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Abstract

Many biological and physical systems exhibit population-density dependent transitions to
synchronized oscillations in a process often termed “dynamical quorum sensing”. Synchronization
frequently arises through chemical communication via signaling molecules distributed through an
external medium. We study a simple theoretical model for dynamical quorum sensing: a
heterogenous population of limit-cycle oscillators diffusively coupled through a common medium.
We show that this model exhibits a rich phase diagram with four qualitatively distinct physical
mechanisms that can lead to a loss of coherent population-level oscillations, including a novel
mechanism arising from effective time-delays introduced by the external medium. We derive a
single pair of analytic equations that allow us to calculate phase boundaries as a function of
population density and show that the model reproduces many of the qualitative features of recent
experiments on BZ catalytic particles as well as synthetically engineered bacteria.
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1. Introduction

Unicellular organisms often undertake complex collective behaviors in response to
environmental and population cues. A beautiful example of this phenomenon is the
population-density dependent transition to synchronized oscillations observed in
communicating cell populations recently termed dynamical quorum sensing [1, 2]. Density-
dependent synchronization has been observed in a wide variety of biological systems
including suspensions of yeast in nutrient solutions [1], starving cellular colonies of the
social amoeba Dictyostelium [3], and synthetically engineered bacteria [4]. Such transitions
have also been observed in experimental studies of electrochemical oscillators and
Belousov-Zhabotinsky (BZ) catalytic particles [5, 6].
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Previous theoretical work has shown that oscillators coupled through quorum sensing can
display synchronized oscillations [7, 8, 9]. Recently, a dynamic quorum sensing transition
was found [1] in a simple model of coupled identical limit-cycle oscillators introduced to
study synchronization in yeast populations. Additionally, experimental and numerical
studies of BZ catalytic particles indicate that heterogeneity in oscillator populations leads to
interesting new phenomenon [5, 10, 6]. Nonetheless, the study of density-dependent
synchronization in heterogeneous populations of oscillators remains largely unexplored, in
stark contrast to oscillators with direct coupling where many analytic results are available
[11, 10, 12].

In this paper, we consider a large population of limit-cycle oscillators with a distribution of
natural frequencies, coupled diffusively through a common external medium. Our work
generalizes earlier models [1] and exhibits extremely rich dynamics as the coupling strength,
population density, and frequency distribution are varied. We derive several analytic results
and find that model exhibits a rich phase diagram. As with directly coupled oscillators, we
find that there are three distinct phases: a synchronized phase with coherent population-level
oscillations, an amplitude death phase where individual oscillators cease oscillating, and an
incoherent phase where there are no population-level oscillations but individual oscillators
still oscillate. We find two types of denisty-dependent phase transitions, a Kuramoto-like
incoherence to coherence transition between the synchronized and incoherent phase, and a
transition from the synchronized phase to the amplitude death phase. The latter transition
can occur due to three distinct physical mechanism: (1) oscillator heterogeneity, (2)
degradation of the external medium, and (3) a novel mechanism where at low-population
densities the external medium dynamics are not fast enough to support global oscillations.
The diversity of physical mechanisms giving rise to the same transition is unique to our
system. We show that the model reproduces many qualitative features observed in recent
experiments on heterogeneous populations of BZ catalytic particles [5] as well as
synthetically engineered bacteria [4].

To illustrate this diverse set of phenomena, we introduce a simple model of /V © 1 coupled
limit-cycle oscillators where the amplitude and phase of individual oscillators are
represented by a complex number z;, (=1 ... ), with natural frequency w;. The oscillators
are diffusively coupled to an external medium, represented by a complex number Z, through
a coupling D. The external medium Zrepresents particle species that can freely diffuse in
the environment and allows individual oscillators to communicate with each other. The
specific realizations of Zdepends on the context. In metabolic oscillations, it represents
common metabolites that diffuse between cells. In the BZ reaction, it represents chemical
species that diffuse between autocatalytic beads. In synthetic bacteria, it is the concentration
of the autoinducer signaling molecules in the medium. When chemicals leave the oscillators
and enter the medium, they are diluted by a factor a = Vj,{ Ve <K 1, which is the ratio of
the volume of the entire system to the that of an individual oscillator. The external medium
Zis also degraded at a rate J.

