Jepsen et al. (2007) showed that the retinoic
acid pathway, which is an important determinant of the
onset of neurogenesis (Fig. 1B), directly induces Jmjd3,
an H3K27me3 demethylase, which when forcibly expressed
can activate genes associated with neurogenesis in cortical
progenitors. In a similar vein, Lim et al. (2009) described
the activity of the Trithorax complex member, Mll1, in
antagonizing H3K27me3 deposition on the promoter of
the neurogenic transcription factor Dlx2, which can then
sustain neurogenesis.

In addition to histone methylation, direct methylation
of chromatin also has a role in sustaining embryonic neuro-
genesis. DNA methyltransferase 1 (Dnmt1) is an enzyme
that maintains methylation of CpG dinucleotides, a DNA
modification mainly associated with repressed genes. When
Dnmt1 is mutated in the developing CNS, neurogenesis is
terminated prematurely (Fan et al. 2005).

2.2 The Neuronal-to-Glial Switch: Timing and
Control Mechanisms

Around E18.5 in mouse cortical development, another ma-
jor developmental transition occurs. RG progenitors stop
producing neurons, and the first astrocytes appear (Fig.
1F,G). During this process, most RG release their apical
attachment to the ventricle and move upward, away from
the ventricular surface. They lose their radial processes and
gradually take on a multipolar, astrocytic morphology. It
is still not clear whether further cell division occurs to
amplify the population of astrocytes in the cerebral cortex
during peri- and postnatal development of the brain,
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although this does seem likely (Kriegstein and Alvarez-
Buylla 2009). Apart from small populations of RG that
are maintained and retain the ability to produce neurons
in defined regions throughout life (namely, the subventric-
ular zone of the lateral ventricles and the dentate gyrus of
the hippocampus), very few neurons are produced in the
rodent or primate cerebral cortex beyond the neurogenic-
to-astrogenic transition (Kriegstein and Alvarez-Buylla
2009). Owing to this relatively abrupt transition, the timing
of the end of neurogenesis must be very carefully controlled
to ensure that all of the neurons required for the function of
the adult brain are born before gliogenesis commences.

Most prominent among the pro-astrocytic signals is the
Jak/Stat pathway (Fig. 1F). Although Jak/Stat signaling is
active at a low level in progenitors during neurogenesis and
may even be required for radial glial identity (Kamakura
et al. 2004), at the end of this period pathway activity in-
creases greatly (He et al. 2005). The sudden increase in Jak/
Stat signaling seems to be caused by several mechanisms.
Firstly, several promoter elements on glial and Stat pathway
genes that are responsive to Stat transcription factors (the
main transducers of Jak/Stat signaling) are specifically
methylated during the neurogenic period, which precludes
Stat binding (Takizawa et al. 2001; Fan et al. 2005). This
methylation is removed at the end of neurogenesis in part
by Notch signaling (see below), and the promoters are
derepressed. The second important factor is the reduced
expression of the pro-neural factors Ngn1 and Ngn2. Ngn1
(and probably also Ngn2, although this has been less stud-
ied) is a potent antagonist of the Jak/Stat pathway and
seems to achieve this by sequestering the important tran-
scriptional coactivators CREB binding protein (CBP),
p300, and Smad1 away from Stat3, which cannot then ac-
tivate astroglial genes such as GFAP (Sun et al. 2001; He
et al. 2005). Thirdly, the cytokine Cardiotrophin-1 (CT-1)
starts to be expressed at high levels by differentiating neu-
rons, and this molecule appears to be the main activating
ligand for the Jak/Stat pathway in vivo (Fig. 1F) (Barnabé-
Heider et al. 2005; Miller and Gauthier 2007). The end
result of these events is an increase in Stat activity, which
becomes even more amplified because the Stat factors start
to positively autoregulate their own transcription (He et al.
2005).

While the Jak/Stat pathway activity becomes quantita-
tively amplified at the neurogenesis-to-gliogenesis transi-
tion, the output of Notch signaling appears to undergo a
dramatic qualitative shift. As discussed above, early in cor-
ticogenesis, Notch mainly promotes the RG progenitor
state (Fig. 1B), but later in cortical development, Notch
activation instructively promotes astrocyte differentiation
and blocks neuronal differentiation both in vitro and in vivo
(Fig. 1F) (Chambers et al. 2001; Grandbarbe et al. 2003). In

