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The mouse mammary gland is an outstanding developmental model that exemplifies the
activities of many of the effector pathways known to organize mammalian morphogenesis;
furthermore, there are well-characterized methods for the specific genetic manipulation of
various mammary epithelial cell components. Among these signaling pathways, Wnt sig-
naling has been shown to generate plasticity of fate determination, expanding the genetic
programs available to cells in the mammary lineage. It is responsible first for the appearance
of the mammary fate in embryonic ectoderm and then for maintaining bi-potential basal
stem cells in adult mammary ductal trees. Recent technical developments have led to the
separate analysis of various mammary epithelial cell subpopulations, spurring the investiga-
tion of Wnt-dependent interactions. Although Wnt signaling was shown to be oncogenic for
mouse mammary epithelium even before being identified as the principle oncogenic driver
for gut epithelium, conclusive data implicating this pathway as a tumor driver for breast
cancer lag behind, and we examine potential reasons.

There are several excellent recent reviews that
cover aspects of Wnt signaling and mamma-

ry gland development and transformation (Bo-
ras-Granic and Wysolmerski 2008; van Amer-
ongen and Nusse 2009; Incassati et al. 2010;
Roarty and Rosen 2010; Wend et al. 2010; Jarde
and Dale 2011). The aim of this article is to
focus attention on the open questions in this
area. There are a remarkable number of tools
available to assist with this, given the focus on
breast cancer research in the past 10 years. They
include large collections of human breast cancer
cell lines (Neve et al. 2006; Hoeflich et al. 2009;
Hollestelle et al. 2010) and dozens of strains of
mice that are useful for analysis of different as-
pects of Wnt signaling and biology (van Amer-

ongen and Berns 2006). This battery of genetic
tools includes transgenic mice that express (or
induce conditional ablation of ) genes in either
of the two main mammary epithelial cell types
that comprise the mammary gland (the organi-
zation of the mammary gland is shown in Fig. 1).
These are the luminal cells—typically targeted
by one of three drivers, namely, MMTV LTR
(mouse mammary tumor virus long terminal
repeat), WAP (whey acidic protein promoter,
expressed during milk production/terminal dif-
ferentiation), or BLG (b-lactoglobulin, another
milk whey protein) promoters)—and the basal
cells (typically targeted using keratin-5 or -14
promoters, also expressed in other stratified ep-
ithelia, notably skin). The definitions of luminal
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and basal cells vary between studies because they
are based on the analytical method used. These
may be (1) location in tissue sections (facing the
lumen or adherent to the basement membrane);
(2) expression of molecular markers usually
associated with basal cells (e.g., expression of
basal-specific cytokeratin 5 [CK 5] or p63, or
luminal-specific CK8 or Muc1); or (3) copuri-
fication with subgroups of cells isolated by flow
cytometry (e.g., using Lin/CD29/CD24 or Lin/
EpCAM/CD49f ). These latter cell populations
are often subsequently typed using their expres-
sion of histological markers or mRNA profile to
generate a “luminal” or “basal” descriptor. The
cell groups described by these means are not
always the same, and this becomes important
to experimental interpretation.

Not all cells in a given lineage are identical.
For luminal cells, perhaps one of their most
obvious differences is their expression of ERa
(estrogen receptor-a). Thus, for both mouse
and human, �15% of luminal cells express
ERa (at any one time), irrespective of their stage

of development (Clarke 2003; Mastroianni et al.
2009). ERa-positive and -negative cells can be
purified by flow cytometry and analyzed sepa-
rately (Kendrick et al. 2008; Lim et al. 2010). The
ERa-negative luminal cell subpopulation con-
tains a proliferative activity, leading it to be la-
beled “luminal progenitor cells” (a heteroge-
neous group), whereas the ERa-positive group
is non-clonogenic in vitro and therefore labeled
“mature” (Table 1).

Using lacZ reporter strains, the heterogene-
ity of expression of MMTV- and WAP-driven
transgenes is obvious, but the basis for this is
unknown (e.g., Wagner et al. 2001). Indeed,
the MMTV LTR is a remarkable 1200-bp gene
expression motif that condenses all of the key
elements of mammary regulation, to include
the specification of mammary fate (expression
starting early in the ectoderm of embryogene-
sis), together with the hormone inducibility
that appears during puberty in females (Rouault
et al. 2007), with further up-regulation during
pregnancy and lactation (Mink et al. 1990). Cre
expression has effects on mammary morpho-
genesis and lactation; therefore, experiments
that use this tool need to be interpreted with
caution (Chan et al. 2007; Robinson and Hen-
nighausen 2011).

There are several Wnt reporter lines that
show highly regulated (but slightly different)
expression patterns in mammary gland (includ-
ing a number of strains based on Wnt response
elements [WRE] driving lacZ [for review, see
Barolo 2006], and two newer strains based on
WRE-GFP, perhaps more useful for purifying
Wnt-responsive cell types [Currier et al. 2010;
Ferrer-Vaquer et al. 2010]). Because of the re-
dundant expression of many Fzd (8/10), both
Ror receptors (2/2) and Wnt ligand types (11/
19) in mammary gland (Table 1), initial exper-
iments have focused on producing gain or loss
of function for canonical Wnt signaling. Thus,
overexpression of the forerunner Wnt ligand spe-
cies, Wnt1- (using an MMTV-Wnt1 construct)
(Table 1) (Tsukamoto et al. 1988) induced ductal
hyperplasia (not correctly described as mid-preg-
nant equivalent) and basaloid tumors (Li et al.
2003a; Liu et al. 2004; Vaillant et al. 2008), where-
as the cell-autonomous Wnt signaling effector

Figure 1. The mouse mammary gland, organization,
and cell types. The (10) mouse mammary gland(s)
comprise fat pads attached to the ventral mouse skin,
colonized by a branched tree of hollow, epithelial
mammary ducts (stained with carmine red) that are
connected to the nipple. During pregnancy, there is
massive proliferation of lobuloalveolar side branches
to colonize the interstitial spaces between ducts, be-
coming filled with milk, expressed by oxytocin-in-
duced contraction of myoepithelial cells. (Inset) An
immunofluorescent stain of a longitudinal cross sec-
tion of a non-pregnant duct, stained with a basal cell
anti-cytokeratin (CK5) together with a luminal cell
anti-cytokeratin (CK8), to show the bilayered struc-
ture of the epithelium.
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DNb-catenin (using MMTV-LTR) induced later
onset hyperplasia (luminal in origin) and lumi-
nal-type tumors (Imbert et al. 2001) or ductal
hyperplasia and basaloid tumors when expressed
by a CK5 construct (Teuliere et al. 2005). Loss of
function for b-catenin, induced by overexpres-
sion of Axin or a dominant-negative b-catenin
effector in luminal cells, has implicatedb-catenin
in lobulo-alveolar development during pregnan-
cy (Hsu et al. 2001; Tepera et al. 2002). This is
despite a lack of clear evidence for activation of
canonical Wnt reporter activity during pregnan-
cy (Chu et al. 2004; Boras-Granic et al. 2006a). If a
canonicalbcat/TCF signaling is indeed activated
in luminal cells, this presents a paradox. Cell sur-
face presentation of Lrp is considered to be the
limiting factor for canonical Wnt signaling
(Brennan and Brown 2004), and Wnt1 responses
are confined to Lrp5-positive cells (Badders et al.
2009; Teissedre et al. 2009; Baker et al. 2010; Kim
et al. 2011). Only basal cells appear to be compe-
tent to generate a canonical response in response
to Wnt ligands (they express the obligate canon-
ical Lrp5 and Lrp6 receptors). Therefore, the
identity of the cell surface receptor able to medi-
ate b-catenin/TCF-induced luminal cell division
is not yet known.

Lrp6 knockout (KO) mice die at birth,
and the functionality of Lrp6 KO mammary
rudiments has not yet been evaluated, al-
though Lrp6hypomorphs (Lrp6þ/2)areunder-
branched (Lindvall et al. 2009). Although dom-
inant-negative TCF molecules have been used
effectively in other cell types (van de Wetering
et al. 2002), their use has not yet been reported
for mammary gland. Table 1 summarizes the
expression data and functional information
that are available to describe Wnt signaling ef-
fectors from studies of normal and transgenic
mice and human tissues (including some obser-
vations from cell lines).