The dynamics of the system are captured by the equation

dz; . 2
—=(otiv; [z )z = D&; - Z)

dz
= DZ(zj —~7)-JZ
7

dt ¢
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where the w;are drawn from a distribution /(w) which we assume to be an even function
about a mean frequency wq. By introducing a dimensionless density, p = a/V, and shifting to
a frame rotating with frequency wq, we can rewrite the equations above as

dz; . 2
—=(otiv; [z )z - D&; - 2)
dZ pD .
EZ%Z(Z" ~2) - J+Ho)Z,
J

where the frequencies wj are now drawn from an even distribution g(w) with mean zero.

2. Linear-stability analysis for homogenous populations

Before analyzing a heterogeneous population, we first consider the special case of uniform
frequencies, where g(w) = 8(w) in (1), and find surprising results. This model was used
previously [1] to model dynamical quorum sensing in yeast suspensions. For homogenous
populations, the equations for all the z;are identical and there are two possible behaviors.
The individual oscillators are quiescent with Z= z;= 0 (amplitude death) or there are
synchronized oscillations. We can compute the stability of the amplitude death state by
linearizing the system around z;= Z= 0 and computing the eigenvalues, ., of the
corresponding linearized system. Since all of the oscillators are identical, the dynamics are
completely specified by two differential equations, one for the mean-field parameter

ZZ%Z Zj=z;j and one for Z In terms of ., oscillator death is stable when Re(jw) < 0 for all
eigenvallues. The corresponding requirement that the trace be negative implies D> A in the
oscillator death phase. Furthermore, the characteristic equation for the eigenvalues takes the
form (u + A)(u + B+ iwg) = pL?, with B= Dp + Jand A= D - Ag. To find the phase
boundary, we plug in i = a+ jband separate the characteristic equation into real and
imaginary parts,

B pD*(a+A)
(a+A)*+b?
—pD?b
btwy=—"—"—_ @3
et ?
wola+A

This allows us to solve for b as a function of 4, b(a)= — Wﬂi and plug this into (2). The
resulting equation can be analyzed graphically plotting t?he left and right sides of (2) as a
function of a (see Figure 1). Since the characteristic equation is quadratic, there are two
solutions, a solution with negative awhich guarantees the stability of the external medium,
and a second solution which can change sign depending on parameters. As shown in Figure
1, it is clear that if the left-hand side of (2) is greater than the right-hand side at 2= 0, then

the second solution must also be negative. Thus, the amplitude death phase is stable when

(Dp+/)(D = do) _ _ (pD+J+D — 0)?

2 = 2, 2 @
pD (oD+J+D = 2p)"+wy
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where we have rewritten A and Bin terms of the original parameters of the model.

Interestingly, this equation demonstrates that there are two qualitatively different ways to
reach the amplitude death phase. First, when J >> 1, the left side is much larger than the
right, indicating that oscillations are lost due to degradation of the external medium. More
surprisingly, amplitude death may occur even when J= 0 if the natural frequency w0 of the
oscillators is large relative to the squared terms in (4). This can be understood by first
recalling that since D - A0 > 0, isolated oscillators are silent and synchronization can only
occur by transmitting information through the external medium. The medium, however, has
an effective time scale given by (pD)~1 on which it can respond to drive from the oscillators.
Thus, for small population densities if wq is large, the medium cannot track the fast
dynamics of the individual oscillators and amplitude death is stablized. We term this
mechanism for the loss of population-level oscillations “dynamic death” to indicate that the
underlying cause for the dynamical quorum sensing transition from the synchronized phase
to the amplitude death phase is the slow dynamics of the external medium at low density and
moderate diffusion coupling and not degradation of the medium. We stress, however, that
these two mechanisms give rise to the same phase boundary and do not generate distinct
phases. Fig. 2 shows the homogeneous phase boundaries as a function of J, p, and D. We
have also confirmed the existence of the “dynamic death” mechanism with numerical
simulations for the case when J=0 (see Fig.2B).

