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Video-Rate Confocal Microscopy for Single-Molecule Imaging in Live Cells
and Superresolution Fluorescence Imaging
Jinwoo Lee,†§ Yukihiro Miyanaga,{jj†† Masahiro Ueda,{jj†† and Sungchul Hohng†‡§*
†Department of Physics and Astronomy, ‡Department of Biophysics and Chemical Biology, and §National Center for Creative Research
Initiatives, Seoul National University, Seoul, Korea; {Japan Science and Technology Agency (JST), CREST and jjLaboratories for
Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; and ††Laboratory for Cell Signaling Dynamics,
RIKEN Quantitative Biology Center, Osaka, Japan
ABSTRACT There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluo-
rescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection,
we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability
(1.0 mm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with
conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells.
With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum
at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at
depths in the range 0–85 mm from the surface of a coverglass.
INTRODUCTION
A number of fundamental questions of cell biology have
been solved by imaging single fluorescent molecules in
live cells (1–3). Superresolution fluorescence microscopies
such as STORM/dSTORM and PALM/fPALM are also
based on single-molecule imaging in cells (4–7). This tech-
nique, however, has been used only for a small subset of
biological problems, since fluorescence signals from single
fluorophores are easily overwhelmed by strong cellular
autofluorescence, especially in thick mammalian cells.
Even though molecular events on cell membranes can be
observed with superior signal/noise ratio at the single-mole-
cule level by using total internal reflection fluorescence
(TIRF) microscopy (8), most biological events occurring
inside the cell are still out of reach.

To overcome this limit of TIRF microscopy, two method-
ologies were recently proposed. In highly inclined and
laminated optical sheet (HILO) microscopy (9), an illumina-
tion sheet several microns thick is generated using an
incidence angle slightly smaller than the critical angle.
Thus, single-molecule events occurring in the range of a
few microns from the glass surface could be monitored.
However, aberration of oil-immersion objectives limits the
imaging region of this microscopy to up to a few microns
away from the glass surface. Its relatively poor optical-
sectioning capability has been an additional hindrance to
its wide application.

In selective plane illumination microscopy (SPIM), a
thin illumination sheet is generated using an independent
objective lens positioned perpendicular to an imaging
objective lens (10–13). Since the illumination sheet can be
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vertically scanned synchronouslywith the imaging objective,
single-molecule events in the working range of the imaging
objective can be monitored (12,13). However, some disad-
vantages of the original design of SPIM were that it required
special sample preparation processes and was incompatible
with conventional imaging techniques. New approaches
to overcome the limitations of the original SPIM have been
tried, specifically, iSPIM (14) and Bessel beam plane illumi-
nation (15), but due to the steric hindrance between the
detection and illumination objectives, high-numerical-
aperture objectives could not be used for the imaging, and
single-molecule sensitivity thus could not be achieved.

Confocal microscopy (16) is a traditional approach to
effectively minimize background noise. It is capable of
achieving submicron optical sectioning by blocking out-of-
focus fluorescence using an optimized pinhole. With high-
sensitivity point detectors, it can observe single molecules
with good detection efficiency. However, the single-pinhole-
based confocal microscopy is not considered as a tool for
single-molecule imaging in live cells or superresolution fluo-
rescence imaging, because it is too slow or does not provide
enough photons for single-molecule imaging in a high-speed
mode. To overcome these problems, spinning-disk and line-
scan confocal microscopes are available commercially, but
at this time, they are not capable of single-molecule sensi-
tivity (17,18). Considering the advantages of confocal
microscopy overHILOmicroscopy or SPIM for single-mole-
cule imaging—good optical-sectioning capability, compati-
bility with conventional microscopes, flexibility for various
applications—development of a confocal microscope with
both high imaging speed and good fluorescence detection
efficiencywill be a great addition to the available technology.
Here, we report the development of a video-rate confocal
microscope that is capable of single-molecule imaging in
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live cells. The compatibility of the microscope with superre-
solution imaging techniques based on single-molecule
localization approaches is also demonstrated.
MATERIALS AND METHODS

Preparation of a thin fluorescent film for the
characterization of optical-sectioning capabilities