The vast majority of data that describe the
molecular basis of signaling via Lrp5/6 derives
from ectopic expression of Wnt components in
HEK293T cells (Brennan et al. 2004; Cong et al.
2004; Zeng et al. 2005, 2008). Thus, the specific
molecular complexes that form in mammary
epithelial cells have yet to be described (Fig. 2).
For example, there are convincing data for the

activation of LRP (at the PPSP motif ) by a range
of different kinases, including GSK, PKA, Pftk1,
Grk5/6, and CK1 (Niehrs and Shen 2010), and
for the control of kinase recruitment by local
phospho-lipid effectors such as P(4,5)IP2 (Tan-
neberger et al. 2011); however, the relative sig-
nificance of each of these mechanisms for mam-
mary epithelial cells is not yet known.

PLASTICITY OF MAMMARY EPITHELIAL
CELL FATE REQUIRES A WNT SIGNAL

When mammary precursor cells are set aside
from the embryonic ectoderm, there is a pulse
of Wnt signaling that can be visualized by the
expression of Wnt reporter genes (the lacZ Wnt
reporter TOPgal) (Chu et al. 2004). If dkk1 is
overexpressed in the basal keratinocyte layer (us-
ing a CK14 promoter) or when Lef1 function
is missing (Boras-Granic et al. 2006b; Boras-
Granic and Wysolmerski 2008), mammaryspec-
ification is inhibited. Wnt10b is expressed at
the earliest time during differentiation of the
mammary placode (Veltmaat et al. 2004; Bo-
ras-Granic and Wysolmerski 2008), suggesting
that Wnt10b could be the placode specifier. Thus
Wnt signaling is essential for increasing the plas-
ticity of embryonic skin cells so that they initiate
mammary-specific programs. The induction of
plasticity is a typical function associated with
pulses of Wnt signaling during mammalian
developmental processes (Wend et al. 2010;
Domyan and Sun 2011).

Somatic stem cells are different from the ma-
jority of cells in mammalian organs, owing to
their plasticity and pluripotency. For mammary
gland, ductal mammary stem cells are defined by
their capacity to regenerate a new mammary
gland comprising a bilayered epithelial ductal
network following transplantation to cleared
fat pads. These stem cells have been shown to
comprise a specific subpopulation of basal epi-
thelial cells (with high expression of integrinsa6
and b1, and other cell surface-associated anti-
gens such as epithelial cell adhesion molecule
[EpCAM] and CD24, a GPI-linked sialoglyco-
protein). When ectopic Wnt signals are present,
mammary stem cells comprise a larger fraction
of the total population (Li et al. 2003b; Liu et al.
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2004; Shackleton et al. 2006), and undifferenti-
ated cells (lacking expression of marker pro-
teins) are evident in mammary glands (Liu
et al. 2004). There are data to support a role
for Wnt proteins as inhibitors of differentiation.
Analysis of a mouse mammary cell line (HC11
cells) showed that Wnt3a inhibited differentia-
tion (assayed asb-casein expression) in response
to endocrine effectors (including prolactin/
dexamethasone/insulin), and that was revers-
ible by sFRP4 expression (Constantinou et al.
2008). Furthermore, cells from Wnt1-induced
glands show higher expression of the DN-iso-
form of the p53 family member, p63 (Badders
et al. 2009), and less TA-p63; a profile typically

associated with dividing progenitors of basal
epithelial cell types and functionally implicated
in tissue senescence and aging (Wu et al. 2003).

Ductal mammarystem cells require an Lrp5-
dependent, Wnt-associated signal for their in-
duction or maintenance, and their activity is
much reduced when the Lrp5 receptor species
is missing (Lindvall et al. 2006; Badders et al.
2009). After the embryonic phase of develop-
ment, there is little evidence for the expression
of TCF-consensus concatamer-based Wnt re-
porters, including BAT-gal (Chu et al. 2004; Bo-
ras-Granic and Wysolmerski 2008; Lindvall et al.
2009). This is somewhat of a conundrum, given
the importance of canonical Wnt signaling to

Frizzled

Frizzled

sFRP

WIF

Dkk
??

Lgr4/5 Lrp6 Lrp6Lrp5
Ryk

Stem cell
maintenance

Thrombospondin
type-I domain

Cysteine-rich
furin-like domain

lg-like domain

Leucine-rich domain

Cysteine-rich domain

Wnt-inhibitory
factor domain

Kringle domain

Proline-rich domain
PDZ-binding domain

Kinase domain

PPPSP motif

YWTD β-propeller

EGF-like domain

LDLR-type A domain

?Embryonic
placode formation

Wnt5a

R-spondin

Ror1/2

TGFβ-mediated
growth inhibition

Figure 2. Cell surface Wnt signaling components shown to function during various phases of mammary gland
growth and development. Structural and function information is drawn from data from He et al. (2004),
Liepinsh et al. (2006), Kikuchi et al. (2007), Green et al. (2008), Bourhis et al. (2010), and Weis (2011). The
information presented here can be cross-referenced to Table 1 for expression data. Physiological activities are
detailed in the text. The Lgr4/5/RSpo component of embryonic placode formation is likely but has not yet been
shown (hence it is grayed out). Although both Lrp5 and Lrp6 are required to maintain mammary stem cells, the
Lrp5-6 heterodimer shown here is implied from our data (Goel et al. 2012a). It is not known whether the
inhibitors shown (dkks, WIF, and sFRPs) are functional, but several are expressed. When components are
illustrated with ribbon diagrams, their structure is known in some detail. (Wnt ligands are shown in pink.)

C.M. Alexander et al.

4 Cite this article as Cold Spring Harb Perspect Biol 2012;4:a008037



adult stem cells. However, more recently, Zeng
and Nusse (2010) and R van Amerongen and
R Nusse (pers. comm.) identified rare lacZþ

cells in postnatal glands of Axin2LacZ mice. These
cells were quantified using flow cytometric anal-
ysis, separated using a substrate loading ap-
proach, and found to be enriched in basal stem
cells (Zeng and Nusse 2010). Furthermore, the
addition of high concentrations of Wnt3a ligand
sustained a long-lived mammary stem cell activ-
ity (measured by clonogenicity in vitro and in
vivo) when added to cultures of primary mam-
mary epithelial cells.

Note that the absence of Lrp5 does not sig-
nificantly affect embryonic mammary placode
development (even though that too is Wnt de-
pendent), nor does it affect lobulo-alveolar de-
velopment during pregnancy. The Wnt factors
that regulate these processes are therefore likely
to be different and Lrp5 independent. The role
of Lgr4/5 and RSpo proteins in the mainte-
nance of other stem cell types is described later.
This together with the expression pattern of
RSpo proteins during embryogenesis (Table 1)
suggests that Lgr/RSpo may be the embryonic
counterpart of the Lrp5-Lrp6 complex that is
essential to the adult gland (Fig. 2).

Furthermore, in the absence of stem cells
(due either to the absence of Lrp5 or b1 integ-
rin), ductal outgrowth is almost normal, as
indeed are all other functions associated with
mammary gland growth and differentiation
(Lindvall et al. 2006; Taddei et al. 2008; Badders
et al. 2009). This may appear to be counterin-
tuitive. However, recently, it has emerged that
bi-potential stem cell activity is not activated
during normal mammary development. Thus,
Van Keymeulen et al. (2011) genetically tagged
CK14-expressing or CK5-expressing mammary
epithelial basal cells and showed that this cell
population contained bipotent stem cell activity
when transferred to cleared fat pads. When
tagged during puberty, the bi-potential activity
(stem cell activity) of these basal cells was not
expressed throughout ductal extension or preg-
nancy, deduced from the lack of tagged lumin-
al cell daughters (Van Keymeulen et al. 2011).
Vice versa, CK8-expressing or CK18-expressing
tagged luminal cells did not appear in the basal

cell compartment. In fact, the bipotency of basal
cell stem cells could be suppressed during fat
pad transfer if luminal cells were included at a
cell ratio of one per five basal cells. These inves-
tigators propose that there are long-lived mono-
potent basal and luminal stem/progenitor cell
types that organize the morphogenesis of mam-
mary gland after birth. It is implied that the
activity of each stem/progenitor activity cell ac-
tivity would primarily affect the directly related
lineage. Indeed, the loss of basal stem cell activ-
ity (by targeted gene mutations) typically re-
sults in a decrease in the proportion of basal
cells (compared with luminal cells), without
affecting overall mammary gland proliferation
(Taddei et al. 2008; Badders et al. 2009). Using
other constructs and reporters, some of these
results have been reproduced by other investi-
gators (R Van Amerongen, R Nusse, and J Jon-
kers, pers. comm.). This represents a profound
change in our view of stem cell function during
adult organogenesis.