3. Linear stability analysis for heterogeneous oscillators

We now analyze (1) for the case where the natural frequencies w;are drawn from an even
distribution g{w) with zero mean. In this case, the system has three phases: an amplitude
death phase where all oscillators are quiet; global, synchronized oscillations; and an
incoherent phase where individual elements are oscillating but the oscillations are
unsynchronized. The stability boundary of the amplitude death phase can again be calculated
as in the homogenous case by linearizing (1) around the death state z;= 0, Z= 0. This yields
the equations,

doz; .
72(/1()+l(1)j - D)éZj —DoéZ (5

dozZ pD .
7:27& j = (D+J+iw0)oZ. (g
J

These equations can be written in matrix form as

5? 1 021
522 512
=M )
&N 02y
57 oz

where
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e+iwg 0 <o 0 -D
0 e+iwy, - - 0 -D
M= ®
0 0 etiw, -D
£ £ .. B (oD+J+iwp)

Stability requires the eigenvalues, p, of Mto satisfy Re[] < 0. First notice that stability
requires Re[ Tr(M)] < 0. This gives the condition

(oD+J)

(Ao — D) — >0. (9)

We can also calculate the eigenvalues using the characteristic equation of the matrix, Def(j./

- M) = 0. A straightforward calculation yields

N
(u(D+J+iw)| [ = (1o - D+iw)) (10)
=1

—'O—Dzi ﬁ (1 — (do — D+iw;)=0

N
s=1 j=1,js

In order to take the thermodynamic limit, we rewrite this equation as

. pD2 N 1
(/1+(pD+J+1a)0))=TZ (11)
s=1 H

— (A — D+iw;)

In the thermodynamic limit A//— oo but with p held fixed, (9) and (11) become,
respectively,

(10— D)<0 (12
and

C N2 (W)
,u+(pD+J+la)0))—pD fdwm, (13)
where we have replaced the sum by an integral over the distribution function g(w) for the
oscillator frequencies. In practice, it is often helpful to write this as two real equations.
Substituting . = a + 7byields two coupled integral equations

a+pD+J

P R O

(a+D—=2)? +(b-w)?

Physica D. Author manuscript; available in PMC 2013 November 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Schwab et al.

Page 6

b+w() b—w
oDr Jdw g(w) @D+ (14)

Stability requires that all solutions of these equations obey a< 0. By considering the mean-
field equations derived below, it is clear that the stability boundary can be found by putting a
= 0 in the above equations, i.e. there exists at most one solution with positive real part.

Putting 4= 0 in (14) results in a pair of coupled integral equations that determine the
boundary of stability of the death phase:

pD+J D=1

D Jdw gw) 5= 15)
b+a)() b—

or = s @EEGo o

with D— A > 0. It is useful to consider various limits of these equations. Notice that when
g(w) = §(w), these equations reduce to (2) with a= 0 as expected. Alternatively, consider the
case p — 00, In this limit, the left hand side of (16) is zero implying that 6= 0, since g(w) in
an even function. Substituting this into (15) yields a single equation for stability of the death
state,

pD+J
pD?>

[dw g(w)%. a7

This result was derived in [11, 10] for the stability boundary of the death phase in a system
of directly coupled limit-cycle oscillators. This follows naturally by noting that in the limit p
— 00, the external medium can respond infinitely quickly. Thus, Z;is equal to the order

parameter of the system, Zextz%zjzj', and the model reduces to the one studied in [11, 10,
12]. In this limit, the loss of oscillations is due to the heterogeneity of individual oscillator
frequencies. These two limits show that a single set of equations (15)-(16), capture three
qualitatively distinct physical mechanisms that can lead to a transition between the
synchronized and amplitude death phases: degradation, oscillator heterogeneity, and the
dynamics of the external medium.

