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The development of DNA sequencing methods for characterizing microbial communities has
evolved rapidly over the past decades. To evaluate more traditional, as well as newer methodologies
for DNA library preparation and sequencing, we compared fosmid, short-insert shotgun and 454
pyrosequencing libraries prepared from the same metagenomic DNA samples. GC content was
elevated in all fosmid libraries, compared with shotgun and 454 libraries. Taxonomic composition of
the different libraries suggested that this was caused by a relative underrepresentation of dominant
taxonomic groups with low GC content, notably Prochlorales and the SAR11 cluster, in fosmid
libraries. While these abundant taxa had a large impact on library representation, we also observed a
positive correlation between taxon GC content and fosmid library representation in other low-GC
taxa, suggesting a general trend. Analysis of gene category representation in different libraries
indicated that the functional composition of a library was largely a reflection of its taxonomic
composition, and no additional systematic biases against particular functional categories were
detected at the level of sequencing depth in our samples. Another important but less predictable
factor influencing the apparent taxonomic and functional library composition was the read length
afforded by the different sequencing technologies. Our comparisons and analyses provide a
detailed perspective on the influence of library type on the recovery of microbial taxa in
metagenomic libraries and underscore the different uses and utilities of more traditional, as well
as contemporary ‘next-generation’ DNA library construction and sequencing technologies for
exploring the genomics of the natural microbial world.
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Introduction

Nucleic acid-based cultivation-independent surveys
(CIS) of natural microbial assemblages have revolu-
tionized the practice, knowledge base and theory
in microbial evolution and ecology (Woese, 2004;
Pace, 1997, 2009). CIS strategies, first conceived
by Pace and collaborators over 25 years ago (Pace
et al., 1985; Olsen et al., 1986), were inspired by the
seminal microbial evolutionary studies of Woese
(1987). Pace and colleagues realized that the ability
to infer identity and evolutionary relationship
from macromolecular sequence data sidestepped
the necessity of cultivating microbes in order to
identify them. At the time that CIS approaches were
first conducted (initially by directly isolating and
sequencing 5S ribosomal RNA (rRNA); Stahl et al.,

1984), the polymerase chain reaction (Saiki et al., 1988)
was not in widespread use. So Pace and collaborators
extended CIS strategies to leverage the cloning and
sequencing of large DNA fragments extracted from
mixed microbial communities (Pace et al., 1985;
Olsen et al., 1986; Schmidt et al., 1991), an approach
later referred to as ‘metagenomics’ (Rondon et al.,
2000). The basic method involved extracting and
purifying DNA from natural microbial biomass,
cloning of large DNA fragments into phage vectors
and the subsequent identification of clones contain-
ing phylogenetically informative rRNA sequences.
Subsequent nucleic acid sequencing and phylo-
genetic analysis of rRNA genes allowed the identi-
fication of microbes found in the original mixed
population. One of the first successful applications
of the approach used lambda phage clone libraries
prepared from marine bacterioplankton community
DNA to successfully identify major bacterial groups
that predominate in seawater (Schmidt et al., 1991).
This early study pointed out that besides recovering
rRNA sequences, genomic libraries prepared from
microbial community DNA also provided access
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to other sequences and genes of interest (Schmidt
et al., 1991).

During the 1990s, microbial CIS methods and
applications were further developed, in tandem
with the improvement of DNA sequencing technol-
ogies. Because of their ease of application and high
throughput, primer-driven rRNA PCR amplification
techniques initially became the method of choice for
early rRNA-based evolutionary and environmental
studies (Medlin et al., 1988; Giovannoni et al.,
1990). CIS approaches in environmental microbio-
logy gradually extended beyond PCR-based studies
that were focused on single-gene phylogenetic
markers, to the sequencing of entire cloned DNA
fragments, combining bacterial artificial chromo-
some (BAC) vectors (Stein et al., 1996; Béjà et al.,
2000a, 2000b) and small-insert shotgun sequencing
approaches and employing improved high-through-
put Sanger-based dideoxynucleotide terminator
sequencing (Venter et al., 2004). More recently,
cloning-independent ‘next-generation’ sequencing
technologies such as pyrosequencing (Edwards
et al., 2006) have enabled more economical, techni-
cally streamlined approaches, which have ‘democra-
tized’ the accessibility of large-scale DNA sequencing.
As a result, ‘next-generation’ CIS approaches are
currently being applied to a vast array of naturally
occurring microbial assemblages.

In part because of the rapid development of
different technologies, there have been relatively
few systematic comparisons of the efficacy, advan-
tages and disadvantages of different CIS approaches
for characterizing microbial communities. Shotgun
sequencing techniques originally had provided the
greatest depth of coverage and throughput, but
genetic heterogeneity within natural populations
render assembly of large contigs difficult at best, in
all but the simplest populations (Tyson et al., 2004;
DeLong, 2005; Tringe et al., 2005). Longer DNA
sequence contigs approaching 100 kb or more can be
accessed in BAC or fosmid libraries, but the
quantitative recovery of microbial assemblage DNA
from such large-insert libraries is not well character-
ized. ‘Next-generation’ sequencing technologies,
such as pyrosequencing and Illumina, avoid poten-
tial cloning biases, are affordable and rapid, and
provide very deep sequence coverage. Nevertheless,
‘next-generation’ sequencing technologies typically
have greater error rates and shorter read lengths than
Sanger-based sequencing methods, and potential for
systematic biases as well (MacLean et al., 2009).

To gain a better perspective on the advantages,
disadvantages and potential biases of different
libraries and sequencing technologies for metage-
nomic analysis, we compared data sets from fosmid,
shotgun and 454 sequencing libraries that were
prepared from the same metagenomic DNA. Previ-
ous studies reported an apparent underrepresenta-
tion of the SAR11 cluster of the Alphaproteobacteria
in BAC and fosmid libraries (Pham et al., 2008;
Feingersch and Béjà, 2009; Temperton et al., 2009).