What, then, is “stem cell” activity scored by
fat pad transfer, and is it a relevant assay? Stem
cell activity is scored by assaying the outgrowth
of mammary ductal trees after inoculating lim-
iting doses of dissociated, singlized cells from
mammary glands. The regenerative activity
must therefore be able to survive cell isolation,
to subsequently differentiate in vivo, and to cre-
ate both basal and luminal mammary epithelial
cells. Without ectopic endocrine support (e.g.,
pituitary extract), outgrowths of purified lumi-
nal cells are limited in extent (Kamiya et al.
1998; Visvader and Smith 2011). Given the ev-
idence for luminal stem/progenitor cells pro-
vided by these studies, it is important to be
able to assay this activity somehow, preferably
in vitro. Perhaps it is this activity that is
measured by the mammosphere assay (spheres
contain no dividing basal cells) (S Kim and C
Alexander, unpubl.).

IS THERE A WNT SIGNAL THAT CREATES
THE MAMMARY STEM CELL NICHE?

Given that mammary stem cells are dependent
on Wnt signaling, the question then turns to the
identity of the ligand that interacts with Lrp5/
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Fzd to maintain these cells. Lrp5 is expressed
and presented, alongside Lrp6, on all basal mam-
mary epithelial cells (within the limits of detec-
tion) (Badders et al. 2009), meaning that the
stem cells are not alone in being able to respond
to Wnt ligands. Indeed, it is interesting that Lrp5
is specifically required as a maintenance factor
for stem cells, given that Lrp6 is often described
as the “better,” more potent receptor (MacDon-
ald et al. 2008). However, we have shown that a
subgroup of Wnt ligands (including Wnt1 and
Wnt9b) requires both Lrp5 and Lrp6 to signal
in some cell contexts (Goel et al. 2012b). One of
this subgroup is presumably responsible for
adult MaSC function (Fig. 2).

It is likely that there is a localized source of a
Wnt ligand that is responsible for the stem cell
niche. The phenotype of Lrp52/2 mammary
glands maps to the mammary epithelial cells,
and not the Lrp52/2 fat pads (NM Badders
and CM Alexander, unpubl.). Most of the
Wnt ligands expressed in mammary gland (Ta-
ble 1) are known to have a short range of effect
in vivo (due to binding to heparan sulfates or
their lipidation). In fact, the diffusion range of a
Wnt ligand has been visualized in mouse limb
bud, where Wnt is produced by the surface ec-
toderm. In this case, the range appears to be
approximately five cells, through the relatively
loosely packed cells of the limb bud (and assum-
ing no influence of cross gradients of other mol-
ecules) (ten Berge et al. 2008). The ligand re-
sponsible for stem cell maintenance may be
expressed by other epithelial cells, or by a stro-
mal host cell (for candidates, see Table 1).

WNT RESPONSES: A SUM TOTAL

Given the variety of Wnt signaling receptors
(illustrated in Fig. 2) together with the fact
that these receptors are commonly coexpressed,
any one Wnt ligand is likely to generate several
different signals in any one cell. The signaling
outcome will depend on the absolute concen-
tration of each ligand and receptor species,
along with their relative affinity. Whether these
pathways synergize with one another, or antag-
onize each other, depends on the context and
molecules involved (Semenov et al. 2007; van

Amerongen and Nusse 2009). Thus, for mela-
noma cells, non-canonical Wnt signaling, me-
diated by Wnt5a/Ror2, promotes malignant
changes in the presence of high levels of canon-
ical signaling, and these pathways are consid-
ered to be synergistic during tumor develop-
ment (O’Connell and Weeraratna 2009).

For mammary gland, the “old-fashioned”
distinction of canonical and non-canonical
Wnt ligands appears to hold up, presumably be-
cause of the specific repertoire of cell surface re-
ceptors expressed (van Amerongen et al. 2008).
Thus, Wnt5a, although it can acquire canonical
signaling activity when Lrp5 and Fzd4 are pre-
sent (Mikels and Nusse 2006), has no bcat/TCF
trans-activation activity in mammary gland
(not surprising because Fzd4 is not expressed)
(Table 1). Indeed, as shown for other cell types,
Wnt5a not only does not induce Wnt reporter
expression, it inhibits Wnt3A/Wnt1 canonical
responses. In fact, TGF-b (a well-known mam-
mary gland growth inhibitor) induces Wnt5a
expression (directly via Smad binding sites
on the promoter), and Wnt5a may be necessary
to limit and control mammary gland growth.
Thus, when Wnt5a is absent (Wnt5a KO), mam-
mary gland development is hyperproliferative
(Roarty and Serra 2007), whereas in the pres-
ence of ectopic Wnt5a (produced by slow
release beads), ductal extension is inhibited.
These phenotypes are the inverse of gain of
function of canonical Wnt activity. It is puzzling
then that this inhibition is not reproduced in
transgenic MMTV-Wnt5a strains (Baxley et al.
2011).

How does a non-canonical ligand inhibit the
canonical response? Various ideas have support;
the first relies on competition; thus, if Wnt5a
competes effectively for Fzd binding (in associ-
ation with Ror1/2) (Mikels et al. 2009; Grumo-
lato et al. 2011), the amount of the rate-limiting
LRP receptor available to other ligands could be
reduced. The second is that Wnt5a may generate
an intracellular signal that is inhibitory for ca-
nonical responses; thus, when Ror1/2 binds
Wnt ligands, Rac is activated (leading to JNK
activation) and Fzd2 is internalized and inacti-
vated by a clathrin-dependent mechanism (Sato
et al. 2010). Witte et al. (2010) suggest that Ror2
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generates an inhibitory signal via CK1-mediated
dvl phosphorylation and that CK1 constitutes a
switch that directs the signaling output (studies
of HEK293 and Cos cells) (Foldynova-Trantir-
kova et al. 2010; Witte et al. 2010). Indeed, the
effects of the morphogenetic planar cell polarity
pathway, typically mediated by ligands such as
Wnt11, are largely unexplored for mammary
gland. During development, it is often true
that multiple Wnt signals are perceived by cells
simultaneously (see the examples drawn from
genetic analysis of Caenorhabditis elegans, sum-
marized by van Amerongen and Nusse 2009).
These signals are key to tube building and the
convergent extension processes associated with
polarization of epithelial layers (Kouros-Mehr
and Werb 2006; Miller and McCrea 2010). In
addition, it is likely that there are polarized cell
divisions that occur either in the plane of the
basal and luminal layers, or that cross between
them. Evidence suggests that Notch signaling
and p53 are important to determining these di-
vision planes, and both pathways are highly
cross-regulated by, or interact with, Wnt signal-
ing (Callahan and Egan 2004; Collu and Bren-
nan 2007; Bouras et al. 2008; Cicalese et al. 2009;
Yan et al. 2010).

Wnt signaling in other tissue contexts also
serves to organize the growth and development
of more differentiated cells that emerge from
the stem cell compartment. Thus, for intestinal
cells, a battery of genes are induced by bcat/
TCF signaling (van de Wetering et al. 2002),
and these can be divided functionally into at
least three programs (maintenance of progeni-
tor phenotype, promotion of differentiation
of Paneth cells in the crypt, and compartmen-
talization of differentiated intestinal cells from
progenitors). The latter is regulated by ephrins
(EphB2 and EphB3). Thus, in Apcmin mice,
when ephrins are missing and cell sorting is
defective, tumor development proceeds even
more rapidly (Batlle et al. 2002). For the retino-
tectum, opposing gradients of ephrin and Wnt
signals (via Ryk or Fzd) organize and map the
cell function (Schmitt et al. 2006). For mamma-
ry gland, the ephrin Robo1 is a suppressor of
mammary branching and basal cell division
(Macias et al. 2011) and promotes the accumu-

lation of cytoplasmic E-cadherin andb-catenin.
Whether ephrin expression is downstream and/
or upstream of Wnt signals in this cell type is not
fully understood. Other Wnt target genes iden-
tified in intestine by van de Wetering et al.
(2002) include the orphan GPCR receptors
Lgr4 and Lgr5 (indeed, for intestine, an Lgr5-
dependent tag serves to identify intestinal stem
cells in studies of growth and pathogenesis) (Bar-
ker et al. 2007). Lgr4/5 functions to feed forward
to amplify the stem cell function in this tissue, by
binding RSpo proteins, forming a complex with
Lrp/Fzd molecules that potentiates a canonical
Wnt (Wnt3a) signal (Carmon et al. 2011; de
Lau et al. 2011). Because all of the same compo-
nents are also expressed in mammary gland, the
same principle may apply (Fig. 2).

