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Abstract
We discuss a new method of estimation of parameters in semiparametric and nonparametric
models. The method is based on U-statistics constructed from quadratic influence functions. The
latter extend ordinary linear influence functions of the parameter of interest as defined in
semiparametric theory, and represent second order derivatives of this parameter. For parameters
for which the matching cannot be perfect the method leads to a bias-variance trade-off, and results
in estimators that converge at a slower than n–1/2-rate. In a number of examples the resulting rate
can be shown to be optimal. We are particularly interested in estimating parameters in models
with a nuisance parameter of high dimension or low regularity, where the parameter of interest
cannot be estimated at n–1/2-rate.
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1 Introduction
Let X1, X2, . . . , Xn be a random sample from a distribution Pη with density pη relative to a
measure μ on a sample space , where the parameter η is known to belong to a subset
H of a normed space. We wish to estimate the value χ(η) of a functional  with the
help of the observations X1, . . . , Xn. Our main interest is in the situation of a
semiparametric or nonparametric model, where H is an infinite-dimensional set, and the
dependence  is smooth.

This problem has been studied under the heading “semiparametric statistics” in the 1980s
and 1990s. A theory of asymptotic lower bounds for “regular parameters” χ(η) based on Le
Cam's concept of local asymptotic normality (Le Cam 1960) was developed starting with
Koševnik and Levit (1976) and Pfanzagl (1982), and worked out for many examples in,
among others, Begun et al. (1983), van der Vaart (1988) and Bickel et al. (1993). There are
many examples of ad-hoc estimators that attain these bounds, and the behaviour of
principled methods such as maximum likelihood (including its sieved and penalized
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variants) or estimating equations is understood to a certain extent (e.g., van der Vaart 1994;
Murphy and van der Vaart 2000; Bolthausen et al. 2002; Wellner et al. 1993; van der Laan
and Robins 2003).

Certain combinations of models (Pη: η ∈ H) and parameter χ(η) possess structural
properties that allow to estimate the parameter at n–1/2-rate, no matter the size of the
parameter set H. In this paper we are interested in the other situations, where the rate of
estimation drops when the complexity of the model exceeds a certain limit. Such examples
arise for instance when many covariates must be included in a model to correct for possible
confounding in a causal study, or for modelling the probability that an individual is included
in a sample in a study with missing observations. If simple (e.g., linear) models for the
dependence on these covariates are not plausible, which is typical in epidemiological
studies, then the resulting model must be taken so large that the usual methods fail. These
methods typically focus on variance only, because the bias is negligible due to the structure
of the model, or by explicitly assuming a “no-bias condition” (see Klaassen 1987; Murphy
and van der Vaart 2000). In this paper we develop new methods that make a bias-variance
trade-off when necessary.

These methods are based on quadratic estimating equations rather than the usual linear
estimating equations.

Quadratic expansions for semiparametric models were previously investigated by Pfanzagl
and Wefelmeyer (Pfanzagl 1985), but from the very different perspective of second order
efficiency, i.e., the refinement of first order bounds by adding a lower order term. Our aim is
to show that second order influence functions can be used for first order inference, because
they permit balancing of bias and variance.

Following linear and quadratic is cubic, and so on. Extension of our approach to still higher
orders is possible, but comes with many new complications. We shall pursue this elsewhere.

The paper is organized as follows. In Sect. 2 we review linear estimators from our current
perspective. Next in Sect. 3 we introduce our new method of constructing quadratic
estimators. This section has mostly a heuristic nature. In Sects. 4 and 5 we give rigorous
constructions and results for two examples. The first is a classical theoretical example. The
second is more extensive and concerns estimating a mean response when the response is not
always observed.

Notation Let  and  denote the empirical measure and empirical U-statistic measure,

viewed as an operators on functions: for given functions  and  these are
given by

We use the notation  also for  a function of one argument, with the
interpretation . This is consistent with the given formulas if a function of one
argument is considered as a function of 2 arguments that is constant in its second argument.