Temperton et al. (2009) proposed that the low GC
content of Candidatus Pelagibacter rendered its
DNA more susceptible to fracturing, thereby biasing
its inclusion in libraries requiring large insert sizes.
Feingersch and Béjà (2009) on the other hand
speculated that the expression of certain genes, in
particular ribosomal proteins, may prove toxic to the
Escherichia coli host and that BAC libraries are more
affected than shotgun libraries, because their larger
inserts are more likely to contain at least one such
toxic sequence. Subsequently, Ghai et al. (2010)
reported an apparent GC bias and under representa-
tion of Pelagibacter and Prochlorococcus clones in
picoplankton libraries from a Mediterranean deep-
chlorophyll maximum layer (Ghai et al., 2010). To
help clarify some of these issues, we report here a
more detailed analysis of taxon representation and
potential biases associated with multiple sets of
deeply sequenced fosmid, shotgun and 454 sequen-
cing libraries, each set prepared from the same
sample of open-ocean picoplankton DNA.

Materials and methods

Hot data sets
The bacterioplankton samples (size fraction 0.22–
1.6mm) for the preparation of the libraries used in this
comparison were collected as described previously
(Frias-Lopez et al., 2008; Shi et al., 2009, 2010) as part
of the Hawaii Ocean Times Series (HOT) Project (Karl
and Lukas, 1996). The HOT 179 collection consists of
fosmid, shotgun and 454 libraries from samples
collected in March 2006 at four different depths—
25m, 75m, 125m and 500 m. Samples from the HOT
186 cruise were obtained in October 2006 at 25 m, 75m,
110m and 500m depth. For this collection shotgun
libraries are available for 25m and 75m, and fosmid as
well as 454 sequences for all depths. Table 1 sum-
marizes the properties of the different data sets. All
libraries and their construction have been described
previously (DeLong et al., 2006; Frias-Lopez et al.,
2008; Martinez et al., 2010; Shi et al., 2010). The fosmid
and short-insert shotgun libraries were sequenced at
the Joint Genome Institute (JGI, Walnut Creek, CA,
USA; protocols can be found at http://www.jgi.doe.
gov/sequencing/protocols/prots_production.html).
The pyrosequencing libraries were prepared and
sequenced according to standard protocols recom-
mended by 454 Life Sciences (Branford, CT, USA) for
the respective technology (GS 20 for HOT 179, and FLX
for HOT 186 samples) as previously described (Frias-
Lopez et al., 2008). Reads with fewer than 60
unambiguous nucleotides were not included in the
analysis. All nucleotide sequences are available from
public databases, and accession numbers as well as
cloning vectors are listed in Supplementary Table 2.

Clustering
Highly similar and overlapping sequences in each
library were clustered using the ‘EST’ (expressed
sequence tags) program of the CD-HIT package
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(version 4.0; http://weizhong-lab.ucsd.edu/cd-hit/)
with parameters -n 10 -b 20 -c 0.98 -r 1, applying
an identity threshold of 98% while comparing each
sequence and its reverse complement to all other
sequences. Representative sequences were used for
further analysis and any counts were subsequently
adjusted using the number of reads that each sequence
represented after clustering.

Blast searches
Nucleotide BLAST analysis was performed using
the NCBI blastn program (Altschul et al., 1997,
version 2.2.16) against a comprehensive, nonredun-
dant collection of microbial genome sequences
compiled in July 2010 from the Gordon and Betty
Moore Foundation Microbial Genome Sequencing
Project (http://camera.calit2.net/microgenome/),
as well as from the Bacteria, Viruses, Plasmids,
Protozoa and Fungi subdirectories of the NCBI’s
genomes repository (ftp://ftp.ncbi.nih.gov/genomes/
). This database, which contains 13 768 sequences
and 5.1 billion nt, gave essentially the same results
for the samples in question as using the NCBI nt
database (data not shown), while reducing the
search time by an order of magnitude. The blastn
program was used with parameters for filtering as
recommended for processing with MEGAN (DH
Huson et al., Tübingen University, Germany): DUST
filter, with mask for lookup table only: -F ’D; m’.

For comparison, blastx was used with a protein
database assembled from the same sources
described above for the nucleotide sequences,
which contained 3.6 million peptides with a total
of 1.2 billion residues. For functional analysis we
used blastx against a KEGG database (Kanehisa
and Goto, 2000; Kanehisa, 2006). All blastx
analyses were performed with genetic code table 11
(bacterial sequences) and filtering using the ‘SEG’
algorithm, masking for lookup table only. In all
BLAST searches GI numbers were included (-I T)
and an E-value cutoff of 10�3 was used.

Taxonomic classification
The MEGAN program (version 3.9; Huson et al.,
2007) was used to assign BLAST hits to taxa of the
NCBI taxonomy with the following parameters for
the ‘LCA’ (lowest common ancestor) algorithm: min
support 1 (as sequences were already clustered),
min score 35 (as recommended for 454 sequences),
top percent 10, and win score 0. Where possible
(fosmid ends and shotgun data sets), the ‘paired reads’
setting was used. Read assignments were exported,
yielding a list of reads associated with each taxon.