It is possible that Wnt signaling could act
indirectly on mammary morphogenesis and
function via its effects on non-epithelial compo-
nents of the mammary gland, including blood
vessels, macrophages, fibroblasts, and adipo-
cytes. For example, endothelial cell maturation
is highly Wnt dependent (Parmalee and Kita-
jewski 2008), including a relatively little charac-
terized pathway that depends on the Norrin
ligand and Fzd4/Lrp5 (Ye et al. 2010). Macro-
phages and other immunomodulatory cells are
well known to affect mammary development,
involution, and tumor progression (Schwert-
feger et al. 2006; Schaale et al. 2011; O’Brien et
al. 2012). Fibroblasts are activated by local Wnt
signals to initiate a desmoplastic response (Xu
et al. 2000) that elicits a mobilization and pro-
liferation response from circulating cells and
bone marrow precursors (Kim et al. 2008).
These cells are recruited to the tumor, where
they participate in the angiogenic and inflam-
matory response, creating leaky vessels and mac-
rophage activation, neither of which is associat-
ed with the tumors that develop in response to
the intracellular Wnt effector b-catenin (Kim
et al. 2008). Adipocyte differentiation is con-
trolled by Wnt proteins (specifically Wnt10b),
and adipocyte differentiation/fat content varies
substantially throughout pregnancy and lacta-
tion (Prestwich and Macdougald 2007). Indeed,
it is likely that the controlled spacing and
branching of mammary ducts in the fat pad
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represents an interaction between the host tissue
and the expanding ductal epithelial cell popula-
tion (Sakakura 1987).

Furthermore, responses to Wnt signals can
be modulated by cross talk from other effectors
and pathways, including metabolic checkpoints
such as AMPK, mitochondrial function, au-
tophagy, and lipid effectors (Inoki et al. 2006;
Gao et al. 2010; Yoon et al. 2010; Kang et al.
2011). Prostaglandins (Goessling et al. 2009)
have been shown to cross-talk to Wnt signaling
to maintain hematopoietic stem cells, and there
are other pathways that regulate the turnoverand
metabolism of b-catenin (Incassati et al. 2010).
Although the significance of these is largely un-
known for normal mammary development and
tumor initiation, the interaction of Wnt signal-
ing with EGFR or with nuclear hormone re-
ceptors suggests that these could be particularly
important for dissecting mammary behaviors
(Schlange et al. 2007; Mastroianni et al. 2009;
Roarty and Rosen 2010).

WNT4: A WNT PROBLEM CHILD?

Wnt4 knockout glands were reported to show a
delay of lobulo-alveolar development (Brisken
et al. 2000) during pregnancy, implying that
this ligand could be a mammary epithelial cell
growth factor with similar properties to Wnt1
(and Wnt10b). Indeed, when mammary epithe-
lial cells were transduced with a Wnt4 expression
vector, the outgrowths were hyperplastic (Brad-
bury et al. 1995). However, unlike Wnt1, Wnt4
does not induce mammary gland hyperplasia
when expressed as an MMTV-based transgene.
This is despite effective expression levels (equiv-
alent to mid-pregnancy) and evidence of Wnt4-
induced gene expression (e.g., Wnt16) (Kim
et al. 2009), both in vitro (in HC11 cells) and
in vivo in virgin glands. In contrast to Wnt1 (and
the other canonical ligands), Wnt4 does not in-
duce axin2 expression or TOP-FLASH activa-
tion in mammary epithelial cells or fibroblasts,
and does not induce the typical developmental
phenotypes associated with canonical Wnt li-
gand expression in zebrafish embryos.

It may be that Wnt4 is just one arm of a
progesterone-induced program, making Wnt4

necessary but not sufficient. Other progester-
one-induced components, such as RANKL (Be-
leut et al. 2010) and/or the differentiation/
specification factor bHLH protein Id4 (Fernan-
dez-Valdivia et al. 2005), could also be required
for an effective response. Wnt4 may be a prime
candidate to explain the regulation of mamma-
ry stem cell function by endocrine factors. Thus,
recent reports describe a dynamic twofold ex-
pansion and retraction of the stem cell activity
during the 4-d estrus cycle (Joshi et al. 2010),
and an 11-fold difference in activity in estro-
gen/progesterone positive/negative mammary
environments (Asselin-Labat et al. 2010). These
hormonal dynamics closely resemble the ex-
pression of Wnt4 mRNA and protein expres-
sion in luminal mammary epithelial cells (Table
1) (Silberstein et al. 2006).

Information derived from other Wnt4-de-
pendent processes, such as kidney development,
could provide a useful precedent for mammary
gland. For kidney, several Wnt proteins are ex-
pressed by the epithelial ureteric bud, includ-
ing Wnt6, 7b, 9b, and 11, and two Wnt proteins
by the morphogenic mesenchyme, Wnt 2b and
Wnt4. Of these, Wnt4, 9b, and 11 are essential,
and none show redundant functions, suggest-
ing that the nature of the signal generated by
each is unique (Carroll et al. 2005; Pulkkinen
et al. 2008). In MDCK and other kidney cell
types, Wnt4 can induce a canonical signal, but
the receptor mediating this signaling event is still
mysterious (although Wnt4 binds Fzd6, this is
not the canonical signaling reaction) (Lyons
et al. 2004). Interestingly, Bernard et al. (2008)
suggest that Wnt4 elicits a distinct response from
that induced by Wnt5a, namely, accumulation
ofb-catenin at the cell membranes (of HEK293T
cells). These, or other factors, may be important
to understanding the molecular mechanism of
Wnt4 activity.

IS WNT SIGNALING A DRIVER FOR
BREAST TUMOR GROWTH?

Wnt signaling has been known to be highly
oncogenic for mouse mammary glands since
1982, when Nusse and Varmus showed that
mouse mammary tumors induced by MMTV

C.M. Alexander et al.
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were caused by activation of Wnt ligand gene
expression. In fact, not only were Wnt1, Wnt3,
Wnt3A, and Wnt10b activated to induce mam-
mary tumors, so indeed were Wnt-pathway
coactivators RSpo2 and RSpo3 (Nusse and Var-
mus 1982; Nusse 1988; Theodorou et al. 2007;
Callahan and Smith 2008). Of these, only
Wnt10b and the RSpo ligands are usually ex-
pressed in significant amounts in mammary
gland (Table 1). It may be significant that other
Wnt components are not on that list—includ-
ing Lrp6, even though overexpressed Lrp6 can
induce hyperplasia in mouse models (Lindvall
et al. 2009; Liu et al. 2010; Zhang et al. 2010a).

However, although it is true that the vast
majority of colorectal tumors have a Wnt sig-
naling driver (initiated by mutations in one of
three genes in the canonical Wnt signaling path-
way, namely, inactivating mutations of the tu-
mor suppressors Apc or axin or activating mu-
tations of the oncogeneb-catenin), there is little
evidence to suggest that breast tumors share this
etiology. Mice with an Apc mutation (Apcmin),
although they develop intestinal polyps, do not
spontaneously develop breast tumors. (They
are, however, sensitized to tumor development,
revealed by the enhanced rate of tumorigenesis
after the administration of carcinogens [Moser
et al. 1993].) Indeed, unlike mammary glands
expressing Wnt ligands, Apcmin mammary glands
are not hyperplastic, so this loss of function is
insufficient to generate a growth signal. The
mechanisms governing inactivation of Wnt
signaling components may be different for
mammary cells; for example, data derived
from combination microarray–CGH suggest
that the expression of genes in 5q22.2 is reduced
in basaloid breast tumors (Geyer et al. 2011).
This interval includes Apc. Perhaps total inac-
tivation of the typical Wnt tumor suppressors
by mutation is lethal for mammary epithelial
cells.