We mixed 10 ml of 1 mg/ml Cy3 dissolved in dimethylsulfoxide with 300 ml

of poly(methyl methacrylate) solution. A thin film was made on a 24 �
40-mm2 coverslip by spin-coating the mixture at 4000 rpm for 40 s. The

thickness of the film was measured as 200 nm using an atomic force micro-

scope (MFP-3D, Asylum Research, Santa Barbara, CA). Measurement of

sectioning capability was done by using a 532-nm green laser and the

intensity of the laser just before the objective was ~10 mW. The detection

of fluorescence signal was done by using an oil-immersion objective lens,

and slit width was 30 mm. The area-averaged fluorescence intensities

were recorded during z-scanning using a piezo stage.
Single-molecule FRET measurement

To construct the Holliday junction, we purchased the following DNA

strands (written from 50 to 30) from IDT (Newark, NJ).

b-strand: Cy5-CCCTAGCAAGCCGCTGCTACGG,

h-strand: Cy3-CCGTAGCAGCGCGAGCGGTGGG,

r-strand: biotin-CCCACCGCTCGGCTCAACTGGG,

x-strand: GGGCGGCGACCTCCCAG TTGAGCGCTTGCTAGGG.

The Holliday junction was annealed by slowly cooling the mixture of

b-strand (5 mM), h-strand (2.5 mM), r-strand (1.25 mM), and x-strand

(2.5 mM) in 10 mM Tris-HCl (pH 8.0) with 50 mM NaCl from 90�C to

4�C for 2 h. DNA molecules were immobilized on a polyethylene glycol-

coated surface via biotin-streptavidin interaction, and imaged in an imaging

buffer (10 mM Tris-HCl, pH 8.0, and 100 mM MgCl2) with an oxygen-

scavenging system (1 mg/mL glucose oxidase, 0.8% glucose, 0.04 mg/

mL catalase, and 1 mM Trolox). To limit the width of the imaging area,

an additional slit was vertically attached to the confocal slit, and donor

and acceptor signals were separated by using an additional dichroic mirror

(Fig. S1 in the Supporting Material). Exposure time of the CCD camera was

100 ms and the width of the confocal slit was 30 mm. For excitation, a 532-

nm green laser was used, and the intensity of the laser was ~40 mW.
Sample preparation for the imaging of cAMP
receptors of Dictyostelium discoideum

Dictyostelium discoideum expressing Halo-tagged cAMP receptors was

grown in a 50-mm cell culture dish containing HL5 medium, as previously

described (19). For the measurements,Dictyostelium amoeba was harvested

by mildly pipetting and properly fractioning them. They were moved to a

35-mm cell culture dish 1 day before the measurements. To label cAMP

receptors, Dictyostelium was washed with IB buffer (5 mM KH2PO4,

5 mM Na2HPO4, pH 6.4) and incubated with Halo-TMR (50 nM; G8252,

Promega, Fitchburg,WI) dissolved in IBbuffer for 30minwithmild shaking.

After the incubation, Dictyostelium was washed with IB buffer three times.

The interval between washing steps was 10min. The cells were harvested by

mildly pipetting, moved to a chambered coverglass (Lab Tek II, Nunc,

Penfield, NY), and incubated for 10 min for the attachment of the cells to

the surface. The chambered coverglass was cleaned just before starting the

experiments by sonicating it sequentially in deionized water, 1 M KOH,

and ethanol, and finally dried by using N2 gas. For imaging of the cAMP

receptor, a 532-nm green laser was used with an intensity of ~20 mW. The

exposure time of the CCD camera was 50 ms, the width of the confocal

slit was 40 mm, and an oil immersion objective was used.
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Diffusion-coefficient analysis

To track single cAMP receptors, imageJ plug-in program was used

(Mosaic, ETH Zurich). Diffusion coefficients of the receptors were calcu-

lated as described previously (19). Briefly, a data set of displacement

with various lag times was obtained from the trajectories of the molecule.

Then, a cumulative histogram of displacement was constructed and the

mean-squared displacement was obtained by fitting the histogram with

the equation PðDrÞ ¼ 1� expð�Dr2=MSDðDtÞÞ. We repeated the pro-

cess above for various lag times and obtained a diffusion coefficient by

linear fitting of the mean-squared displacement plot. In our analysis,

only the particles emitting photons >15 frames before photobleaching

were used to calculate the diffusion coefficient. Trajectories from a single

amoeba cell generated a single diffusion-coefficient value. Diffusion

coefficients for the basal and apical surfaces were obtained from different

cells.
Sample preparation for superresolution imaging

The COS-7 cells (Korean Cell Line Bank) of 20–30 passages were grown

in a cell culture flask containing Dulbecco’s modified Eagle’s medium

(DMEM, 11995065, Life Technologies, Carlsbad, CA) supplemented

with 10% fetal bovine serum and 1% penicillin-streptomycin at 37�C.
During the cell culture, CO2 level was maintained at 5%. For experiments,