further support of an instructive rather than a permissive
role in gliogenesis, Ge et al. (2002) showed that the key
transducers of Notch signaling—the intracellular domain
of the Notch receptor itself and the RBPJ transcription fac-
tor (also known as CSL or CBF1)—form a transcriptional
activation complex on the GFAP promoter. Furthermore,
cultured neural progenitors derived from RBPJ mutant em-
bryonic stem cells show a significant delay in astrocyte de-
velopment in vitro. Recently an elegant study by Namihira
et al. (2009) showed that the main source of Notch signaling
during corticogenesis is likely to be from young neurons and
BPs, which express the Notch ligand Dll1. Namihira and
colleagues went on to show that Notch signaling in cortical
progenitors directly activates Nuclear Factor IA (NFIA), a
transcription factor already shown to be necessary and suf-
ficient to promote glial specification in the spinal cord (De-
neen et al. 2006; Namihira et al. 2009). The combined
actions of Notch and NFIA then cause demethylation of
the promoter of GFAP (and presumably of other astrocytic
genes) via the displacement of DNA methyltransferase en-
zymes, rendering it responsive to further Jak/Stat- and
Notch-mediated activation (Namihira et al. 2009). Interest-
ingly, there is good evidence that Hes proteins, which are the
main targets of Notch/RBPJ signaling in the developing
CNS, physically interact with Jak and Stat factors and that
these interactions augment Jak/Stat pathway activation
(Kamakura et al. 2004). Thus, the Notch and Jak/Stat path-
ways converge to provide a strong pro-astroglial signal.

Like Notch, the BMP pathway also imparts different
effects on early and late corticogenesis. Early BMP signaling
can promote neurogenesis (Fig. 1D), whereas late expres-
sion drives astroglial development (Fig. 1F). When BMP4
was overexpressed by cortical neurons from E16, RG pro-
genitors were more likely to differentiate into astrocytes
(Gomes et al. 2003). This in vivo result is consistent with
earlier in vitro work showing that BMP treatment of cortical
progenitors could induce astrocyte differentiation (Naka-
shima et al. 1999). Just like the cooperation between Notch
and Jak/Stat signaling, there is pro-astrocytic synergy be-
tween BMP and LIF (another activator of Jak/Stat signal-
ing) mediated by the formation of a complex between Stat3,
Smad1, and the coactivator p300, which together strongly
activate the GFAP promoter (Nakashima et al. 1999). An-
other important effect of BMP signaling in late cortical
development is the induction of negative helix–loop–helix
factors of the Id family, which inhibit the pro-neural tran-
scription factors Ngn1/2 and Ascl1 (Nakashima et al.
2001).

Yet another signaling pathway that seems to promote
glial differentiation late in development but not early, is the
Fgf pathway. In vitro Fgf2 is required for Jak/Stat-mediated
activation of astroglial genes (Song and Ghosh 2004), again
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showing the codependence of multiple pathways in the
transition from neurogenesis to gliogenesis (Fig. 1F). In
an in vivo context, the most relevant Fgf ligand in this
context might be Fgf9, which is induced by the transcrip-
tion factor Sip1 in neurons of the cortical plate and signals
back to ventricular zone progenitors to promote glial dif-
ferentiation and inhibit neurogenesis (Seuntjens et al.
2009).

Therefore, as the rate of neurogenesis reaches its peak,
the levels of CT-1, Fgf9, BMP, and Notch ligand from neu-
rons and neuronal precursors are greatly amplified. This
quantitative effect, coupled with direct cross talk and col-
laboration between the pathways, ultimately results in the
rather sudden cessation of neurogenesis and commence-
ment of gliogenesis. By this means, it is the production of
neurons themselves that provides the timing mechanism
necessary to signal the end of neurogenesis. Although it
has been argued on the basis of elegant clonal assays that
neural progenitor cells themselves encode cell-intrinsic
timers that ensure the progression from neurogenesis to
gliogenesis (Shen et al. 2006), in these experiments, the
progenitor cell is always in contact with its own progeny
and therefore amenable to local signals from those daugh-
ter cells. As such, a cell-extrinsic accumulation of signals
that alter the outcome of progenitor divisions is also con-
sistent with the results of clonal cultures.

3 GENERATING NEURONAL DIVERSITY IN THE
EMBRYONIC BRAIN

3.1 Spatial Mechanisms of Neuronal Fate
Specification

In the developing telencephalon, several signaling centers
secrete diffusible signaling molecules that form overlap-
ping gradients and act as morphogens (Hoch et al. 2009).
Sonic hedgehog (Shh) is secreted from the ventral midline
of the forebrain, starting well before the closure of the
neural tube at E7.5. Members of the FGF family, including
FGF8, 15, and 17, are secreted anteriorly by the midline of
the telencephalon or commissural plate. Multiple members
of the Wnt and BMP families are secreted from medial and
caudal aspects of the cortex (Hoch et al. 2009). These
extracellular factors induce in progenitors the regionalized
expression of homeodomain and helix–loop–helix tran-
scription factors, which is subsequently refined by cross-
repressive interactions, thereby subdividing the telence-
phalic vesicles into a dorsal or pallial and a ventral or
subpallial territory (Campbell 2003). These patterning
transcription factors, in turn, induce another group of
transcription factors (sometimes called lineage determi-
nants) that define progenitor identities and contribute to
the selection of a neuronal fate and the specification of

defined neuronal phenotypes (Fig. 2) (Guillemot 2005;
Hoch et al. 2009). The same basic principles that underlie
the specification of dorsal and ventral identities in the tel-
encephalon also apply to the spatial patterning of other
developing neural tissues (Zhuang and Sockanathan
2006) and also to the subdivision of the cerebral cortex
into distinct architectonic and functional areas later during
development (O’Leary et al. 2007).