Preneoplastic lesions with ectopic Wnt sig-
naling often require cooperating mutation(s) to
progress. Perhaps the lack of Wnt mutations in
breast tumors could be explained if these coop-
erating mutations did not arise readily during
breast cancer development, or were not tolerat-
ed. For example, gut tissues in Apcmin mice

(after loss of heterozygosity) accumulate b-cat-
enin, and this is sufficient to prevent differenti-
ation and induce morphological changes in
tissue architecture. Note that this tissue is re-
markable for its high rate of continuous growth,
which has no parallel in adult mammary gland.
However, nuclear b-catenin does not arise until
later in tumor development, after Ras is mutat-
ed (Phelps et al. 2009). Ras is rarely mutated in
any type of breast tumor, although Ras muta-
tions are relatively common in breast tumor cell
lines (Hollestelle et al. 2007). Ectopic Ras activ-
ity is often detected by surveillance checkpoints
(Zhu et al. 2005), and cells are eliminated in
response (typically a p53-dependent process).
Thus, ras activation has to be carefully titrated
to contribute effectively to tumor development.
Perhaps it is no coincidence that the Fgf signal-
ing pathway is frequently activated during Wnt-
induced tumor development (where Ras is ac-
tivated as a downstream effector in a regulated
manner) (Callahan and Smith 2008). In devel-
opmental models, when Wnt and Fgf are coor-
dinately ex-pressed, the signal generated is dis-
tinct from either alone (ten Berge et al. 2008).
This may also explain the observation that hu-
man basaloid breast tumor aggression is associ-
ated with (and dependent on) hyperactivation
of Fgf signaling (Turner et al. 2010a,b; Sharpe
et al. 2011). Similarly, activation of the tyrosine
kinase Ron has been associated with b-catenin
phosphorylation (Y654 and Y670), together with
enhanced nuclear translocation and transacti-
vation activity (Wagh et al. 2011). Furthermore,
when a Wnt signal is present, two reports sug-
gest that Akt activation is sufficient to activate
the nuclear translocation of b-catenin, in hu-
man and mouse breast tumor epithelial cells
(Korkaya et al. 2009; Zhang et al. 2010b). Akt
has been shown to phosphorylate b-catenin
(S-552) to enhance nuclear translocation (He
et al. 2007), and an inhibitor of Akt signal-
ing (perifosine) inhibits the accumulation and
translocation of b-catenin, Wnt signaling re-
porters, and stem cell activity, in normal cells
and tumor cells deficient in PTEN and/or p53.
Up-regulation of Akt signaling in the absence
of Wnt signals is unlikely to cross-talk to Wnt
end points, despite the fact that they share a

Wnt Signaling in Mammary Glands
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signaling component (GSK3b) (Korkaya et al.
2009; Ng et al. 2009); indeed, the data to date
suggest that the pools of GSK3b allocated to
these pathways are different and separate (Ding
et al. 2000).

It is useful to outline the limitations of as-
says designed to test whether Wnt signaling is a
tumor driver, in the following sections.

Wnt-Dependent Subpopulations Are
Obscured by General Wnt Signatures

The tumorigenic effects of ectopic Wnt signal-
ing may be associated with only a subpopulation
of (stem/progenitor) cells (especially early in
tumor development), whereas the tumor ma-
jority shows a different Wnt signaling response.
This has been illustrated in a Wnt1–Lrp5-de-
pendent transgenic tumor model system (Gun-
ther et al. 2003; Lindvall et al. 2006). These
tumors contain a minority “responder” cell
population that depends on a paracrine canon-
ical Wnt ligand (Lrp5-positive cells) from the
cell majority (Kim et al. 2011). This cell major-
ity is therefore unable to generate a canonical
Wnt signal (Lrp5-negative; visualized by axin2
expression), but is nonetheless recruited to grow
in a Wnt1-dependent manner. Thus, the Wnt
signature is not activated in the cell majority,
and the tumor cell population grows in response
to a field effect, with so far unknown mediators.

A “field effect” for growth is common for
other tumor drivers, such as the estrogen-ERa
axis. Thus, for ERa-positive tumors, the tumor-
igenic ERa receptor is typically expressed by a
minority population (ERa-positive cells com-
prise 1%–100% of tumor cells, depending on
the exact pathological criteria), but the Ki67/
mitotic index is raised throughout (Clarke
2003; Schlange et al. 2007; Mastroianni et al.
2009). Extrapolating from this idea, it is clear
that transcriptional signatures of whole popula-
tions of mixed cell types could be difficult to
interpret (Huang et al. 2005). The markers c-
myc and cyclinD1 that characterize Wnt-depen-
dent transcription for intestinal cells are not
prominent (or required for tumorigenesis) for
mammary gland (Huang et al. 2005), and in-
deed are not specific to Wnt signaling. Data also

suggest that activation of Akt signaling may be a
component of Wnt ligand-mediated oncogen-
esis, and this outcome may make ectopic Wnt
signaling difficult to recognize by a genetic sig-
nature (Korkaya et al. 2009; Zhang et al. 2010b).

Nuclear b-Catenin

As discussed above, a combination of signaling
activities may be required to generate nuclearb-
catenin. Nuclear b-catenin has been convinc-
ingly observed in some breast tumors (Geyer
et al. 2011). However, even when Wnt signaling
is known to be the tumor driver, it may not be
associated with significant immunostaining of
nuclear b-catenin, thus the breast tumors iden-
tified with ectopic Wnt signaling by this assay
may underrepresent the prevalence of this tu-
mor driver. For example, although the growth of
Wnt1-induced breast tumors is known to re-
quire the continuous presence of Wnt1/Lrp5,
there is little support for the presence of nuclear
b-catenin (data not shown), despite high ex-
pression of Wnt reporters in responder cells
(Kim et al. 2011). Furthermore, basaloid breast
tumors (in particular) are demonstrably hetero-
geneous with respect to basal and luminal cell
subpopulations (Rakha et al. 2009; Kim et al.
2012), and the Wnt-dependent subpopulation
may be rare.

Loss of E-Cadherin

Loss of function for the tumor suppressor E-
cadherin (characteristic of many breast tumors)
can lead to redistribution or elimination of b-
catenin, an E-cadherin binding partner (van
de Wetering et al. 2001; Incassati et al. 2010).
However, this is not necessarily accompanied by
the functional recruitment of b-catenin to the
Wnt signaling pathway (Gumbiner 1998; Geyer
et al. 2011).

These issues do not eliminate Wnt signaling
as a significant tumor driver. Indeed, there is a
large body of literature that describes a dispro-
portionate expression of mRNA for positive ef-
fectors of Wnt signaling in tumors, either with
respect to normal tissue, sometimes with respect
to a larger group of breast tumors (for review, see
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Incassati et al. 2010). All of these studies have
the caveat that the cell composition of tumors is
different from subtype to subtype (e.g., the lu-
minal vs. basaloid subtypes, where the latter are
mixtures of both basal and luminal cells), and
the samples are seldom microdissected, perhaps
including contributions from cells that may ex-
press high amounts of Wnt signaling compo-
nents (such as macrophages). However, the ac-
cumulated data suggest that there are significant
expression of Wnt ligands (summarized by Ben-
haj et al. 2006), loss of non-canonical signaling
(Jonsson et al. 2002; Serra et al. 2011), and shut-
down of expression of extracellular inhibitors.
Numerous extracellular inhibitors of Wnt sig-
naling are expressed by mammary gland (in-
cluding 2/4 dkk species, WIF1, and 3/4 sFRP
species) (Fig. 2; Table 1). Thus, Ugolini et al.
(2001) originally described the epigenetic inhi-
bition of sFRP1 expression in ERa-positive tu-
mors, and Schlange et al. (2007) showed that
autocrine Wnt signaling (measured by dvl phos-
phorylation) was inhibited by pan siRNA to Dvl
species, and by the ectopic administration of
sFRP1, for a group of breast tumor cells lines
that represent all the major subtypes of breast
tumor. This relied partly on transactivation of
EGFR (and ERK phosphorylation), mediated by
Wnt-induced MMPactivation and the release of
erbB2 ligands from extracellular matrix. Note
that this study (and others) may not implicate
canonical Wnt signaling, but Wnt ligand/Fzd-
dependent growth and invasion. Alterations in
mRNA species for Wnt signaling components
require cautious interpretation, because the ef-
fects of so-called inhibitors (in particular) are
often difficult to predict a priori. Thus, loss of
dkk3 (reported in breast tumors) (Suzuki et al.
2008; Veeck et al. 2008) induces apoptosis of
lung cancer cells (Jung et al. 2010), and ectopic
dkk3 can potentiate Wnt signaling (probably by
binding and disabling Kremen) (Nakamura and
Hackam 2010).