Calculation of bias in distribution of taxa between
data sets
For each sequence library, read assignments to taxa
by MEGAN were combined with sequence data, as

Table 1 Summary of library properties

Cruise Depth Library 454 System Total Reads Read Length Assigned to Taxa GC Content

Mean s.d.a blastn blastx Mean s.d.a

Fosmid Ends 21 380 524.5 211.6 18.7% 52.0% 50.5% 11.0%
25 m Shotgun 125 897 589.9 158.6 47.7% 74.6% 39.0% 11.9%

454 GS 20 359 665 108.9 12.1 36.8% 39.2% 37.2% 12.2%

Fosmid Ends 20 562 488.4 201.1 26.1% 63.5% 47.5% 11.3%
75 m Shotgun 134 099 556.0 159.1 66.6% 84.0% 34.7% 9.0%

HOT 179
454 GS 20 388 652 110.2 11.8 48.5% 48.7% 34.9% 10.7%

Fosmid Ends 27 993 547.3 198.1 22.0% 70.2% 48.1% 10.0%
125 m Shotgun 139 732 561.3 160.4 46.2% 80.0% 36.9% 10.4%

454 GS 20 322 751 108.8 11.8 26.0% 32.1% 37.0% 11.9%

Fosmid Ends 27 745 548.3 184.0 22.4% 76.4% 51.1% 9.6%
500 m Shotgun 131 211 563.8 165.3 32.1% 80.7% 42.7% 11.4%

454 GS 20 371 071 107.1 10.8 10.2% 25.8% 44.3% 12.7%

Fosmid Ends 25 220 407.0 205.2 34.3% 73.0% 49.0% 8.6%
25 m Shotgun 55 667 887.0 83.2 61.8% 91.2% 34.9% 8.2%

454 FLX 609 421 222.0 69.4 40.1% 64.0% 35.8% 9.9%

Fosmid Ends 19 313 358.2 201.7 30.1% 65.5% 48.4% 9.2%

HOT 186
75 m Shotgun 71 407 886.9 149.1 78.2% 87.8% 39.3% 8.2%

454 FLX 661 129 208.6 68.3 41.9% 63.6% 34.8% 8.8%

110 m
Fosmid Ends 22 740 449.2 200.6 36.7% 67.6% 44.7% 9.6%
454 FLX 465 846 234.6 59.9 31.4% 58.5% 37.1% 10.3%

500 m
Fosmid Ends 26 584 469.5 200.6 20.6% 75.4% 49.2% 8.8%
454 FLX 979 732 233.7 60.2 21.1% 62.6% 42.3% 11.9%

as.d.¼Sample Standard Deviation
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well as clustering information and further processed
using a program written in Perl to create tables
containing the counts, aggregate counts (including
all child taxa) and GC content statistics (mean and
s.d. for sequences assigned to a taxon; both
individual and aggregate). In addition, an alternate
set of aggregate counts and GC statistics was
calculated, which excludes the SAR11 cluster (NCBI
taxon ID 54 526) and the Prochlorales (NCBI taxon
ID 1212), as well as all their child taxa. The purpose
of this alternate set was to allow for a more accurate
comparison of other groups after removing the
numerically dominant taxa that show a high bias
in their distribution between data sets.

As a measure for the bias toward one data set or
another, sets were compared pairwise, by calculat-
ing the base-2 logarithm of the ratio of the relative
abundance in one set over the other, for example,

biasfosmids/454ðtÞ¼ log2
% of fosmid reads assigned to t

% of 454 reads assigned to t ; a value

of � 1 in this context means that the given taxon is
twice as frequent in the 454 data set as it is in the
fosmid library, and þ 2 signifies a fourfold bias in
favor of the fosmid set, whereas 0 indicates equal
distribution. Calculations of the relative abundance
of taxa in data sets and of the bias in sequence library
comparisons were performed using the R statistical
computing software (R Development Core Team, 2009).

Functional classification
For each library the BLAST results against the KEGG
database with an E-value cut-off of 10� 3 were parsed
using a Perl script to assign counts to each ortholog.
Only hits that could be assigned to specific KEGG
gene/protein ortholog groups with K-numbers were
considered in this analysis. The counts for each of
the three libraries were analyzed separately for each
sample in HOT 179 using version 1.6.0 of the baySeq
package (Hardcastle, 2011; Hardcastle and Kelly,
2010) in version 2.13.1 of the R statistics software
(R Development Core Team, 2009).

The baySeq algorithm estimates for each KEGG
ortholog the probabilities of all possible models for
the parameters of the Poisson distributions that
apply to each library—all parameters are the same
(AAA), all are different (ABC) or one is different and
the others are the same (ABB). As the last possibility
exists for all three libraries, five models are
compared in our case. As all libraries were prepared
from the same DNA, unbiased distribution of a gene
would favor model AAA. The probability that a
library is positively or negatively biased with
respect to a specific ortholog is the sum of the
models ABB and ABC. To consider any effect in a
library–ortholog combination significant, we impose
the following criteria: (1) The ortholog has to have
the same type of bias (positive or negative) when
compared with both other libraries, otherwise this
library would be considered ‘neutral’. (2) All
samples with an estimated probability of being
biased of 0.5 or greater have to be biased in the

same direction. (3) To reduce the rate of false
discovery, we only considered orthologs that show
probabilities of X0.5 in at least three of the four
samples (25, 75, 125 and 500 m), or of X0.9 in two or
more samples when analyzing a specific library.

Results and Discussion

Taxonomic composition of the data sets
To evaluate any differences in taxon recovery
between fosmid, shotgun and 454 libraries, we used
blastn and MEGAN to assign each read to a taxon.
Depending on the sample and library type, between
10 and 78% of the reads had BLAST hits that could
be successfully assigned by MEGAN (Table 1). Other
commonly used methods for taxonomic classifica-
tion employ either rRNA or protein databases (the
latter with blastx). As discussed by Shi et al.,
2010, classification of taxa by protein-coding
sequences differs from rRNA-based analysis in some
details, while general distributional trends between
them are similar. For the purpose of the analysis
reported here, we chose not to perform rRNA-based
comparisons, as our goal was to compare DNA
recovery in the different library types on the broad-
est possible basis, rather than restricting the ana-
lyses to a small fraction of the reads.