We write  for the expectation of  if X1, . . . , Xn are distributed according to
the probability measure P. We also use the operator notation for the expectations of statistics
in general.

Robins et al. Page 2

Metrika. Author manuscript; available in PMC 2012 October 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We call a measurable function  degenerate relative to P if 
for i = 1, 2, and we call it symmetric if g(x1, x2) = g(x2, x1) for every .

Given two functions  we write g × h the function . Such tensor
products functions are degenerate if both functions f and g have mean zero. The
corresponding notation P × Q of two measures P and Q gives the product measure.

2 Linear estimator
Given an initial estimator  of η, the plug-in estimator  is typically a consistent
estimator of the parameter of interest χ(η), but it may not be a good estimator. In particular,
if  is a general purpose estimator, not specially constructed to yield a good plug-in, then

 will often have a suboptimal precision. To gain insight in this situation we assume that
the parameter permits a Taylor expansion of the form

(1)

Such an expansion suggests that the plug-in estimator will have an error of the order
, unless the linear term in the expansion vanishes.

The expansion (1) also suggests that better estimators can be obtained by “estimating” the
linear term in the expansion. To achieve this we assume a “generalized von-Mises
representation” of the derivative of the form

(2)

for some measurable function , referred to as an influence function. The second

equality is valid if  is degenerate relative to  for every η, which can

always be arranged by a recentering, as . The von-Mises representation and
Eq. (1) suggest the “corrected plug-in estimator”

(3)

This estimator should have an error of the order , as the difference

 is “centered” and ought to have “variance” of the order O(1/n).

We put “centered” and “variance” in quotes, because the randomness in the initial estimator
 prevents a simple calculation of mean and variance. Empirical process theory can be used

to show that the effect of replacing  by  is negligible, if the class of functions  is not
too rich. In the present paper we are interested in orders of magnitude only, and then a
simpler approach is to split the sample and use separate observations to construct  and to
construct . Then the orders can be justified by reasoning conditionally on the first sample,

and it suffices that  remains bounded in probability.

Von Mises (1947) originally introduced the expansions that are named after him in order to
investigate functionals of empirical distributions. The idea to use expansions (1) for
estimation in nonparametric models occurs in Emery et al. (2000). Our situation is more
involved, because we are interested in models (Pη: η ∈ H) that are structured through a map

, and we are interested in a functional χ(η) of the parameter. In this situation a von-
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Mises type expansion can fail for two reasons. First a derivative  is by definition a
continuous, linear map on the underlying normed space, and such maps may or may not be
representable as an integral, depending on the normed space. Second, our von Mises
expansion (2) represents this derivative as an integral relative to the distribution Pη and
hence also involves the inverse map Pη → η from the distribution of the data to the
parameter. We require representation through Pη, because this allows us to construct the
estimator (3) by replacing Pη by the empirical distribution.

These issues are related to investigations in the theory of semiparametric models (see
Koševnik and Levit 1976; Pfanzagl 1982; van der Vaart 1988; Bickel et al. 1993). These
papers define a tangent set of a semiparametric model (Pη: η ∈ H) as the set of functions

 obtainable as

where the limit is taken in the L2-sense, and  ranges over a collection of maps from

 to H for which the limit exists. Informally, a “tangent vector”  is just a score
function

(4)

of a one-dimensional submodel (Pηt : t ≥ 0) at t = 0, where η0 = η. (Taking the derivative in
the L2-sense is appropriate for asymptotic information theory, but not necessarily so for the
present heuristic discussion.) An influence function is defined as a measurable map

 such that, for all paths  considered,

(5)

It is not difficult to see that the latter influence function is the same as the influence function
needed in the von-Mises expansion (2), if the various types of derivatives match up. (Note

that the middle expression in (2) with η replaced by ηt and  by η expands to ,

as .) Necessary and sufficient conditions for existence of an influence
function in terms of the derivatives of the maps  and  were investigated in
van der Vaart (1991).

An influence function is not necessarily unique, as only its inner products with elements 
of the tangent set matter. The projection of any influence function that is contained in the
closed linear span of the tangent set is called the efficient influence function or canonical
gradient, as it is the influence function of asymptotically efficient estimators. It minimizes

the variance  over all influence functions.