4. Mean Field equations for frequency locking

To gain further insight into the system, it is useful to consider the mean-field equations for
the system. To do so, we put z;= r;¢®/and Z = ReP into (1) and equate real and imaginary
parts:

drj

—=(o =D~ r)rj+DR cos (¢ - 6))

D iy + PR Gin -6
4°_, PR _o,
ar " 7)) (18)
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R pD

d N
——=— > rjcos (¢ —6;) — (oD+))R
dt N ;

N .
d—¢= - w0+pDZr sin (¢ — 6)). (19

We look for uniform rotating solutions whose angular frequency in the lab frame is wg+6 by
~_dR drj do dgj ) ] -

requiring -="—"= and —t=z=b in (18) and (19). In this case, the position of each

oscillator is determined purely by its frequency, so we can regard each oscillator as a

function of w. Substituting in the desired functional form of the solutions into (19) and

taking the thermodynamic limit gives

R(pD+7)=pD [dwg(w)r(w) cos (¢ — B(w))  (20)

b+wo=pD [dwg(w)2 sin (p — 6w)), (1)

where we have written n{w) and 6(w) to emphasize that the amplitude and phase of each

oscillator is a function of only the frequency. Using equation (18) and d—t]=b yields

_DRsin (6(w) — )

©_b 22)

Substituting this into (20) and (21) gives the equations

pD+J f dewg(e) B0 cos 6w)=0)

oD? = wb (23)
b+(,()() sin (0 _ sin (6 —_
D=~ Jdws(w) LGRS gy

drj do;
Furthermore, substituting 7;=0 and d—t']=b in into (18) one can easily show

((w = b) cot (6 — ¢)+A9 — D)(1+ cot*(@ — ¢))=D*R*/(w — b)* (25)

Combined (23), (24), and (26) define the mean-field equations for the system for frequency
locking with amplitude .

It is clear that in general, solutions to (26) exhibit an emergent frequency amplitude coupling
that is not present in the Hopf normal form of the individual oscillators. We cannot,
however, solve this analytically because (26) is a cubic equation in cot( — ¢). Nonetheless,
for the special case =0 (amplitude death), we have the unique solution to (26) that
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w—-b
do—D’

tan ((w) — @)= (26)

Substituting this into the equations (20) and (21) yields the stability boundary

pD+J D=1y
pD2 —fd‘l)g(w) Do) +(—w)?

b+(1)()_ (h—w)
prai A e

Notice that for £ =0, the mean field equations have reduced to (16). Finally, it is also useful
to calculate where the boundary given by (27) intersects the stability boundary D=2Ag. To
do so, we take the limit (D - A) — 0 in the equations above. A straightforward calculation
shows that the equations reduce to

D+J
ppm =ng(b)

b+a)0_ 0 g(w)
p [f_mdww—_b}, (28)

where the Pdenotes the principal value.

Recall that when oscillators are directly coupled to each other (i.e. p — ©0), they lock at the
mean frequency wg and 6= 0. In contrast, when oscillators are coupled through the external
medium, there is an effective “viscosity” which slows down the oscillations so they rotate
with an angular frequency wq + b, with 6< 0. It is clear that 6 can be made arbitrarily close
to —wq at low density, a limit that is frequently encountered in biology, as shown in the inset
to Figure 2. The effect of time delays on synchronization of directly coupled oscillators was
studied previously and the equations governing the stability of amplitude death bear some
similarity to those found in this work [13, 14].