Use of blastx against a peptide database
increased the identification rate to 26–91% in a
largely read-length-dependent manner, with the
short 454 GS 20 sequences recovering fewer matches
than the longer shotgun and fosmid reads (Table 1).
Regardless of the BLAST method, the short-insert
shotgun libraries had the greatest number of data-
base matches, while the fosmid and 454 libraries
contained a greater proportion of unidentified
sequences (Table 1), for reasons discussed below.
The results from nucleotide and peptide BLAST-
based analyses differ in absolute numbers, but
show the same general trends (see Figure 1 vs
Supplementary Figure 1, Supplementary Figure 2
vs 3, Supplementary Tables 3–4 vs 5–6 and 7–8 vs
9–10, Figure 2 vs Supplementary Figure 5, Figures
3a–c vs Supplementary Figures 9c–e). We focus the
rest of the discussion on the nucleotide results, as
they are a more direct measure of sequence identity
shared between different libraries.

The representation of the major taxonomic groups
in the identified reads of the samples is shown in
Figure 1 (nucleotide BLAST of HOT 179), Supple-
mentary Figures 1–3 (HOT 186 and peptide BLAST
of HOT 179) and Supplementary Tables 3–10. All
samples were dominated by Bacteria, which
accounted for 90% or more of the assigned reads
in most samples. While eukaryotic and viral
sequences were present, their counts were compara-
tively low, as expected because of the sample
collection and filtration methods used. Archaea
represented o1% of most libraries, except for the
500-m samples, where they approached 10% or
more of all taxa identified.
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The three different library construction methods
each provided a different quantitative representa-
tion of the taxonomic composition in the samples. In
the photic-zone cyanobacteria, specifically the Pro-
chlorales, comprised typically more than half of the
identified bacterial sequences in the 454 libraries,
whereas their representation was at least twofold
reduced in the fosmid libraries. The only exception
to this pattern was the sample HOT 186 from 110 m,
where the situation was reversed and 67% of the
fosmid library and only 42% of the 454 library
were associated with the order Prochlorales
(see Supplementary Table 8 and Supplementary
Figure 2). The one other prevalent taxonomic group
that was consistently underrepresented by a large
factor in the fosmid libraries, relative to the shotgun
and 454 libraries, was the SAR11 cluster, which

comprised between 20 and 30% of assigned reads in
most 454 libraries, but only between 0.6 and 3.5% in
fosmid libraries.

The reduction in the percentage of reads in the
numerically dominant taxa in the fosmid libraries
predicts an expected general increase in fractions
from other taxa. The reduced representation of the
most abundant taxa in fosmid libraries may also
explain the higher percentage of reads without
BLAST hits in samples dominated by the Prochlor-
ales, as a shortfall of the taxa well-represented in the
sequence databases leads to a relative increase in
other taxa that are less likely to have a BLAST match.
The lower number of BLAST hits in the 454 libraries,
on the other hand, is most likely a result of the shorter
read length, which provides fewer opportunities for
partial BLAST matches than longer sequences.

Figure 1 Taxonomic comparison of libraries in HOT 179, analyzed using blastn. A representative subset of taxa is shown and their
indentations reflect the hierarchical rank in the NCBI taxonomy. The number of reads assigned to each taxon, including its child taxa,
is displayed as percentage of all successfully assigned reads in the library.
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In contrast, taxa that were overrepresented in
fosmid libraries in comparison with shotgun and
454 libraries included the Gammaproteobacteria, the
Deltaproteobacteria, the Rhodobacterales and in some
libraries the Rhizobiales (Figure 1, Supplementary
Figures 1–3, Supplementary Tables 3–10). For the
Rhodobacterales this was particularly the case in
the 25-m and 75-m samples of HOT 186 (Supple-
mentary Figures 2 and 3, Supplementary Tables 7
and 9). In these same samples the high representation
of the Gammaproteobacteria in fosmid libraries
was a result of increased numbers of sequences

from Alteromonadales, but the latter are not dominant
among the Gammaproteobacteria in the other samples.

In the 500-m samples overrepresentation of any
taxa in the fosmid libraries was either greatly
diminished or absent, consistent with a decreased
dominance of underrepresented groups like the
Prochlorales. These samples contained a greater
fraction of unidentified reads, regardless of library
type, as genome sequences from this depth are
sparsely represented in the databases. Almost half
the identified sequences in the mesopelagic zone
at the HOT station mapped to Alpha- and

Figure 2 Distribution of the bias measure in pairwise comparisons of library types, using blastn analysis results. Positive and negative
infinity of the bias reflect the absence of some taxa in one of the libraries. The colors of the histogram bars are indicative of the library
types being compared. The y axis shows the percentage of reads assigned to taxa falling into the respective bias interval, averaged over
both libraries. Data is shown for four samples, HOT-179 25 m (a, b), 75 m (c, d) and 500 m (e, f), as well as HOT 186-75 m (g, h). Panels a,
c, e and g show the results of calculating the bias using all taxa, whereas panels b, d, f and h omit the Prochlorales and the SAR11 cluster,
as described in Materials and methods.
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Gammaproteobacteria, particularly the SAR11 cluster
at 20 to 25% sequence representation. Actinobacteria
comprised 3 to 8% of the assigned reads at this depth,
compared with o1% in most shotgun and 454
libraries and o4% in most fosmid libraries from the
photic zone. Perhaps surprisingly, Cyanobacteria-
like sequences were still detected at 500 m, especially
in HOT 186, albeit at very low abundance. Apparent
archaeal sequence representation exceeded 1% only
in the mesopelagic samples. At this depth most
archaeal reads were assigned to the Thaumarchaeota,
which—unlike the Euryarchaeota—were underrepre-
sented in fosmid and overrepresented in shotgun
libraries, compared with 454.