3 Quadratic estimator

If the preliminary estimator  attains a rate of convergence , then the plug-
in estimator (3) attains a n–1/2-rate of convergence. Typically this will require that the
parameter set H is not too big. If the preliminary estimator is less precise, then the remainder
term of the expansion (1) will dominate. This suggests to take the expansion further to
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(6)

The generalization of the first order construction now requires a von Mises type

representation of the form, for measurable functions  and ,

(7)

We assume without loss of generality that the functions  and  are degenerate relative to
Pη. The von-Mises representation then suggests the “corrected plug-in estimator”

(8)

The empirical measure and two-sample U-statistic serve as unbiased estimators of the
expectations of their kernels. For simplicity we may again base the initial estimator  and
these two U-statistics on independent samples of observations. Because the variance of a U-
statistic is of order O(1/n), this estimator ought to have an error of the order

. We shall discuss the validity of this later.

To characterize the first and second order influence functions we can again employ smooth
one-dimensional submodels (Pηt : t ≥ 0). With the first and second order derivatives of these
models denoted by

(9)

the von Mises expansion (7) can informally be seen to imply

(10)

(11)

The Eq. (10) is identical to Eq. (5), and hence a first order influence function  can be
taken as before. Following Pfanzagl (1985) we define a second order influence function 

as a measurable function  that satisfies (11) for every path  under
consideration. From Eq. (11) we see that  is unique only up to functions that are

orthogonal to functions of the form , for  belonging to the tangent set. In particular,
a second order influence function  can always be taken to be symmetric and degenerate
relative to Pη. It must be taken so in the construction of the estimator (8).

The two influence functions occur together in Eq. (11), and hence should be considered a

pair  of functions rather than as two separate functions. This is particularly important
if the tangent set is not “full”, i.e., smaller than the set of all mean-zero functions in L2(Pη),
the tangent set of a nonparametric model. Both first and second order influence functions are
then non-unique, but their different versions cannot be freely combined into valid pairs
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. This is connected to the fact that first and second order derivatives  and  are also
not clearly separated. A simple change of speed  of a path through a second order
diffeomorphism ϕ: [0, 1] → [0, 1] leads to the submodel (Pηϕ(t): t ≥ 0) with first and second
order derivatives, by the chain rule,

Thus the first order derivative becomes part of the second order derivative after
reparameterization. Pfanzagl (Pfanzagl 1985, 2.4.4) has shown, under assumptions of
smoothness of the tangent set as a function of the parameter, that the sum of every first order
derivative and every second order derivative occurs as the second order derivative of some
path. Thus the set of second order derivatives  is only defined up to equivalence modulo
the tangent set.

From Eq. (11) it is also clear that second order influence functions involve the joint
distribution of two observations. Correspondingly, we prefer to define a second order
tangent space of the model not through the second order derivatives  along paths ,
but through the functions of two arguments

(12)

The function  is a second order score for the model (Pη × Pη: η ∈ H) for two observations.
The corresponding first order scores are

(13)

With these notations the Eqs. (10), (11) defining the influence functions can also be written
as, if  is chosen degenerate,

(14)

(15)

Here we interprete the function  as a function  that depends on the
first argument only (and is constant in the second), or (better) replace it by its

symmetrization . The equations show that the overall influence

function  is characterized by having “correct” inner products with the overall scores

 and . This overall influence function uniquely defines its constituents  and 
provided  is restricted to be degenerate. The overall influence function is itself unique

only up to projection onto the closed linear span in L2(Pη × Pη) of all functions  and .

The equality of the far left and right sides of Eqs. (14), (15) gives an alternative
characterization of the overall influence function (at η0) as a function such that the maps
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 and  possess the same first and second order derivatives at η0.
Because the derivatives of a map ϕ on an open subset H of a normed space are completely
characterized by the derivatives of the maps , for h ranging over the space
(“Gateaux derivatives”), we conclude that in the case of such parameters sets H it suffices to

consider linear paths . (The mixed second derivative  can be recovered

from  and  by “polarization”.) This is true more generally for
parameter spaces H defined by a linear constraint, but in the case of nonlinear constraints the
use of curved paths is necessary.