Another interesting phenomena is that increasing Jdecreases the absolute value of and
hence increases the angular frequency. Thus, somewhat surprisingly, the system exhibits
positive period-amplitude coupling despite the fact that there is no explicit coupling between
period and amplitude at the level of individual oscillators. Similar behavior was observed in
a population of synthetically engineered bacteria in recent experiments [4], though
interestingly, in contrast with our phenomenon the period increased as degradation was
decreased. The difference between our model and the experiments likely is due to the
explicit amplitude-period coupling already present at the single-cell level in the degrade-
and-fire mechanism underlying oscillations in individual bacterial oscillators [15].

5. Mean Field equations for incoherence

When D < A, the system can be incoherent, where individual oscillators are rotating in an
unsynchronized fashion. The stability equations for the incoherent phase were calculated by

Physica D. Author manuscript; available in PMC 2013 November 01.
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generalizing the calculations in [10]. Briefly, we looked for solutions of (19) of the form R =

0, r§=/lo — D, and 6; = wjt. For such solutions, individual oscillators oscillate at their natural
frequencies but there are no coherent oscillations. We calculated the stability boundary for
incoherence by checking the stability of the state to small perturbations.

Define a density function p(r, 8, w, ) so that the fraction of oscillators of frequency w
between rand r+ drand between 6 and © + @B is pra®dr. The evolution for p is given by the
continuity equation

dp

—> —\_
StV 0)=0 @9

where vis the velocity of oscillators given by v= (r /6). Substituting (18) and (19) gives

o, 1 2(p[rz(a2 —)+K Rrcos(0 — ¢)])+l 2(p[m) — K Rsin(0 — ¢)])=0, (30)
dt ror rdo
where & = (Ao — D). In the incoherent state

_0(r-a)
T 2nr

@31

We now consider a small perturbation in the radial and angular directions and check when
the density is stable to these perturbations. In particular, consider

1
p=0(r —a—¢eri(6,w,1)) (2—m+8f1 0, w, t)) . (32

For such a perturbation, by the chain rule we have

Writing R = e Ry, substituting in (18) and (19), and keeping terms first order in e yields

—2a2r1 +DR; cos(f — ¢):w%+ %Ltl (34)

We seek solutions in which R; and r; are proportional to é**A!and we find that r; must
obey the equation

w%+u+ib+2a2)rl =DR; cos(d — ¢). (35)

The solution for r, which is periodic in © is of the form

r1=A cos(6 — ¢)+B sin(6 — ¢), (36)

where

Physica D. Author manuscript; available in PMC 2013 November 01.
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DR (A+ib+a?)
== -5 @
W+ (A+ib+2a) &7
_ DR w
w2 +(A+ib2a2y? Y

We now consider the small angular perturbations. We can substitute p = 8(r— &)[1/2rr+
efi] into the continuity equation and keep terms linear in e to get

Bfl 0fi  KRj cos(— ¢)

FT 7 I a G

Assuming the periodic solution is proportional to é**/)?3as above, one finds

f1=C cos(0 — ¢p)+D sin(6 — ¢)  (40)

with
_ DRy(A+ib)
2ma? (w2 +(A+ib)?) D
B DRyw
2na? (w2 +(A+ib)?Y) 2

We can now rewrite the steady-state equations stemming from (18) and (19) in terms of the
density to get

pD+J
oD

R=[_[% [ cos (6 - d)p r db dr g(w) duw

b+ o 0o M2 .
p—Dw:f—oofo f(z) rsin (6 — ¢p)p r df dr g(w) dw, (43)

do;
where we have used that the order parameter for the solutions is chosen so that —- It =b,

Substituting in (32), (36), and (40), and keeping terms first order in ¢,

2(pD+J) A+ib A+ib+2a*
— dw+ — T s(w)dw
b b e ﬁw(/l+ib+2a2)2+w2g() “)
2(b+w0) ®
dw Y (wyd
et b)2+ T f_oo(/l+ib+2a2)2+w2g(w) ©
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The bifurcation condition requires that A = 0. So the stability boundary is given by setting A
=0 in the equation above. This gives (using usual relationships for principal values of
integrals in the limit A = 0%)

ib+2a*
0*+ib+2a2)* +w?