However, despite all these caveats, Geyer
et al. (2011) have recently published clear pic-
tures of the localization and amount of b-cat-
enin (using two different monoclonal antibod-
ies) visualized for a cohort of 245 breast tumors,
and showed that nuclear b-catenin is prevalent

in a subpopulation of tumor epithelial cells
in approximately one-third of basaloid breast
tumors. Basaloid breast tumors comprise about
one-sixth of total breast tumors and show high
levels of expression of basal cell markers (both
protein and mRNA) alongside luminal cell
markers. The Wnt receptor, Lrp6, is overex-
pressed in some of these tumors (by approxi-
mately twofold to fivefold) (Lindvall et al. 2009;
Liu et al. 2010), and inhibition of Lrp6 in MDA-
MB231 basaloid cells in culture inhibits TOP-
FLASH (10� –100�), growth (2�), Axin2 ex-
pression (2�), colony formation (5�) in vitro,
and tumor growth in vivo (Matsuda et al. 2009).

The focus is now on the inhibitors of Wnt
signaling for their possible use in tumor treat-
ment, and given the data described above, the
most likely target cohort may be patients with
basaloid tumors. Drug development of inhibi-
tors of Wnt signaling tend to assay HEK293
cells, and they have been highly successful in
producing molecules that inhibit signaling out-
side and inside of the cell (Barker and Clevers
2006; Dasgupta 2009). It may be possible to ex-
ploit unique aspects of Wnt signaling in breast
tumor cells to enhance these more generic ap-
proaches.

CONCLUDING REMARKS

This is not a comprehensive review, in part be-
cause it focuses on the cell surface components
of Wnt signaling, and does not detail how that
signal is modified by (1) cytoplasmic modifiers;
(2) nuclear uptake mechanisms for b-catenin;
(3) the nature of the TCF species expressed, to-
gether with the associated transcription factors
(Archbold et al. 2012); or (4) the epigenetic
chromatin status (Hatzis et al. 2008; Gu et al.
2009; Wend et al. 2010). This article mentions
these mechanisms only in passing because there
is little specific information published to de-
scribe the importance of these aspects with re-
spect to mammary gland or mammary cell lines.
We have focused instead on some of the out-
standing questions likely to be our preoccupa-
tion in the near future, such as the evident
plasticity of fate induced by Wnt signaling (in-
dicated by transitions between basal and luminal
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Table 1. Characterized expression and function of cell surface Wnt signaling components in mammary cells and tissues

Gene Array mRNA Protein Cell/tissue type Function Citation

Wnt1 X All sources

X (N) Normal mouse MG Tumorigenic in transgenic mice
(MMTV-Wnt1)

Induces branching and lobuloalveolar
hyperplasia

Tsukamoto et al. 1988

3 (R) T-47D cells Suzuki et al. 2008

Highly transforming in C57MG cells Wong et al. 1994

Transfection into HC11 cells and
transplantation into cleared fat pads
leads to fibrotic outgrowths

Humphreys and Rosen 1997

Wnt2
(Wnt2a)

3 3 (I) TEB stroma Kouros-Mehr and Werb 2006

3 (R, I,
N)

Basal cells and TEBs mRNA decreases 10�–40� during
pregnancy and lactation

Buhler et al. 1993

Transforms C57MG cells Wong et al. 1994

3 (RP,
I)

Normal human breast fibroblasts and human
breast tumor epithelium

Low expression levels in normal tissue
and overexpression (5�–8�) in some
carcinomas

Dale et al. 1996

Transfection into HC11 cells and
transplantation into cleared fat pads
leads to fibrotic outgrowths

Humphreys and Rosen 1997

3 Mouse breast cancer cell line bone metastasis
model

Significantly down-regulated at tumor–
bone interface

Sadanandam et al. 2011

Wnt2b
(Wnt13)

X All sources

3 (R) Normal human mammoplasty tissue and
infiltrating ductal carcinoma biopsies

Low expression levels in normal tissue
and overexpression (5�–8�) in some
carcinomas

Bergstein et al. 1995

Wnt3 X All sources

3 (N) Normal mouse mammary gland MMTV CIS Roelink et al. 1990;
Theodorou et al. 2007;
Callahan and Smith 2008

3 (RP) Normal human breast tissue, MTSV1-7, BT20,
MCF7adr (ER2, EGFRþ)

Huguet et al. 1994
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Wnt3a X All sources

Highly transforming in C57MG cells Wong et al. 1994

MMTV CIS Roelink et al. 1990;
Theodorou et al. 2007;
Callahan and Smith 2008

Wnt4 3 Mature luminal Lim et al. 2010

3 Differentiated luminal Grigoriadis et al. 2006

3 Luminal ERþ cells Kendrick et al. 2008

3 NDE Kendrick et al. 2008

3 3 (I) TEBs/mature ducts Kouros-Mehr and Werb 2006

3 (I) Luminal Brisken et al. 2000

X (W) C3H 10T1/2 cells Plays a role in branching during
pregnancy

Bradbury et al. 1995; Brisken
et al. 2000

3 (R) Luminal cells from mammary glands treated
with estrogen

Mediates progesterone-induced stem cell
expansion

Joshi et al. 2010

3 (N) Highest expression in virgin also in cell lines
C57MG, C127I, and NMuMG cells

Gavin and McMahon 1992

3 (RP) MDA415 Huguet et al. 1994

Wnt5a 3 3 Luminal ERþ cells Kendrick et al. 2008

3 Mature luminal cells Lim et al. 2010

3 Luminal cells Grigoriadis et al. 2006

3 3 (I) TEB epithelium Kouros-Mehr and Werb 2006

3 (N) Weakly expressed in 12-wk-old virgin and
induced during pregnancy

Weber-Hall et al. 1994

3 (N) Whole mammary gland Expression detectable during pregnancy
(peak at 10 days), no expression
during lactation

Buhler et al. 1993

Required for MG development and
TGFb-mediated inhibition of ductal
growth.

Wnt5a KO mice show accelerated ductal
morphogenesis

Roarty and Serra 2007

Continued
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Table 1. Continued

Gene Array mRNA Protein Cell/tissue type Function Citation

3 (N) Virgin, increase during pregnancy; C57MG
and C127I cells

Gavin and McMahon 1992

3 (N) Human breast carcinoma Does not transform C57MG cells Iozzo et al. 1995

3

(RP,
I)

Little to no expression in normal breast tissue
Increased expression in benign proliferations

and invasive breast cancer
ISH signal localized to epithelial compartment

Lejeune et al. 1995

Overexpression results in lactation defect
in MMTV-Wnt5a mice

Baxley et al. 2011

Wnt5b 3 Bipotent CFCs Raouf et al. 2008

3 Luminal Grigoriadis et al. 2006

3 3 (I) TEBs/mature ducts Kouros-Mehr and Werb 2006

3 (N) Whole mammary gland Expression detectable during pregnancy
(d10-18), no expression during
lactation