The plug-in estimator (8) can be written . A definition of an efficient or
canonical second order influence function, should therefore refer to the variance of the U-

statistic . Unlike in the linear case this does not translate in the variance of the

influence function  itself (except for n = 2 if  is interpreted as the symmetric

function ). By Eq. (5), if  is chosen degenerate and
symmetric,

Thus the second order part adds a term of order O(1/n) relative to the first order

contribution. The norm of the function  in L2(Pη × Pη) is irrelevant, even though the
inner product of this space determines the influence functions.

It is possible to resolve this discrepancy by working in the model with n observations. From
the expansion

we see that first and second order scores for the model  take the forms

(16)

(17)

Rather than in the form Eqs. (14), (15), the Eqs. (10), (11) that define the influence functions
can then be written in the form

(18)
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(19)

We conclude that the influence functions are determined by the inner products of the U-

statistic  in  with the score functions  and . The influence functions
that yield a minimal variance are found by projecting this U-statistic onto the closed linear
span of these score functions. Thus it is natural to define the latter span as the second order
tangent space of the model.

For computation in examples the defining Eq. (11) or (15) of a second order influence
function can be tedious. It is usually easier to apply the rule that a second derivative is the
derivative of the first derivative. In the present situation this takes the following form

(Pfanzagl 1985, 4.3.11): if  is a function such that  is a first

order influence function of the parameter , for every fixed x1 and a first order

influence function  (not necessarily degenerate), then  is a second order influence
function.

Lemma 1 Suppose that (Pηt : t ≥ 0) is a sufficiently smooth submodel and  and

 are measurable functions that satisfy

Then the function  is a second order influence function, and so is the symmetrization of its
orthogonal projection onto the degenerate functions in L2(Pη × Pη).

Proof By differentiation of the first identity (under the integral) we see that

We evaluate this at t = 0 and substitute the second identity in the first term on the right to
arrive at Eq. (11). The equation remains valid if  is replaced by its projection and
symmetrization.

Just as for first order influence functions there is no guarantee that a second order influence
function exists. The difference is that, for the examples we are interested in, nonexistence of
a second order influence function is typical. A first indication that this might happen is that
the informal conclusion reached in the preceding that the quadratic estimator (8) will have

an error of the order  is overly optimistic. In comparison to the
linear estimator (3), this estimator would have reduced the dependence on the preliminary

estimator  from  to , apparently without a serious penalty on the
variance of the estimator. In our examples this does not occur, simply because a second
order influence function does not exist.

As for the first order influence function, the nonexistence of the second order influence
function may be caused by a lack of invertibility of the map η → pη or by failure of a von
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Mises type representation. The invertibility is again necessary, because we need
representation of the derivatives of  in terms of the distribution Pη of the
observation. This is similar as in the linear situation. The second cause for failure of
representation also arose in the linear situation, but appears to arise in a much more serious

way at the second order. Whereas a continuous, linear map  is always

representable as an inner product  for some function , a continuous, bilinear

map  is not necessarily representable through a measurable function

, in the form

(20)

It can be shown that a continuous, bilinear map can always be written in the form B(g, h) =
∫ g(Ah) dPη for a continuous, linear operator A: L2(Pη) → L2(Pη), but the latter operator is

not necessarily a kernel operator in that  for some kernel
. The latter representation is necessary for the von-Mises representation (7) of the second

derivative.

Failure of existence of  does not mean that the idea to use a quadratic expansion for
improved estimation is not fruitful. Failure does mean that we cannot construct the estimator

(8) and the estimation rate  may not be attainable. However, we
may return to Eq. (6) and try and estimate the quadratic term as well as possible, and still
improve on the linear estimator. A key observation is that a bilinear map on a finite-
dimensional subspace L × L ⊂ L2(Pη) × L2(Pη) is always representable by a kernel.