Differential representation of taxa in sequencing
libraries
To further investigate the over- or underrepresenta-
tion of individual taxa in each type of library, we

calculated the relative representation of each taxon
in pairwise comparisons between libraries prepared
from the same DNA sample. The bias for any given
taxon is calculated as the base-2 logarithm of the
ratio of the relative abundance in one library type
over the other (Materials and methods). As unbiased
library construction should theoretically sample
populations stochastically, we would ideally expect
a symmetrical distribution of the bias measure around
zero. The larger the number of reads that are assigned to
a given taxon, the more likely is it that the bias measure
accurately represents the actual sampling bias.

In histograms showing the distribution of the bias
in different samples, each taxon was weighted
according to its representation in both libraries to
reduce the impact of rare taxa, which are more likely
to show large random deviations (Figure 2,
Supplementary Figures 4 and 5). In addition we
excluded reads that did not have BLAST hits or
those with database matches that were not assigned

Figure 3 GC contents plotted versus bias for pairwise library comparisons using blastn. Panels (a–c) show the combined photic-zone
samples and (d–f) the 500-m sample of HOT 179. Each taxon is represented by two symbols, one for the GC content in each library. Taxa
with less than five reads in each library are only shown if they are not represented at all in one library (infinite bias measure), where their
expected representation based on their percentage in the other library would be at least two reads.
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to taxa by MEGAN (see Table 1; while the former
category comprised the majority in most data sets,
the latter applied to o0.1% of the reads in most
samples and was always o0.3%). Comparison of
shotgun versus 454 libraries (blue bars, Figures 2a, c,
e and g) typically showed a distribution of the bias
around zero, whereas the comparisons involving
fosmid libraries (red and yellow bars, Figures 2a, c, e
and g) exhibited bimodal distributions when all taxa
were included. This was due to a small number of
dominant taxa that were underrepresented in the
fosmid libraries (negative bias in Figure 2), which
resulted in a relative overrepresentation and there-
fore positive bias of most other taxa.

As the Candidatus Pelagibacter and Prochlorococcus
strains were underrepresented in fosmid libraries,
but represent the most ubiquitous species, particu-
larly in the photic zone (25–125-m samples, see
Figure 1 and Supplementary Tables 3–10), we
recalculated the bias distribution excluding the
SAR11 cluster and the Prochlorales to examine their
effect. For most samples this resulted in an unimodal
distribution of the bias around zero for all compar-
isons, confirming that most of the observed bias was
caused by the abundant SAR11 and Prochlorales
(Figures 2b, d and f). While other taxa were represe-
nted unevenly as well, they were not sufficiently
prevalent to cause large shifts in the distribution.

A notable exception to this was the 75-m sample
of HOT 186, where the bimodal distribution was
also evident in the shotgun/454 comparison in
addition to those involving fosmid libraries
(Figure 2g). The shape of this distribution persisted,
particularly in the comparisons including shotgun,
when SAR11 and Prochlorales were excluded from
the analysis (Figure 2h), suggesting the presence of
other taxa with uneven representation across all the
libraries. Closer examination revealed that compara-
tively large numbers of reads were assigned to
‘Bacteria’ and ‘cellular organisms’ by MEGAN.
Combined, these indeterminate groups accounted
for 39% of assigned reads in the shotgun library,
compared with 4% and 7%, respectively, in the 454
and fosmid libraries. When calculating the bias
without SAR11 and Prochlorales, ‘Bacteria’ and
‘cellular organisms’ combined favored shotgun over
fosmids with a bias of 3.06 and 454 over fosmids
with 1.20. The bias direction in the 454/fosmids
comparison changed after removal of Prochlorales
and SAR11, because this increased the relative
weight of the indeterminate taxa in the 454 library
significantly, while affecting the fosmid library only
marginally. The reads assigned to ‘Bacteria’ and
‘cellular organisms’ typically had low-scoring
blastn hits of comparable magnitude (within the
10% of the top hit) to species in different phyla or
even superkingdoms, indicating that they originated
from uncharacterized taxa, which were not well
represented in the sequence databases, but had
sufficiently conserved features to allow significant
matches in a blastn search. Comparison with

blastx results for the same reads from the shotgun
library showed that 33% could not be assigned to
any more specific taxon, whereas 7% were classified
as Proteobacteria, 7% as Enterobacteriaceae, 4% as
Gammaproteobacteria, 4% as Alphaproteobacteria,
4% as Rhodobacteraceae, and the rest as various
other taxa. The GC content for bacteria/cellular
organisms was 49%/45% in fosmids, 41%/50% in
shotgun, and 37%/35% in 454, which may explain
why these taxa were more highly represented in 454
than fosmid libraries. The GC content cannot
account for the even higher prevalence of ‘Bacteria’
and ‘cellular organisms’ in the shotgun library,
however, which may be due to its greater average
read length, which was more than four times that of
the 454 library and almost 2.5 times that of the
fosmid library (Table 1).