Buhler et al. 1993

Transforms C57MG cells Wong et al. 1994

3 (N) Virgin mammary gland, increases during
pregnancy

Gavin and McMahon 1992

Wnt6 3 Basal cells Kendrick et al. 2008

3 3 (I) TEBs/mature ducts Kouros-Mehr and Werb 2006

3 (N) Expressed in virgin, increase during pregnancy Gavin and McMahon 1992

Wnt7a X All sources

Highly transforming in C57MG cells Wong et al. 1994

3 (N) NMuMG cell line Gavin and McMahon 1992

Wnt7b 3 3 Luminal ERþ cells Kendrick et al. 2008

3 Luminal ER- cells Kendrick et al. 2008

3 Mature luminal cells Lim et al. 2010

3 3 (I) TEB epithelium Kouros-Mehr and Werb 2006

Does not alter MG development
Transforms C57MG cells

Wong et al. 1994; Naylor
et al. 2000
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Transfection into HC11 cells and
transplantation into cleared fat pads
leads to fibrotic outgrowths and
palpable adenocarcinomas

Humphreys and Rosen 1997

3 (N) Highest expression in virgin glands Gavin and McMahon 1992

3

(RP)
Normal human breast tissue, MTSV1-7,

MCF7, ZR75, T47D, MCF7adr, MDA231,
MDA361, BT20, MDA415, MDA457,
MDAMB157, ZR9B11

Huguet et al. 1994

Wnt9a
(Wnt14)

3 Luminal cells Grigoriadis et al. 2006

3 Primary human breast cancer Overexpressed in one of nine cases
of breast cancer

Kirikoshi et al. 2001

Wnt9b
(Wnt14b
Wnt15)

3 Whole mammary gland Transforms C57MG cells (weaker than
Wnt1)

Qian et al. 2003

3 Primary human breast cancer Kirikoshi et al. 2001

Wnt10a 3 3 Basal/myoepithelial Kendrick et al. 2008

Wnt10b
(Wnt12)

Tumorigenic in transgenic mice
(MMTV-Wnt10b)

MG hyperplasia, increased proliferation
and branching

Lane and Leder 1997

3

(RP,R)
MCF-7 Adrr, MDA-MB-435, and MDA-MB-

157 cells
Human breast samples, and some primary

human breast carcinomas

Bui et al. 1997

3 (N) Virgin mouse mammary glands (not pregnant) Lee et al. 1995

3 Mammary ridge (E11.5)
Dual abdominal MG anlagen (12.5 dpc)

Christiansen et al. 1995

Wnt11 X All sources

Transforms C57MG cells Christiansen et al. 1996

3 (W) MDA-MB-231 ERRa- and b-catenin-regulated gene
Involved in cancer cell migration

Dwyer et al. 2010

Wnt16 3 Induced by Wnt4 Kim et al. 2009

Continued
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Table 1. Continued

Gene Array mRNA Protein Cell/tissue type Function Citation

RSpo1 3 Luminal ER- Kendrick et al. 2008

3 (I) Mammary mesenchyme (E15.5) Nam et al. 2006, 2007

KD might result in absence of ductal
side-branching and alveolar formation

Chadi et al. 2009

RSpo2 X Not in adult tissues

3 (R) Detected at very low levels early in MG
development but not detectable in MG of
day 15 pregnant mice

Lowther et al. 2005

X (R) X (W,
ICC)

HC11, C57MG mouse cell lines Klauzinska et al. 2011

X (R) HC11 cells SA Fakhraldeen and CM
Alexander, unpubl.

RSpo3 X Not in adult tissues

CIS for MMTV Theodorou et al. 2007;
Callahan and Smith 2008

Fzd1 3 3 Basal/myoepithelial Kendrick et al. 2008

3 Down-regulated in mature luminal cells Lim et al. 2010

3 Mature myoepithelial cells Raouf et al. 2008

3 3 (I) TEB stroma Kouros-Mehr and Werb 2006

3 (R) HMEC, MDA-MB-468, MDA-MB-453, MCF-
7, T-47D, BT-20, and BT-474 cells

Benhaj et al. 2006

Fzd2 3 3 Basal/myoepithelium Kendrick et al. 2008

3 3 (I) TEB Kouros-Mehr and Werb 2006

3 (R) MDA-MB-468, MDA-MB-453, MCF-7, T47D,
BT-20, and BT-474 cells

Benhaj et al. 2006

Fzd3 3 Basal/myo Kendrick et al. 2008

3 Myo Grigoriadis et al. 2006

3 (R) MDA-MB-231 and SUM-159 cells Functions in MDA-MB-231 cell motility Valastyan et al. 2009
3 (W) MDA-MB-231 cells

3 (R) HMEC, MDA-MB-468, MCF-7, T-47D, BT-20,
and BT-474 cells

Benhaj et al. 2006
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Fzd4 X All sources

Fzd5 3 Luminal Grigoriadis et al. 2006

3 (R) MDA-MB-468 cells Benhaj et al. 2006

Fzd6 3 Basal/myoepithelium Jones et al. 2004

3 Basal/myoepithelium Grigoriadis et al. 2006

3 (R) HMEC, MDA-MB-468, MDA-MB-453, MCF-
7, T-47D, BT-20, and BT-474 cells

Benhaj et al. 2006

Fzd7 3 3 Basal/myoepithelium Kendrick et al. 2008

3 Luminal-restricted CFCs Raouf et al. 2008

3 (R) HMEC, MDA-MB-468, MDA-MB-453, T-47D,
and BT-20 cells

Benhaj et al. 2006

Plays a role in proliferation and
invasiveness of TNBC cell lines

Yang et al. 2011

Fzd8 3 3 Basal/myoepithelium Kendrick et al. 2008

3 MaSC-enriched fraction Lim et al. 2010

3 (R) HMEC and MDA-MB-453 cells Benhaj et al. 2006
X (R) MDA-MB-468

Fzd9 3 Differentiated luminal cells Raouf et al. 2008
Fzd10 X
Lrp5 3 Bipotent CFCs

3 (F,
IHC)

Basal cells Badders et al. 2009

3 Translation induced in Wnt1-induced
luminal cells

Kim et al. 2011

3 (R) HMEC, MDA-MB-468, MDA-MB-453, MCF-
7, T-47D, BT-20, and BT-474 cells

Benhaj et al. 2006

3 (R) Breast cancer specimens and normal breast
tissue specimens

Bjorklund et al. 2009

Mammary stem cell maintenance Lindvall et al. 2006

Maintenance of basal cell population Badders et al. 2009

Continued
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Table 1. Continued

Gene Array mRNA Protein Cell/tissue type Function Citation

Lrp6 3 Luminal Grigoriadis et al. 2006

3 (W) SUM1315 cells DiMeo et al. 2009

3 (R) HMEC, MDA-MB-468, MDA-MB-453, MCF-
7, T-47D, BT-20, and BT-474 cells

Benhaj et al. 2006

3 (R) Breast tumor, MDA-MB-231 and MDA-MB-
468 cells

Li et al. 2004

OE in mice (MMTV-Lrp6) induces
hyper-lobular development and
increased TEB number

Zhang et al. 2010a

3 (F,
IHC)

Basal in adult
Basal and luminal in newborns

Loss interferes with mammary placode,
fat pad, and branching development
during embryogenesis

Heterozygosity for inactivating mutation
leads to reduced TEBs and branches

Badders et al. 2009; Lindvall
et al. 2009

Ror1 3 Luminal CFCs Raouf et al. 2008

3 Myoepithelium/basal cells Kendrick et al. 2008

Ror2 3 (R) 3

(IHC)
Expressed in basal/myoepithelial cells and

luminal cells of mouse mammary gland
K Roarty and JM Rosen,

pers. comm.

3 (R) Expressed in breast cancer cell lines (MCF7 and
MDA-MB231) and brain metastases of brCA
in vivo

Klemm et al. 2011

Lgr4 3 Basal cells Kendrick et al. 2008

X Normal luminal epithelium Grigoriadis et al. 2006

Lgr5 3 Basal cells Kendrick et al. 2008

Dkk1 3 Basal cells Kendrick et al. 2008

3 NDE Kendrick et al. 2008

3 Luminal cells Grigoriadis et al. 2006

3 (W) SUM1315 cells DiMeo et al. 2009

OE prevents mammary placode
development

Chu et al. 2004

X (R) HC11 mouse cells SA Fakhraldeen and CM
Alexander, unpubl.
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Dkk2 X All sources

X (R) HC11 mouse cells SA Fakhraldeen and CM
Alexander, unpubl.