Lemma 2 If L ⊂ L2(Pη) is a finite-dimensional subspace and  is continuous

and bilinear, then there exists a function  such that (20) holds for every g, h
∈ L.

Proof For an arbitrary orthonormal basis e1, . . . , ek of L we can express an element g ∈ L as

, for 〈·, ·〉η the inner product of L2(Pη). By bilinearity

Thus the function  is a kernel for the map B.

If the invertibility  can be resolved, we can therefore always represent the second
derivative in Eq. (6) at differences  within a given finite-dimensional linear space. The
estimator (8) based on the resulting “partial second order influence function” then will add a

representation error to the remainder . This representation error can be made
arbitrarily small by choosing the finite-dimensional linear space sufficiently large. However,
the corresponding partial influence functions depend on the approximating linear spaces, the
estimator now having the form
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(21)

where  is a partial second order influence function based on an approximating space L.
To obtain a good estimator we must balance the representation error, remainder

, and the variance of the estimator. In an asymptotic framework we let the
approximating space L increase to the full space when n → ∞. We shall see that this may

cause the variance of  to dominate the variance of the linear term  and the overall
variance may be bigger than O(1/n). However, by proper balancing of the three terms we do
never worse than the linear estimator (3), and we gain over it if the parameter set H is large.

4 Estimating the square of a density
Consider the problem of estimating the functional χ(p) = ∫ p2 dμ based on a random sample
of size n from the density p. This problem was discussed among others in Bickel and Ritov
(1988) and Laurent (1996), Laurent (1997). We shall rederive the estimator by Laurent
(1996) through our general approach.

As the underlying model  we use a set of densities that is restricted only qualitatively, for
instance a Hölder space of functions on the unit square in . We parameterize this model
by the density itself, which we denote by p (hence pη = η = p). The tangent space of the

model can then be taken equal to the set of all mean zero functions  in L2(P), and
the first order influence function takes the form

(22)

To see this, it suffices to note that this function is mean-zero (i.e., degenerate) and satisfies

for any sufficiently regular path  with p0 = p and score function  at t = 0.
This first order influence function exists without making assumptions on p or .

We compute a second order influence function as the influence function of the functional

, which is the first order influence function up to centering. This entails
point evaluation at a fixed point x1, which, unfortunately, is not a differentiable functional in
the sense of possessing an influence function. For any sufficiently regular path  with

score function ,

Existence of an influence function of the functional  would require the map
 to be representable as an inner product in L2(P) on the tangent space. Such

a representation is not possible (unless p has finite support), because the map is not
continuous relative to the L2(P)-norm.

Thus we content ourselves with partial representation of the second derivative. To this aim it
is useful to think of the point evaluation map as integrating versus the Dirac measure (at x1).
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Full representation of the functional  would be possible if there existed a
function  such that,

(23)

If this were true for every function g, then the measure  would, for
each fixed x1, act as a Dirac measure at x1. In other words, the desired, but not existing,
function Π would be a “Dirac measure” on the diagonal of . Our second best is a
function for which Eq. (23) is true, if not for all, then for a large collection of g. The kernel
Π of a projection operator Π: L2(μ) → L2(μ) onto a (large) subspace is a candidate, because
it satisfies the display whenever gp is in the subspace: if Πf (x1) = ∫ Π(x1, x2) f (x2) dμ(x2),
then the equation gp = Π(gp), which is valid for every gp in the range of the projection,
gives the preceding display.

Lemma 3 An orthogonal projection Π: L2(μ) → L ⊂ L2(μ) onto a finite-dimensional
subspace L can be represented as Πf (x1) = ∫ Π(x1, x2) f (x2) dμ(x2) for the kernel function

 and e1, . . . , ek an orthonormal basis of L. This kernel satisfies
∫ Π2 dμ × μ = k.

Proof We have  for . The representation follows
by exchanging the order of summation and integration.

The square kernel is . By the orthonormality of the
basis (ei) the (double) integral of the off-diagonal terms (i ≠ j) vanishes and the double
integral of the diagonal terms is equal to 1. Thus the double integral is k.