the cells were harvested and moved to a precleaned 18-mm square cover-

slip and grown for a day. The cells were then fixed using cold methanol at

�20�C and washed with PBS buffer. To block nonspecific binding of

antibodies, the fixed cells were incubated with 1% bovine serum albumin

(BSA) for 1 h. After BSA blocking, the cells were incubated with

a primary a-tubulin antibody (T6199, Sigma Aldrich,, St. Louis, MO)

for 1 h, and washed three times with 1% BSA solution. Primary antibody

was 1/250 times diluted in 1% BSA solution just before the experiments.

A secondary antibody (A10538, Life Technologies) was labeled by mixing

it with Cy5 NHS-ester (PA15101, GE Healthcare, Waukesha, WI) in

NaHCO3 buffer (50 ml secondary antibody, 6 ml of 1 M NaHCO3, and

0.3 ml of 0.018 mg/ml Cy5 in dimethylsulfoxide). Cy5-labeled secondary

antibody diluted 1/150 times was incubated for 15 min and washed three

times with 1% BSA solution. A sample chamber was made by attaching

a coverslip on a slide glass using double-sided tape and sealed using

epoxy. For superresolution imaging at deep imaging depth, the cells

were grown on a 76.2 � 25.4 � 1 mm quartz slide instead of a coverslip.

The quartz slide was used instead of a glass slide to avoid high autofluor-

escence background from thick slide glass. After the same fixation

process, a sample chamber was made by attaching the coverslip to a quartz

slide using double-sided tape, and the chamber was sealed with epoxy.

The distance from the surface of the coverslip to the cells on the quartz

slide was ~85 mm.
Superresolution imaging of microtubule

Measurements were taken in the presence of an oxygen-scavenging system

(10% w/v glucose, 50 mM Tris-HCl, pH 8.0, 1 mg/mL glucose oxidase, and

0.04 mg/mL catalase) supplemented with 142 mM b-mercaptoethanol

(125470010, Acros Organics, Geel, Belgium). Cy5 molecules were excited

by a 640-nm laser (Cube640-100C, Coherent, Santa Clara, CA), and the

typical intensity of this laser was ~80 mW. During imaging, 532-nm or

473-nm lasers (Blues TM50, Cobalt, Seattle, WA) were turned on at all

times to maintain a proper density of activated molecule in each frame.

To obtain single superresolution images, typically, 10,000 frames were

recorded with a 10-Hz filming rate. Imaging at different z-positions was

done by translating samples with a three-axis piezo stage (P-561.3DD,

Physik Instrumente, Auburn, MA). When an oil immersion objective was

used, imaging depth was corrected by multiplying by a factor of 0.79.

The width of the confocal slit was typically 40 mm.
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Analysis for superresolution images

Only pixels with photon counts greater than a threshold value were selected

for image fitting. 7x7 pixels around the local maximum were fitted to a

2-D elliptical Gaussian function. Images that were too dim, too elliptic,

too small, or too large were discarded. Bright spots observed in sequential

frames within one pixel were regarded as the same molecule and fitted

after summing all the frames for better localization precision. For rendering

of a high-resolution image and a conventional fluorescence image, each

localization result was represented as a Gaussian function with 15-nmwidth

for the high-resolution image or 150-nm width for the low-resolution

image. The unit pixel size was 5 nm for high-resolution images and

50 nm for low-resolution images. Lateral drift was corrected using an image

cross-correlation method (20) for every 50 frames. To get cross-correlation,

the 50 frames were averaged. All analysis steps were done using a home-

built program written in MATLAB (MathWorks, Natick, MA).
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FIGURE 1 Scheme of the line-scan confocal microscope. (a) An optical

design of the line-scan confocal microscope. The new microscope was

built by modifying a commercial inverted microscope (IX71, Olympus).