2(oD+J) 00
p—D_7rg(b)+f_oo(

gw)dw (46)

2(b+wo) [ oo g(w) ] o0 w
=P dw + (w)dw
pD? I~ w=b I~ (0++ib+2a2)2+w2g “n

where P denotes the principal value. Notice that for the line D= Ag (i.e. 2= 0%) these
equations reduce to (28) showing that incoherence joins the corner of the death state. Thus,
there is a tri-critical point on the line D= Ay where the incoherent phase, the synchronized
oscillation phase, and the death phase meet. This point is analogous to the tri-critical point
discovered in the directly-coupled case [10], except that we have not observed regions
exhibiting transient unsteady behavior at low densities (p < 1). We emphasize that although
unsteady behavior was not observed in our simulations, we have not proven its
nonexistence.

6. Explicit equations for Rectangular and Lorentzian Distributions

The derivation presented above is for arbitrary g(w). When g(w) is either a rectangular or
Lorentzian distribution, we can perform the integrations in (16) explicitly. For a Lorentzian
distribution,

(w)= 1T 48
S S (48)
the equations are particularly simple because the Fourier transform is a simple exponential:

2p)=e . (49)

We now plug this into the equations for the stability of amplitude death (15) and use the fact
that these equations are in the form of a convolution for 6. A straightforward calculation
then shows that the resulting equations for the stability boundary are identical to the case
where g(w) = 6(w), except with 02212 Ag > D-A0+T,

pD+J D - g+l
pD? (D — A9+D)*+b2

b+iw0 _ b
pD? (D — Ag+D)>+b2

(50)

Thus I' has the intriguing effect of decreasing the effective A, thereby pulling the individual
oscillators closer to their supercritical Hopf bifurcation.

An analogous set of equations, albeit more unwieldy, can also be derived for a rectangular
frequency distribution:

Physica D. Author manuscript; available in PMC 2013 November 01.
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glw) =1/T if-T/2<w<l/2
=0 otherwise

(51)

In this case, the integrals in (15) and (16) can be performed and yield the equations

a+A 1

W:E(arctan[(b+r)/(a+B)] —arctan[ (b —I')/(a+B)]) (52)
brog_ 1, (b+D)*+(a+B)>? o
pD> 2 ¢ | -1 +@rBr] &

Figure 3 shows the phase boundaries for this case as a function of p, D, and J. As expected,
for D> )\, the death phase and synchronized oscillations are both possible. For large D, as
density is increased across the transition, the amplitude of the synchronized oscillations rises
sharply with density. For smaller D, this rise in amplitude is less pronounced. When D < A,
one also sees a Kuramoto-like transition from incoherent to synchronized oscillations. The
same crossover behavior was observed in recent experiments on BZ catalytic particles with a
distribution of natural frequencies [5, 6].

7. Discussion

In this paper, we considered the physics of dynamical quorum sensing by studying limit-
cycle oscillators diffusively coupled through an external medium. We find that there are
three distinct phases: a synchronized phase exhibiting coherent population-level oscillations,
an amplitude death phase where individual oscillators cease to oscillate, and an incoherent
phase where there are no global oscillations but individual oscillators still oscillate. In
addition to a density-dependent Kuramoto-like incoherence to coherence transition between
the synchronized and incoherent phase, there is a density-dependent transition from the
synchronized phase to an amplitude death phase where all oscillators are quiet. This latter
transition can occur due to three distinct physical mechanism: (1) oscillator heterogeneity,
(2) degradation of the external medium, and (3) a new mechanism we term “dynamic death”
where at low population densities and moderate diffusion constants the external medium
dynamics are not fast enough to support global oscillations. It is worth emphasizing that
these three mechanisms give rise to the same phase boundary and do not generate distinct
phases. Our model reproduces many qualitative features observed in recent experiments on
heterogeneous populations of BZ catalytic particles [5] as well as synthetically engineered
bacteria [4].