Dkk3 3 3 Bipotent CFCs Raouf et al. 2008

3 Differentiated basal cells Raouf et al. 2008

3 MaSC-enriched Lim et al. 2010

3 Myoepithelium/basal cells Jones et al. 2004

3 Myoepithelium/basal cells Grigoriadis et al. 2006

3 Myoepithelium/basal cells Kendrick et al. 2008

X (R) HC11 cells SA Fakhraldeen and CM
Alexander, unpubl.

Dkk4 X All sources

X (R) SA Fakhraldeen and CM
Alexander, unpubl.

WIF1 3 3 Myoepithelium/basal cells Kendrick et al. 2008

3 MaSC-enriched Lim et al. 2010

3 (R) T47D, normal human breast tissue Targeted for epigenetic silencing in
human breast cancer

Ai et al. 2006

3

(IHC)
Normal breast tissue Down-regulated in invasive ductal breast

carcinoma
Wissmann et al. 2003

3 Mouse breast cancer cell line bone metastasis
model

Increased expression at tumor-bone
interface

Sadanandam et al. 2011

SFRP1 3 3 Myoepithelium/basal cells Kendrick et al. 2008

3 Down-regulated in mature luminal Lim et al. 2010

Maintains/reduces canonical signaling
levels

Cowling et al. 2007

mRNA expression lost in .80% of
invasive breast carcinomas
(medullary)

Ugolini et al. 2001

3

(IHC)
Mammary epithelial cells Tumor suppressive function

Lost in tumors
Loss associated with poor prognosis

Klopocki et al. 2004

Continued
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Table 1. Continued

Gene Array mRNA Protein Cell/tissue type Function Citation

X (W) SUM1315 cells DiMeo et al. 2009

3 Mature luminal Grigoriadis et al. 2006

3 (R) Normal breast tissue
MDA-MB-435S, MDA-MB-436, MDA-MB-
468, MDA-MB-157, MDA-MB-361, and ZR-
75-1 cells

Suzuki et al. 2008

X (R) MCF-7, MDA-MB-231, T47D, and SK-BR-3
cells

SFRP2 3 Myoepithelium/basal cells Grigoriadis et al. 2006

3 (R) Normal breast tissue and MDA-MB-157 cells Suzuki et al. 2008
X (R) MCF-7, MDA-MB-231, MDA-MB-435S,

MDA-MB-468, T-47D, SK-BR-3, MDA-MB-
453, and ZR-75-1 cells

SFRP4 3 Luminal Grigoriadis et al. 2006

3 Mouse breast cancer cell line bone metastasis
model

Increased expression at tumor-bone
interface

Sadanandam et al. 2011

SFRP5 X All sources

WISP1 3 Myoepithelium/basal cells Grigoriadis et al. 2006

3 Myoepithelium/basal cells Kendrick et al. 2008

WISP2 3 Luminal Grigoriadis et al. 2006

3 (R) 3 (W) MCF7, T47D, ZR-75.1, SKBr3 Knockdown promotes proliferation
(including E-independent) of MCF7
cells

Inducing expression inhibits
proliferation of MCF7 and MDA-MB-
231 cells

Fritah et al. 2008
X (R) X (W) HMEC, MDA-MB-231
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WISP3 3 Bipotent CFCs Grigoriadis et al. 2006

Naked1 3 Myoepithelium/basal cells Kendrick et al. 2008

Naked2 3 Bipotent CFCs Raouf et al. 2008

3 Myoepithelium/basal cells Kendrick et al. 2008

The expression patterns of Wnt-receptor signaling components are summarized, deduced from significant expression by mRNA species by microarray analysis (Array), or more specific

analysis by qPCR/RT-PCR (R), in situ hybridization (I), RNase protection (RP), or Northern blotting (N), and of cognate proteins, shown by flow cytometry (F), immunohistochemical/
cytochemical localization (IHC/ICC), or Western blotting (W). Functional information for each component is summarized.

Specificity of expression in mammary gland cell types: The array results reported are from several separate studies, and the cell fractions and gene chips are as follows:

1. (Raouf et al. 2008) Normal human mammary epithelial cells were sorted into four fractions. Both two stem/progenitor-enriched fractions (a bipotent basal stem cell and a luminal-

restricted luminal progenitor; both scored as colony-forming cells in vitro, CFCs) showed high EpCAM expression compared with their mature myoepithelial and luminal counterparts.

Two mature cell types extracted from the low-EpCAM fraction were luminal cells (high Muc1/CD133, low Thy1/CD10) and myoepithelial cells (high Thy1 and low Muc1). mRNA was

analyzed using Affymetrix human X3P GeneChip arrays or PCR-LongSAGE libraries.

2. (Lim et al. 2010) Normal mouse mammary glands were sorted into three epithelial cell fractions, and one stromal. A basal stem cell–enriched fraction (MaSC) was separated as b1

integrin (CD29)-high, CD24-low, and CD61-positive. Luminal cells were isolated as CD29-low (CD24-positive), and the progenitors were CD61-negative, whereas the mature cells were

CD61-positive. For normal human mammary gland cells, the sorting parameters were different, but the cell populations were broadly similar. Three fractions described were a basal,

mammary stem cell–enriched (MaSC) fraction—a6 integrin (CD49f )-high, EpCAM-negative—and two luminal fractions—EpCAM-positive, the progenitor fraction CD49f-positive,

and the mature fraction CD49f-negative. mRNA was analyzed using Illumina MouseWG-6 v 2.0 BeadChips.

3. (Kendrick et al. 2008) Normal mouse mammary glands were sorted into three epithelial cell fractions, broadly similar to those described by Lim et al. (2010), although the cell surface

markers used are different, as is the preparation and exclusion of other non-epithelial cell types. A basal cell fraction (stem/myoepithelial) was collected as CD24-low and Sca1-negative.

Two luminal cell fractions both expressed CD24; the ERa-negative, luminal progenitor cell fraction was isolated as Sca1-low; and the mature, ERa-positive cells were Sc11-positive. mRNA

analysis was performed used Mouse Affymetrix Mouse Expression MOE430 2.0 arrays.

4. (Grigoriadis et al. 2006) This is the only study to use cultured primary cells. Cells from normal human breast and from primary tumors were separated by double immunomagnetic

sorting, either as EMAþ/integrin b4-negative luminal cells, or CD10þ/BerEP4-negative myoepithelial cells. The mRNAwas analyzed using MPSS and Affymetrix Human Genome U133

Plus 2.0 GeneChip, CodeLink Human Whole Genome Bioarray, Agilent Whole Human Genome Oligo Microarray 44K cDNA array, and 20K cDNA microarray (constructed at the

Breakthrough Breast Cancer Research Center, UK).

(CFC) Colony-forming cell; (NDE) not differentially expressed; (TNBC) triple negative breast cancer; (OE) overexpression; (KO) knockout; (ISH) in situ hybridization; (IHC)

immunohistochemistry; (CIS) common integration site (applied to MMTV retroviral tagging studies). Wnt ligand and Fzd receptor expression in embryonic mammary tissues has been

previously described (Chu et al. 2004).

(3) Detectable expression.

(X) No detectable expression.

W
n

t
Sign

alin
g

in
M

am
m

ary
G

lan
d

s

C
ite

th
is

article
as

C
o
ld

Sp
rin

g
H

arb
Persp

ect
B

io
l
2
0
1
2
;4

:a0
0
8
0
3
7

21



mammary epithelial cell fates), the molecules
that regulate the mammary stem cell niche, the
combinatorial outputs that are offered by the
multiplicity of Wnt signals perceived by mam-
mary epithelial cells, the difficulties of con-
clusively implicating Wnt signaling in tumor
growth or tumor cell survival, and the potential
Wnt responses of the Lrp-deficient luminal cell
population. Key Wnt signaling components that
discriminate luminal and basal cell function,
such as Lrp5, are regulated at the posttranscrip-
tional level (Joshi et al. 2010; Kim et al. 2011),
and this requires more investigation. Much of
the information available to describe the regu-
lation of Wnt signaling involves ectopic expres-
sion of various components. At many levels, this
does not reflect the obvious competition for
binding partners that regulates the transcrip-
tional response and the response to Wnt ligands
at the cell surface. The next generation of data
will focus more heavily on studying the function
of Wnt signaling components when expressed at
endogenous levels. Given the new generation of
Wnt signaling inhibitors, there are new horizons
for investigations of mechanism and therapeutic
potential.
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