For versatility of the microscope, three lasers—473-nm (Blues TM50,

Cobalt), 532-nm (Compass215M, Coherent), and 640-nm (Cube640-

100C, Coherent)—were used as light sources. CL1, a cylindrical lens

(f ¼ 40 mm, LJ1125L1-A, Thorlabs, Newton, NJ); CL2, a cylindrical

lens (f ¼ 50 mm, LJ1695L2-A, Thorlabs); CL3, a cylindrical lens (f ¼
250 mm, LJ1267L1-A, Thorlabs); L1, a spherical lens (f ¼ 250 mm,

LA1461-A, Thorlabs); L2, a spherical achromatic lens (f ¼ 250 mm,

LAO-250.0-50.0/075, Melles-Griot); L3, a spherical achromatic lens (f ¼
300 mm, LAO-300.0-50.0/075, Melles-Griot); L4 and L5, spherical

achromatic lenses (f ¼ 100 mm, LAO-100.0-50.0/075, Melles-Griot,

Albuquerque, NM); L6, a spherical achromatic lens (LAO-350.0-40.0/

Specialty HEBBAR coating for 415nm to 700nm, Melles Griot); PM, a

polychroic mirror (z473/532/633rpc-xt, Chroma, Muenster, Germany);

GM1 and GM2, galvanometric mirrors (VM1000þ, General Scanning);

OL, an objective lens (UPLSAPO100XO, or UPLSAPO60XW, Olympus);

S, a slit (S30R or S40R, Thorlabs). (b) Side view of the sample plane. The

illumination beam (green) is focused in a line shape on the sample plane.

Only the fluorescence signal near the focal plane (yellow) can filter through

a confocal slit and thus be detected. (c) Scheme of 2-D image generation.

The illumination line on the sample plane (green) and the fluorescence

image on a CCD camera (red) are simultaneously scanned once per filming

cycle of the camera.
RESULTS

Scheme of the line-scan confocal microscope

The optical setup of the microscope is described in Fig. 1 a.
To obtain an optimum line illumination, the width and
thickness of the excitation beam were independently con-
trolled by using three cylindrical lenses (CL1–CL3) and a
spherical lens (L1). Specifically, the CL1/CL3 pair expanded
the excitation beam in the horizontal direction (x-direction)
by 6.25 times, resulting in 48-mm illumination width for an
oil immersion objective (UPLSAPO100XO, Olympus,
Center Valley, PA) or 80-mm illumination width for a water
immersion objective (UPLSAPO60XW, Olympus). On the
other hand, the CL2/L1 pair generated a diffraction-limited
line illumination on the sample plane by expanding the
excitation beam in the vertical direction (y-direction) by
6.25 times to slightly overfill the back aperture of the
objective in a vertical direction. (The beam size in the
vertical direction at the back aperture of the objective was
9 mm, whereas the back-aperture sizes of the oil- and
water-immersion objectives were 7 mm and 8.5 mm, respec-
tively.) To scan the illumination line in a vertical direction,
a galvanometric scanning mirror (GM1) was used. The
telescopic lens pair (L2/L3) maintained the illumination
beam at the center of the objective back aperture regardless
of the illumination beam angle controlled by GM1.

The fluorescence signal from the sample was collected
through the same objective that was used for excitation,
guided in a direction opposite that of the excitation beam
until it diverged from the excitation-beam path after a poly-
chroic mirror (PM), and then focused on a confocal slit (S),
which rejected out-of-focus background noise (Fig. 1 b). To
maximally reject out-of-focus background without signifi-
cantly hampering the signal-detection efficiency, the slit
sizes were selected to be slightly larger than 1 Airy unit
of the illumination beam: 37 mm for an oil-immersion
objective, and 26 mm for a water-immersion objective. After
the slit, the fluorescence signal was guided and focused on
a charge-coupled-device (CCD) camera. The magnification
of the image was controlled by using the L5/L6 lens pair so
Biophysical Journal 103(8) 1691–1697
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that the full pixels of the CCD camera could be utilized for
imaging. The resulting imaging area of the microscope was
35 mm for the oil-immersion objective and 57 mm for the
water-immersion objective.