GC content and bias
Temperton et al. (2009) previously suggested that
GC content may have a substantial impact on taxon
representation in metagenomic libraries. To further
test for a potential relationship between the taxon
GC content and library representation, we calcu-
lated the average GC content for each taxon in each
library (weighting each sequence by length) and
plotted the results against the apparent bias
(see Figure 3 and Supplementary Figures 6–9).
While the taxa in the shotgun/454 comparison
(Figures 3c and f) were—with the exception of a
few outliers—relatively tightly grouped around zero
bias, irrespective of their GC content, this did not
hold true for the comparisons involving fosmid
libraries (Figures 3a, b, d and e). Especially for the
photic zone (Figures 3a–c), there appeared to be a
positive correlation between low GC content and
exclusion from the fosmid library, whereas most
taxa with higher GC contents were tightly clustered
and showed no obvious relationship between GC
and bias. While most taxa appeared to have a
positive bias in these comparisons, this is an artifact
of the high abundance of the Prochlorales, which are
negatively biased and thus shift the remaining taxa
in the other direction. The 500-m samples (Figures
3d–f) did not have as many low-GC taxa, but those
that did exist also showed a correlation of GC
content and bias. In addition, the GC content of low-
GC taxa in the fosmid libraries was almost always
several percentage points higher than that found in
corresponding taxa in shotgun or 454 libraries of the
same sample. This trend, however, only held for a
GC content of o B45%. For example, the average
difference between GC contents of a taxon in fosmid
and 454 libraries ðGCfosmids�GC454Þ for the com-
bined photic zone of HOT 179 (Figure 3a) was
� 1.6% for taxa with a GC content 445%, but 6.1%
for taxa having o45% GC (for this classification we
used the lower of the two library GC contents).

To test the effect of the read length and the
resulting biases in taxon representation, we

Comparison of metagenomic sequencing libraries
T Danhorn et al

2063

The ISME Journal



randomly split the fosmid and shotgun sequences of
HOT 179 125 m into shorter fragments with an
average length of 108.8nt, which is equivalent
to the mean length of the 454 sequences. Supple-
mentary Figure 7 shows that eliminating length
differences does not significantly affect the general
trend in the relationship between the GC content
and bias.

These observations support the previous sugges-
tion of Temperton et al. (2009) and Ghai et al. (2010),
that low-GC taxa in general are less well represented
in fosmid libraries, compared with small-insert shot-
gun clone libraries or 454 sequencing libraries, and
that low-GC content itself may be the responsible
factor for poor representation in the fosmid libraries.
While the GC content does appear to be responsible
for much of the observed bias, other factors such as
toxic gene products, or chemically modified nucleo-
tide content in the DNA, may also have a role.

Interestingly, the Candidatus Pelagibacter species
appear to be much more strongly biased against the
fosmid libraries in most samples than other taxa
with similar GC content. This suggests additional
causes for the underrepresentation, such as the
toxicity suggested by Feingersch and Béjà (2009),
or phosphorothioation of the DNA, which can
accelerate its degradation (Wang et al., 2007, 2011).
Homologs of genes responsible for the latter have
been found in several marine metagenomes and in at
least one Candidatus Pelagibacter strain, but are not
common to all strains (He et al., 2007; Wang et al.,
2011). DNA degradation resulting from phosphor-
othioation of DNA—similar to low-GC—might affect
libraries requiring larger DNA fragments more than
those with short inserts.

Functional analysis
To assess whether the library type significantly
affects estimates of functional gene categories, we
analyzed the assignment of KEGG orthologs to the
three library types. An empirical Bayesian analysis
(Hardcastle and Kelly, 2010) was performed inde-
pendently for each depth in HOT 179. KEGG
orthologs were classified as significantly biased or
not by comparing the probability and direction of
bias for or against a library type between different
samples (Materials and methods). This approach
minimizes false positives, while taking into account
that only very few, if any, orthologs showed a
consistent bias with probability exceeding 0.5 at
all four depth (two for the fosmid library, none for
shotgun, six for 454). All gene categories with
significant biases detected by this analysis are listed
in Supplementary Tables 11–15.

Of the 7813 KEGG orthologs identified in all the
HOT 179 samples, only four were biased in favor of
the shotgun libraries according to our criteria, and
none against. One of them (K04744, unclassified ion
channel) was also biased against the 454 libraries,
indicating a read length effect, while the others

showed no significant bias in other libraries. The
fosmid libraries showed a significant bias against 17
orthologs. Four of these have functions in DNA
replication and repair, three in photosynthesis, two
in carbohydrate metabolism and the others fall into
various mostly metabolic categories. The combined
total of the reads for these 17 orthologs is 2.3% of all
assigned reads in the 454 libraries and 1.7% in the
shotgun libraries, compared with 0.6% in the
fosmid libraries across all depths. In contrast we
found 34 KEGG orthologs biased in favor of the
fosmid libraries, comprising 4.7% of assigned
fosmid reads, compared with 1.5% and 0.4% in
shotgun and 454, respectively. These comparatively
small percentages make it unlikely that a functional
bias is solely responsible for the observed large shift
in taxonomic distribution. It is more plausible that
the functional composition largely mirrors the
taxonomic composition; for example, the reduction
of any photosynthesis-associated orthologs in the
fosmid libraries can be explained by the reduction
in the cyanobacteria. Examination of the taxa that
contribute reads to the biased KEGG orthologs
supports this hypothesis—categories underrepre-
sented in the fosmid libraries map largely to the
most prevalent underrepresented species, Prochlor-
ococcus marinus, whereas overrepresented
orthologs come from a broad range of taxa.