This simple model captures many qualitative features seen in a variety of experiments on
oscillators coupled diffusively through an external medium. For example, it was previously
argued that when all oscillators are identical, the model is a good description of glycolitic
oscillations in suspensions of yeast cells. The model also shows how large amplitude
oscillations can emerge as one varies the density and how this behavior crosses-over into a
Kuramoto-like transition as Dis decreased (see Fig. 3). These qualitative features are in
good agreement with experiments on BZ particles [5, 6]. Finally, the model also captures
many of the mean-field properties of coupled synthetically-engineered bacteria, including
the sudden emergence of oscillations and scaling of amplitude and period of oscillations as
one changes the external degradation rate J. However, in contrast to [4], in our model the
period and amplitude of the oscillations decrease not increase with increasing J. This
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discrepancy likely arises from the highly non-linear nature of the “degrade-and-fire”
oscillations characterizing the synthetic bacteria [15].

Our results suggest that properly constructed simple models may be able to capture
interesting, qualitative behaviors of coupled oscillators. They also suggest that many of the
phenomena observed in oscillators coupled through a common external medium may be
universal and independent of the particular biological, physical, or chemical realization.
Universality has played a key role in expanding our understanding of collective behavior in
physical systems. Our work suggests universality may also be useful biology [2]. In the
future, it will be interesting to directly relate this simple model to more detailed models [15],
extend the simple mean-field model of dynamical quorum sensing explored here to include
spatial effects, and to consider the related model of phase-only oscillators coupled by an
external medium.
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1.0}

Figure 1.

Graphical analysis of the structure of the solutions to eq. (2) and (3). There always exists a
solution with a< 0, shown as a black dot. A second solution, shown as a red dot, can have
positive or negative &, and thus solving for a = 0 properly identifies the phase boundary.
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Figure2.

(A) Phase boundaries for homogeneous oscillators. Phase boundary between the amplitude
death phase and the synchronized phase in the p vs. D plane for various values of J, with wq
=1 and Ag = 1. The synchronized phase occurs above the phase boundary and the amplitude
death phase occurs below the boundary. (B) Numerical simulations for /=0 with /=40
identical oscillators with random initial conditions. Heat map of the steady-state amplitude
of collective oscillations, R =4, showing the transition from the amplitude phase to
synchronized oscillations for D> 1. The white curve is the analytic phase boundary. Since J
=0, the phase transition occurs because of slow dynamics of the external medium at low-
densities. Inset: Real part of zand Zduring low density oscillations showing ~ 1000-fold
slowing of oscillations relative to the uncoupled frequency wq = 1571 at the starred point (D
=25,p=0.001, J=0).
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Figure 3.

(A) Phase boundaries in p vs D plane for heterogeneous oscillators drawn from a rectangular
distribution (I" = 0.5) for J=.05-0.55 (bottom to top). The synchronized phase occurs above
the phase boundary and the amplitude death phase occurs below the boundary. Parameters
are as in Fig.2 with wg = 1, and Ag = 1. Comparing with the corresponding phase boundaries
in Fig. 2 for homogenous oscillators, we see that oscillator heterogeneity increases the
density, p, at which the transition from amplitude death to synchrony occurs for a fixed D.
(B) Numerical simulations for J= 0.15. Heat map of the amplitude of collective oscillation,
R =4, from simulations of A/= 100 oscillators drawn from a rectangular frequency
distribution with parameters as in (A). The dotted line indicates the Kuramoto-like transition
from an incoherent phase with D < 1 to synchronized oscillations and the solid line indicates
the transition from the amplitude death phase to the synchronized phase. The star marks the
point along the line D= Ag =1 at which all three phases meet. This is similar to the
experimental results for catalytic BZ particles [5]
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