Compared to the commercialized line-scan confocal
microscope based on an insensitive line-CCD camera
(LSM 7 LIVE, Zeiss, Oberkochen, Germany), we used
a highly sensitive 2-D array electron-multiplying CCD
(EM-CCD) camera (ProEM, Princeton Instruments, Tren-
ton, NJ) as a detector. To generate 2-D images on the
camera, we developed a double-scanning method in which
the fluorescence image of the slit was scanned on the camera
synchronously with the illumination beam on the sample
plane (Fig. 1 c) by using the second galvanometric scanning
mirror (Fig. 1 a, GM2). The scanning of the illumination
beam and fluorescence signal was synchronized with the
data acquisition of the CCD camera by connecting the tran-
sistor-transistor-logic output signal of the camera to the
controller (SC2000, General Scanning, Cambridge, MA)
of the drivers of the galvanometric scanning mirrors (Min-
iSAX II, General Scanning). The beam scanning was
controlled by using a LabVIEW program provided by the
manufacturer, and image acquisition was done using
a home-built program written in Cþþ. We used a sawtooth
waveform for scanning so that scanning mirrors rotated with
a constant velocity from the original position to the final
position during the data acquisition period of the CCD
camera (the slow phase of the sawtooth waveform). During
the time interval between two adjacent filming events (~300
ms), the mirrors returned quickly to the original position (the
fast phase of the sawtooth waveform), resulting in one scan
per frame. At the full frame rate of the camera (33 Hz),
therefore, it is estimated that single fluorophores are excited
a

-30 -20 -10 0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ai
lze

d
in

te
ns

ity

z-axis position (μm)

Line scan confocal
Epi-fluorescence

HILO

iso I iso II

0.0
0

100

200

300

400

0

1500

In
te

ns
ity

(a
.u

)

0 5 10 15 20 25 30 35

0.0

0.5

1.0

FR
ET

Time (s)

d

b c

e

3μm

Biophysical Journal 103(8) 1691–1697
for 0.23 ms/frame for the oil-immersion objective (the expo-
sure time was multiplied by the diffraction-limited beam
width (~266 nm, or half of 532 nm) divided by the scanning
distance (35 mm)).To obtain the best image quality, laser
power was controlled in the range 30–50 mW. Despite the
complexity of the optical setup of the new microscope, we
measured the fluorescence-collection efficiency of the
new microscope as 90% of that of a single-molecule TIRF
microscope. To obtain images at varying heights, the z-posi-
tion of the sample stage was controlled using a piezo stage
(P-561.3DD, Physik Instrumente) in the case of line-scan
confocal microscopy, or the z-position of the objective
lens was controlled using a piezo actuator (P-721.CLQ,
Physik Instrumente) in the case of both epifluorescence
and HILO microscopies.
Characterization of the microscope

To characterize the optical-sectioning capability of the new
microscope, we prepared a thin (200-nm) fluorescent film on
a coverglass (Materials and Methods) and measured the
area-averaged fluorescence intensities as a function of
sample z-position by using the oil-immersion objective.
We note that there was focal shift due to refractive index
mismatch when the film was positioned below the focal
plane. When imaging depth was not large (a few microme-
ters from the surface), focal shift was approximately propor-
tional to the imaging depth. Therefore, focal shift was
corrected by multiplying the movement of the objective
by a factor of 0.79 (21,22). The optical-sectioning capability
of the new microscope (1.0 mm) thus obtained was better
than that of either HILO microscopy (6.7 mm) or SPIM
(13) (Fig. 2 a). The fact that the measured optical-sectioning
0.2 0.4 0.6 0.8 1.0

FRET

3μm

FIGURE 2 Characterization of the line-scan

confocal microscope. (a) Comparison of the

optical-sectioning capabilities of epifluorescence

microscopy (31.7 mm), HILO (6.7 mm), and the

line-scan confocal microscopy (1.0 mm). (b) A

line-scan confocal image of Cy3-labeled single-

stranded DNA on a coverslip in the presence of

10 nM free Cy3. To make the images, 10 frames

with 100-ms exposure time were averaged and

background fluorescence was subtracted. Scale

bar, 3mm. (c) Same as in (b), except that the image

was acquired in a HILO microscope. (d) Observa-

tion of Holliday junction dynamics via line-scan

confocal microscopy. (left) A model of two-state

conformational dynamics of the Holliday junction.

For FRET measurements, donor (green circle) and

acceptor (red circle) dye labels were attached to

the ends of the Holliday junction. (right) Represen-

tative fluorescence intensity (green for donor

and red for acceptor) and corresponding FRET-

efficiency (black) time traces. Exposure time,

100 ms. (e) FRET histogram generated from 44

molecules. The oil-immersion objective was used

for all experiments.
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thickness of our HILO microscope was similar to the previ-
ously reported value (9) indicates that our HILO microscope
was well optimized.