Another reason for biased representation of a
functional category in one library type over another
are biased BLAST results caused by the varying
length of the sequences available in the different
library types. This is evident in the comparison of
libraries with different read lengths, such as 454
versus shotgun. In fact, many of the functions biased
in favor of the fosmid libraries are likely a result of
the shorter read length in the 454 sequences. This is
corroborated by the observation that 11 of these 34
orthologs were significantly reduced in the 454
libraries. The latter showed a bias against 253
orthologs, which in the shotgun libraries amount
to 7.2%, suggesting that read length has an impor-
tant role in the perceived functional composition.
Short reads are more likely to find a short but close
match among the taxa and functions that are well
represented in the sequence databases, whereas
longer reads may bridge domains and can therefore
accumulate a sufficiently high score even in less
common proteins, where an exact match is less
likely. On the other hand, 41 orthologs (5.7% of the
assigned shotgun reads) showed a positive bias
toward 454. Several of those had functions in
photosynthesis, indicating that for at least some
orthologs the positive bias in 454 may be a reflection
of the lack of the corresponding taxa in the fosmid
libraries, even though only K03798 (a peptidase)
meets our criteria for significance. This is supported
by the observation that the majority of overrepre-
sented orthologs could be assigned to either cyano-
bacteria or Candidatus Pelagibacter using blastx
results against the microbial protein database.
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In contrast, the underrepresented categories origi-
nate from many different taxa, including SAR11 and
cyanobacteria.

The third possible explanation for differential
representation of a gene category across library types
is toxicity to the cloning host E. coli (Sorek et al.,
2007), which might be expected to exert the greatest
influence on fosmids or BAC libraries, which
contain large inserts. Our library sizes were too
small to permit meaningful simultaneous analysis of
both functional and taxonomic representation and
so we cannot identify toxic proteins with any degree
of confidence. Although toxic gene products may
have some influence, other factors, including read
length and taxonomic composition appear to have a
larger effect on KEGG profile differences observed
between the different sequencing libraries.

Conclusions

The use of different library types and sequencing
methods for metagenomics is largely a matter of
historical development, with respect to both tech-
nological innovation and cost effectiveness. Differ-
ent metagenomic libraries and sequencing
technologies have different optimal usages and
applications. For example, large-insert BAC and
fosmid libraries allow for the stable recovery of large
DNA fragments ranging from 35 to 4100 kb in size.
This provides access to large contigs that otherwise
would be difficult, if not impossible, to assemble—
especially for rarer taxa—from DNA sequences of
complex microbial community assemblages (Stein
et al., 1996; Béjà et al., 2000a, 2000b). In addition,
the larger fragments can harbor entire multigene
complexes, operons and metabolic pathways, that
can be functionally expressed and studied from the
perspective of biochemistry and metabolism
(Martinez et al., 2007, 2010). BAC and fosmid
libraries are useful archival resources as well, as
new targets and screening approaches are devel-
oped. As demonstrated conclusively in this study,
however, these library types have the potential to
yield biased quantitative representations of resident
microbial taxa, particularly those containing gen-
omes with low GC content or DNA modifications
leading to increased degradation.

Over the past five years, clone-free ‘next-genera-
tion’ DNA sequencing technologies have largely
supplanted clone libraries and Sanger-based sequen-
cing for environmental DNA sequencing surveys.
High-throughput technologies such as 454 pyrose-
quencing and Illumina generate shorter reads, but
offer lower cost, greater sequencing depth and—
provided that read-duplication and sequencing
errors are dealt with appropriately—appear rela-
tively unbiased. They can therefore prove more
useful for a quantitative analysis of community
composition, but individual sequences may carry
less information, due to the generally shorter

average read lengths compared with Sanger
sequences. This too, however, is rapidly changing,
as pyrosequencing read lengths now approach that
of Sanger-based sequencing technologies. The com-
bination of old and new technologies—large-insert
libraries for archival purposes and functional gene
and metabolic pathway studies, and next-generation
sequencing techniques for surveys—provide useful
and complementary tools for probing the diversity,
structure and function in the natural microbial
world.
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López-Garcı́a P, Mira A, Rodriguez-Valera F. (2010).

Comparison of metagenomic sequencing libraries
T Danhorn et al

2065

The ISME Journal



Metagenome of the Mediterranean deep chlorophyll
maximum studied by direct and fosmid library 454
pyrosequencing. ISME J 4: 1154–1166.

Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. (1990).
Genetic diversity in Sargasso Sea bacterioplankton.
Nature 345: 60–63.

Hardcastle TJ. (2011). baySeq: empirical Bayesian analysis
of patterns of differential expression in count data. R
package version 1.6.0.

Hardcastle TJ, Kelly KA. (2010). baySeq: empirical
Bayesian methods for identifying differential expres-
sion in sequence count data. BMC Bioinformatics
11: 422.

He X, Ou H, Yu Q, Zhou X, Wu J, Liang J et al. (2007).
Analysis of a genomic island housing genes for DNA
S-modification system in Streptomyces lividans 66
and its counterparts in other distantly related bacteria.
Mol Microbiol 65: 1034–1048.

Huson DH, Auch AF, Qi J, Schuster SC. (2007). MEGAN
analysis of metagenomic data. Genome Res 17:
377–386.

Kanehisa M. (2006). From genomics to chemical geno-
mics: new developments in KEGG. Nucleic Acids Res
34: D354–D357.

Kanehisa M, Goto S. (2000). KEGG: Kyoto Encyclopedia of
Genes and Genomes. Nucleic Acids Res 28: 27–30.

Karl DM, Lukas R. (1996). The Hawaii Ocean Time-series
(HOT) program: Background, rationale and field
implementation. Deep-Sea Res Pt II 43: 129–156.

MacLean D, Jones JDG, Studholme DJ. (2009). Application
of ‘next-generation’ sequencing technologies to micro-
bial genetics. Nat Rev Microbiol 7: 287–296.

Martinez A, Bradley AS, Waldbauer JR, Summons RE,
DeLong EF. (2007). Proteorhodopsin photosystem
gene expression enables photophosphorylation in
a heterologous host. Proc Natl Acad Sci USA 104:
5590–5595.