Shh establishes ventral identities in the telencephalon
by opposing the dorsalizing activity of the transcriptional
repressor Gli3 (Rallu et al. 2002). Shh induces the expres-
sion of the patterning homeodomain proteins Gsh1 and
Gsh2 throughout the ventral telencephalon and Nkx2.1 in
the medial part of the ventral telencephalon (Rallu et al.
2002). Nkx2.1 and Gsh1/2 act independently as transcrip-
tional effectors of Shh signaling by inducing different lin-
eage determinants, including induction of the LIM
homeobox protein Lhx6 by Nkx2.1, and of Ascl1 and the
homeodomain proteins Dlx1 and Dlx2 by Gsh1/2 (Tores-
son et al. 2000; Du et al. 2008; Wang et al. 2009). Ascl1 and
Dlx1/2, in turn, initiate the neuronal differentiation of
ventral telencephalic progenitors (Casarosa et al. 1999;
Yun et al. 2002; Long et al. 2009).

In the dorsal telencephalon, Wnt induces the expres-
sion of Pax6 and the pro-neural proteins Ngn1, whereas
Pax6 induces expression of the related protein Ngn2, as
mentioned above (Gunhaga et al. 2003; Scardigli et al.
2003; Hirabayashi et al. 2004). Ngn1/2 and Pax6 are the
main transcriptional activators of neurogenesis in the ce-
rebral cortex (Nieto et al. 2001; Heins et al. 2002; Schuur-
mans et al. 2004).

The dorsal and ventral transcriptional cascades are mu-
tually repressive, thus stabilizing the fates of progenitor
domains responsible for the production of cortical and
basal ganglia neurons, respectively. For example, in the
dorsal telencephalon, Gli3 represses Shh target genes such
as Gsh2 and Nkx2.1; Pax6 represses Gsh2; and Ngn1/2
repress Ascl1 (Fig. 2) (Fode et al. 2000; Toresson et al.
2000; Rallu et al. 2002). Deletion of dorsal transcription
factors, including Gli3, Pax6, and Ngn1/Ngn2, thus leads
to expansion of ventral determinants into pallial territory,
and vice versa.

The neurogenic factors that are induced by the dorsal
and ventral transcription factor cascades, and particularly
the pro-neural factors Ngn1 and Ngn2 dorsally and Ascl1
ventrally, have two distinct roles in the generation of neu-
rons from telencephalic progenitors (Bertrand et al. 2002).
Firstly, they activate a generic program of neurogenesis,
which arrests the divisions of progenitor cells, selects the
neuronal fate, suppresses the alternative astroglial fate, ini-
tiates the migration of the new neurons to their appropriate
locations, and initiates the growth of axon and dendrites
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and the terminal differentiation of the neurons. Secondly,
these factors specify the regional identity of the new neu-
rons, and particularly their mode of neurotransmission
and general morphology. Ngn1/2 specify the glutamatergic
and pyramidal phenotype of cortical projection neurons,
whereas Ascl1 specifically promotes the GABAergic and
multipolar properties of basal ganglia neurons and cortical
interneurons (Fode et al. 2000; Parras et al. 2002; Hand
et al. 2005). It should be noted, however, that different
transcription factors are involved in specification of the
same neurotransmitter phenotypes, GABAergic and gluta-
matergic, in other regions of the nervous system (Cheng
et al. 2005).

Although pro-neural factors play a prominent role in
neurogenesis, other transcription factors that participate in
the transcriptional cascades in dorsal and ventral telen-
cephalon also control specific aspects of the neuronal phe-
notype (Fig. 2B). For example, in the ventral telencephalon,
Lhx6 and its target the Sox protein Sox6 promote the spec-
ification and differentiation of parvalbumin- and somatos-
tatin-containing cortical interneurons (Gelman and Marin

2010), whereas the LIM protein Lhx7 specifies the cholin-
ergic neurotransmission phenotype of a subset of striatal
interneurons (Fragkouli et al. 2009), and the homedomain
protein Nkx2.1 promotes the migration of interneurons to
the striatum (Nobrega-Pereira et al. 2008).