To demonstrate the improved optical-sectioning capa-
bility and single-molecule detection sensitivity of the new
microscope compared to the HILO microscope, we imaged
Cy3-labeled DNA molecules in the presence of 10 nM free
Cy3. For the imaging, single-stranded DNA labeled with
biotin and Cy3 was immobilized on a quartz surface via
streptavidin-biotin interaction. Although single molecules
were hardly recognized using the HILO microscope, due
to overwhelming background fluorescence (Fig. 2 b),
they were clearly visualized using our line-scan confocal
microscope (Fig. 2 c). The large spots in Fig. 2 b are not
single-molecule images but blurs due to nonuniform illumi-
nation of the HILO microscope. In the absence of free dye,
the quality of single-molecule images obtained using our
HILO microscope was similar to that obtained using the
line-scan confocal microscope (Fig. S1), indicating that
both microscopes were properly optimized.

We also demonstrated that the line-scan confocal micro-
scope is compatible with single-molecule fluorescence
resonance energy transfer (FRET) measurements. To do
FRET experiments, the optical setup in Fig. 1 a was slightly
modified (Fig. S2). We could successfully monitor the
two-state dynamics of the Holliday junction by monitoring
fluorescence intensities of donors and acceptors labeled at
the ends of the Holliday junction (Fig. 2 d, Materials and
Methods). The existence of two dominant populations was
clear in the FRET histogram (Fig. 2 e).
Single-molecule imaging in live cells

As a test of the newmicroscope for single-molecule live-cell
imaging, we prepared Dictyostelium discoideum cells with
TMR-labeled cAMP receptors (Materials and Methods).
Single cAMP receptors could be clearly visualized on
both the basal and apical surfaces of the cell (Fig. 3, a
and b, Movie S1, and Movie S2). In HILO microscopy, clear
single-molecule images could not be obtained either on the
3 μm 3 μm
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basal surface or on the apical surface (Fig. S3). In TIRF
microscopy, only molecules on the basal surface could be
visualized (19,23).

With the unique capability of the new microscope to
monitor single cAMP receptors on both the basal and apical
surfaces, we compared the diffusion coefficients of the
receptors on the two surfaces. Single cAMP receptors
were tracked using the imageJ plug-in program (Mosaic,
ETH Zürich, Zürich, Switzerland), and diffusion coeffi-
cients of the receptors were calculated as described previ-
ously (19). The diffusion coefficient of cAMP receptors
on the basal surface was similar to the previously reported
value obtained using TIRF microscopy (19), whereas the
diffusion coefficient on the apical surface was 30% larger
than that on the basal surface (Fig. 3 c), probably indicating
differences in the local environments on the two surfaces.
The exact reasons for the difference between the diffusion
constants on the two surfaces are out of the scope of this
work, but we notice that our observation is consistent with
that of the previous report, namely, that membrane protein
motion on the basal surface can be perturbed by direct inter-
actions between a cell and a glass (24).
Superresolution fluorescence imaging using
the new microscope

Finally, we obtained superresolution fluorescence images
using the new microscope. Microtubules of COS-7 cell
were coated with Cy5-labeled antibodies (Materials and
Methods), and the bottom of the cell was imaged using
dSTORM (Fig. 4 a). Microtubules not distinguishable using
conventional fluorescence microscopy could be clearly
distinguished with this superresolution imaging (Fig. 4 a,
inset). The full width at half-maximum (FWHM) of micro-
tubules of the dSTORM image was ~59 nm (Fig. 4 b), which
is similar to the value previously reported (25). Character-
ization of localization errors of the new microscope indi-
cates that the precision of single-molecule localization is
affected little by the instability of the scanning mirrors;
rather, it is mainly determined by the photon numbers
ical Basal

FIGURE 3 Single-molecule imaging in live

cells. TMR-labeled cAMP receptors of Dictyoste-

lium discoideum were imaged on both the basal

(a) and apical surfaces (b). Scale bars, 3 mm. (c)

Diffusion coefficients of cAMP receptors at the

apical and basal surfaces of the cell. Molecules

surviving for >15 frames (54 molecules/cell for

the basal surface and 30 molecules/cell for the

apical surface on average) were used for the anal-

ysis. Molecules from the same amoeba cell were

used to get a single diffusion-coefficient value for

either the basal surface or the apical surface. The

data presented are the averages of 13 cells for the

basal surface, and 11 cells for the apical surface.