Martinez A, Tyson GW, DeLong EF. (2010). Widespread
known and novel phosphonate utilization pathways
in marine bacteria revealed by functional screening
and metagenomic analyses. Environ Microbiol 12:
222–238.

Medlin L, Elwood HJ, Stickel S, Sogin ML. (1988).
The characterization of enzymatically amplified
eukaryotic 16S-like rRNA-coding regions. Gene 71:
491–499.

Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA.
(1986). Microbial ecology and evolution: A ribosomal
RNA approach. Annu Rev Microbiol 40: 337–365.

Pace NR. (1997). A molecular view of microbial diversity
and the biosphere. Science 276: 734–740.

Pace NR. (2009). Mapping the tree of life: Progress and
prospects. Microbiol Mol Biol Rev 73: 565–576.

Pace NR, Stahl DA, Olsen GJ, LD J. (1985). Analyzing
natural microbial populations by rRNA sequences.
ASM News 51: 4–12.

Pham VD, Konstantinidis KT, Palden T, DeLong EF.
(2008). Phylogenetic analyses of ribosomal DNA-
containing bacterioplankton genome fragments from
a 4000 m vertical profile in the North Pacific Sub-
tropical Gyre. Environ Microbiol 10: 2313–2330.

R Development Core Team (2009). R: A Language and
Environment for Statistical Computing R Foundation
for Statistical Computing: Vienna, Austria.

Rondon MR, August PR, Bettermann AD, Brady SF,
Grossman TH, Liles MR et al. (2000). Cloning the soil
metagenome: a strategy for accessing the genetic and
functional diversity of uncultured microorganisms.
Appl Environ Microbiol 66: 2541–2547.

Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R,
Horn GT et al. (1988). Primer-directed enzymatic
amplification of DNA with a thermostable DNA
polymerase. Science 239: 487–491.

Schmidt TM, DeLong EF, Pace NR. (1991). Analysis of a
marine picoplankton community by 16 S rRNA gene
cloning and sequencing. J Bacteriol 173: 4371–4378.

Shi Y, Tyson GW, DeLong EF. (2009). Metatranscriptomics
reveals unique microbial small RNAs in the ocean’s
water column. Nature 459: 266–269.

Shi Y, Tyson GW, Eppley JM, DeLong EF. (2010).
Integrated metatranscriptomic and metagenomic ana-
lyses of stratified microbial assemblages in the open
ocean. ISME J 5: 999–1013.

Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin
EM. (2007). Genome-wide experimental determination
of barriers to horizontal gene transfer. Science 318:
1449–1452.

Stahl DA, Lane DJ, Olsen GJ, Pace NR. (1984). The analysis
of hydrothermal vent-associated symbionts by riboso-
mal RNA sequences. Science 224: 409–411.

Stein JL, Marsh TL, Wu KY, Shizuya H, DeLong EF. (1996).
Characterization of uncultivated prokaryotes: isolation
and analysis of a 40-kilobase-pair genome fragment
from a planktonic marine archaeon. J Bacteriol 178:
591–599.

Temperton B, Field D, Oliver A, Tiwari B, Mühling M,
Joint I et al. (2009). Bias in assessments of marine
microbial biodiversity in fosmid libraries as evaluated
by pyrosequencing. ISME J 3: 792–796.

Tringe SG, von Mering C, Kobayashi A, Salamov AA,
Chen K, Chang HW et al. (2005). Comparative
metagenomics of microbial communities. Science
308: 554–557.

Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ,
Richardson PM et al. (2004). Community structure
and metabolism through reconstruction of microbial
genomes from the environment. Nature 428: 37–43.

Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch
D, Eisen JA et al. (2004). Environmental genome
shotgun sequencing of the Sargasso Sea. Science 304:
66–74.

Wang L, Chen S, Vergin KL, Giovannoni SJ, Chan SW,
DeMott MS et al. (2011). DNA phosphorothioation is
widespread and quantized in bacterial genomes. Proc
Natl Acad Sci USA 108: 2963–2968.

Wang L, Chen S, Xu T, Taghizadeh K, Wishnok JS, Zhou X
et al. (2007). Phosphorothioation of DNA in bacteria
by dnd genes. Nat Chem Biol 3: 709–710.

Woese CR. (1987). Bacterial evolution. Microbiol Rev 51:
221–271.

Woese CR. (2004). A new biology for a new century.
Microbiol Mol Biol Rev 68: 173–186.

Supplementary Information accompanies the paper on The ISME Journal website (http://www.nature.com/ismej)

Comparison of metagenomic sequencing libraries
T Danhorn et al

2066

The ISME Journal

http://www.nature.com/ismej

	title_link
	Introduction
	Materials and methods
	Hot data sets
	Clustering
	Blast searches
	Taxonomic classification
	Calculation of bias in distribution of taxa between data sets

	Table 1 
	Functional classification

	Results and Discussion
	Taxonomic composition of the data sets

	Figure™1Taxonomic comparison of libraries in HOT 179, analyzed using blastn. A representative subset of taxa is shown and their indentations reflect the hierarchical rank in the NCBI taxonomy. The number of reads assigned to each taxon, including its chil
	Figure™2Distribution of the bias measure in pairwise comparisons of library types, using blastn analysis results. Positive and negative infinity of the bias reflect the absence of some taxa in one of the libraries. The colors of the histogram bars are ind
	Differential representation of taxa in sequencing libraries

	Figure™3GC contents plotted versus bias for pairwise library comparisons using blastn. Panels (a-c) show the combined photic-zone samples and (d-f) the 500-m sample of HOT 179. Each taxon is represented by two symbols, one for the GC content in each libra
	GC content and bias
	Functional analysis

	Conclusions
	ACKNOWLEDGEMENTS