3.2 Temporal Mechanisms of Neuronal Fate
Specification

An additional and equally important mechanism for the
generation of neuronal diversity is temporal patterning,
that is, the sequential production by the same progenitors
of different types of neurons at different times during neu-
rogenesis. It has long been known that a strong correlation
exists between the location of neurons in different layers of
the cerebral cortex or the retina and the time of their birth.
For example, neurons located in the deepest layer of the
cortex are generated first, and neurons located in each of
the layers above are generated at progressively later times
during cortical development (McConnell 1995). Cell trans-
plantations and lineage tracing using viruses or dye
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injections have shown that these sequential phases of neu-
rogenesis represent changes in the output of individual
retinal and cortical progenitors, rather than the generation
of different neurons by different types of progenitors
(McConnell 1995). The sequential generation of different
types of neurons by the same progenitors is a widespread
strategy to diversify neuronal populations that also oper-
ates in other CNS regions, such as the vertebrate dorsal
spinal cord (Muller et al. 2002), and in other distantly
related species, such as Drosophila (Isshiki et al. 2001;
Maurange et al. 2008).

The molecular mechanisms that confer temporal iden-
tities to progenitors and control the temporal order of
neuronal specification have been partially elucidated
in Drosophila (Isshiki et al. 2001; Maurange et al. 2008),
but they remain largely unknown in vertebrates. Trans-
plantation of cortical progenitors into cortices of a differ-
ent developmental stage (heterochronic transplantations)
(McConnell 1995) as well as in vitro progenitor cultures

(Shen et al. 2006; Eiraku et al. 2008; Gaspard et al. 2008)
suggest that the generation of layer-specific cortical neu-
rons in a precise temporal order is largely controlled by cell-
intrinsic mechanisms. Dissociated cortical progenitors in
culture maintain their capacity to sequentially generate
different types of neurons (Shen et al. 2006). Even more
surprising, embryonic stem cell cultures that acquire a cor-
tical fate also generate neurons of different laminar identi-
ties in the same temporal order as occurs during cortical
development in vivo (Eiraku et al. 2008; Gaspard et al.
2008). However, in these experiments, the progenitor cell
is not isolated from its progeny; thus, even in a single clone,
the influence of extrinsic signals emanating from postmi-
totic daughter cells cannot be formally excluded.

Progress has been made recently in identifying tran-
scription factors involved in the sequential generation of
specific types of cortical neuron during different stages of
neurogenesis (Fig. 3). For example, the zinc finger protein
Fezf2 and its target gene Ctip2 play a central role in the
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specification of neurons located in layer Vof the cortex and
projecting out of the cortex (Arlotta et al. 2005; Molyneaux
et al. 2005). Repression of Ctip2 has been shown to be
required for the specification of both earlier-born and lat-
er-born neurons: Tbr1 represses Ctip2 to promote genera-
tion of layer VI neurons early, whereas the homeobox
protein Satb2 represses Ctip2 later to promote layer II/III
neurogeneses. Conversely, part of Fezf2’s function in pro-
moting layer V neuron production is to block precocious
expression of the Satb2 (Fig. 3) (Britanova et al. 2008; Chen
et al. 2008; McKenna et al. 2011). Thus, a network of mu-
tually cross-repressive cell-intrinsic regulators plays a cen-
tral role in the temporal control of cortical laminar fate
specification in the developing cortex.

4 CONCLUDING REMARKS

Although we have achieved a better understanding of the
mechanisms that control neuronal identity in the rodent
cerebral cortex and in other CNS regions (Dalla Torre di
Sanguinetto et al. 2008), it remains unclear how subtype
specification mechanisms are temporally coordinated to
generate different types of neurons sequentially. Transcrip-
tion factors that control the timing of generation of the
different types of cortical neurons (Naka et al. 2008; Seunt-
jens et al. 2009) appear also to influence the switch from
neurogenesis to gliogenesis. This finding suggests that a
common machinery controls the temporal competence of
cortical progenitors to produce first different types of neu-
rons and then glial cells. The mechanistic basis of temporal
patterning in the nervous system is a challenging issue in
developmental neurobiology.

The current effort to develop therapies for neurological
disorders is also renewing interest in how neurons of defined
identities are generated. Several types of neurons, including
spinal motor neurons and layer V cortical projection neu-
rons, can now be differentiated in vitro from embryonic
stem cells (Peljto and Wichterle 2011). New strategies are
also devised to generate specific neuronal populations from
non-neuronal cells through cellular reprogramming (Hein-
rich et al. 2010; Vierbuchen et al. 2010). Research into the
basic mechanisms of neural development has contributed
greatly to these recent successes. Further research in this field
will continue to facilitate the design of rational strategies to
generate clinically relevant neuronal types in vitro.
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