The oil-immersion objective was used for the ex-

periments, and the exposure time was 50 ms.
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FIGURE 4 Superresolution fluorescence imag-

ing. (a) Microtubules at the bottom of COS-7

were imaged via dSTORM. (Inset) Comparison

between dSTORM (left) and conventional fluores-

cence microscopy (right). (b) Microtubule width

in the dSTORM image. The cross-section profile

of the microtubule (right) was generated by

collecting a number of localization spots along

the line perpendicular to the length of the micro-

tubule in the white box in the dSTORM image.

The histogram was well fitted to a Gaussian func-

tion with FWHM of 59 nm (right, blue lines). (c–e)

Superresolution images at depths of 4 mm (c), 7.5

mm (d), and 85 mm (e), respectively. The image

in e was obtained from a cell fixed on the glass

slide side of the channel using the water-immer-

sion objective. For all other experiments, the oil-

immersion lens was used. Exposure time, 100 ms.
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collected from single molecules (Fig. S4). The precision of
the final image estimated by photon number, pixel size,
background level, and scanning error was ~9.5 nm, and
the corresponding resolution was ~22 nm.

Since single-molecule imaging could be done deep inside
the cell, we could also obtain superresolution images in the
middle and at the top of the cell (Fig. 4, c and d). The local-
ization precision at different depths could be well explained
by the aberration of an oil-immersion objective (21)
(Fig. S5). When an oil-immersion objective was replaced
with a water-immersion objective, resolution of dSTORM
was slightly impaired, but superresolution imaging could
be done in much deeper regions with negligible aberration
(Fig. 3 e and Fig. S5). This result suggests a potential of
the new microscope for single-molecule imaging at the
tissue level. However, it is true that our experimental condi-
tions are different from those in tissues, and single-molecule
imaging at the tissue level has yet to be demonstrated.
DISCUSSION

It is well recognized that for cellular imaging, confocal
microscopy has a number of advantages over HILO and
SPIM. However, due to the poor sensitivity of currently
available video-rate confocal microscopes, this imaging
technique is not used for single-molecule studies in live
cells or for superresolution fluorescence imaging. Is this
a fundamental limit of confocal microscopy? It is known
that the rapid scanning mode of single-pinhole-based
confocal microscopes does not provide enough photons
to distinguish single molecules from background noise.
Spinning-disk or line-scan type confocal microscopes
Biophysical Journal 103(8) 1691–1697
do not have the same problem. We asked whether these
confocal microscopes could be optimized to provide
single-molecule sensitivity. In the case of spinning-disk
confocal microscopes, single-molecule images can barely
be obtained using a highly sensitive camera as a detector
(26), and it is generally agreed that single-molecule images
of satisfactory quality and photostability cannot be obtained
using commercial spinning-disk confocal microscopes,
probably due to significant signal loss in the detection
path (2,18).

To address the question, we adopted the line-scanning
method for the new microscope. Different versions of
line-scan confocal microscopes have been developed over
recent years (27–30), and some of these have been commer-
cialized (Meridian, InSIGHT PLUS; Bio-Rad, DVC 250;
Zeiss, LSM 7 LIVE). However, none of these models
provide single-molecule detection capability. We developed
a line-scan confocal microscope with superior single-mole-
cule detection sensitivity. The microscope is based on our
unique double-scanning method; the illumination line on
the sample plane and the fluorescence image on the CCD
camera were synchronously scanned using independent
galvanometric scanners. Compared to HILO microscopy,
the new technique has the advantage that single-molecule
imaging can be done in much deeper regions and with
several times better signal/noise ratio. Compared to SPIM
in the original design, which requires special optical design
and sample preparation processes, the new microscopy is
fully compatible with conventional cell-imaging techniques,
and therefore, single-molecule imaging can be much more
easily done at depths up to several hundred microns from
the glass surface. Although iSPIM and Bessel-beam plane
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illumination cannot yet provide single-molecule images,
clear single-molecule images can be easily obtained using
the new microscope.
CONCLUSION

Single-molecule fluorescence imaging in cells has been
pivotal to our understanding of several fundamental ques-
tions of cell biology, but its application deep inside the
cell has been difficult to achieve due to technical limits of
the currently available microscopes. We have developed
video-rate confocal microscopy with excellent single-mole-
cule detection efficiency and optical-sectioning capability,
and we have demonstrated that this technology makes it
easy to undertake single-molecule studies in conditions
under which they would previously have been very difficult.
We expect that the new microscope will be actively used for
both single-molecule studies in live cells and superresolu-
tion fluorescence imaging in thick samples.
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