We also arrive at a projection operator from the formula  for the

second derivative of χ. We can write this in the form  for the
operator Ap: L2(P) → L2(P) given by Aph = hp. The operator Ap is not of kernel form, but
we can approximate it by ΠAp, leading to the approximation 2 ∫ g(ΠAph) dP = 2 ∫ gp

(Π(hp)) dμ for .

For a given orthonormal basis e1, e2, . . . of L2(μ) we take the kernel Π(x1, x2) of the
projection onto the span of the first k elements, given by Lemma 3, as a “partial” influence
function of the functional , and  as a “partial” influence function

of the functional . The projection of this function onto the degenerate functions
is

(24)

The quadratic estimator (8), given the initial estimator , takes the form
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for  the Fourier coefficients of . If we choose the initial estimator to take values

in the range of Π, then  for i > k and the second term vanishes. The resulting estimator
reduces to the estimator considered by Laurent (1996,1997), who showed that the estimator
is minimax if p is a-priori known to belong to a multiple of the unit ball in the Hölder space
Cβ[0, 1] of regularity β and (ei) is a basis suited to this a-priori model. In fact, mean and
variance of the estimator satisfy, with θi the Fourier coefficients of p,

The bound on the variance follows from Lemma 6. If it is a-priori known that ,

then the bias is bounded by . The square bias is balanced against the variance
if k is chosen of the order kn = n2/(4β+1) if β ≤ 1/4 and kn = n if β ≥ 1/4. The resulting rate of
convergence is n–2β/(4β+1 if β ≤ 1/4 and n–1/2 if β ≥ 1/4. In Robins et al. (2007) it is shown
that it is also asymptotically normal.

5 Estimating the mean response in missing data models
Suppose that a typical observation is distributed as X = (Y A, A, Z) for Y and A taking
values in the two-point set {0, 1} and conditionally independent given Z. We think of Y as a
response variable, which is observed only if the indicator A takes the value 1. The covariate
Z is chosen such that it contains all information on the dependence between response and
missingness indicator (missing at random). Alternatively, we think of Y as a counterfactual
outcome if a treatment were given (A = 1) and estimate (half) the treatment effect under the
assumption of “no unmeasured confounders”. Both applications may require that Z is high-
dimensional (e.g., of dimension 10), and there is typically insufficient a-priori information to
model the dependence of A and Y on Z.

The model can be parameterized by the marginal density f of Z (relative to some dominating
measure ν) and the probabilities b(z) = P(Y = 1|Z = z) and a(z)–1 = P A = 1|Z = z). (We use
a for the inverse probability, because this simplifies later formulas.) Thus the density pη of
an observation X is described by the triple η = (a, b, f).

We wish to estimate the mean response EY, i.e., the parameter

Estimators that are n–1/2-consistent and asymptotically efficient in the semiparametric sense
have been constructed using a variety of methods (e.g., Robins and Rotnitzky 1992; van der
Laan and Robins 2003; van der Vaart 1998), but only if a or b, or both, parameters are
restricted to sufficiently small regularity classes. For instance, if the covariate ranges over a
compact, convex subset  of , then the mentioned papers provide n–1/2-consistent
estimators under the assumption that a and b belong to Hölder classes Cα(Z) and Cβ(Z) with
α and β large enough that

(25)
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For moderate to large dimensions d this is a restrictive requirement. We shall show that a
quadratic estimator of the type (8) can attain a n–1/2-rate in a bigger model and obtains a
strictly better rate than the usual estimators if the n–1/2-rate is not obtainable.

Prelimary estimators
The parameter 1/a(z) = E(A|Z = z) is the regression of A on Z and hence can be estimated by
any nonparametric regression estimator, such as a kernel or a truncated series estimator.
Similarly, the function b(z) = P(Y = 1|Z = z, A = 1) is the regression of the observed Y on Z
and can be estimated by nonparametric regression based on the subsample (Yi : Ai = 1) on
the corresponding Zi. We shall see below that the parameter f/a is more fundamental than
the parameter f. By Bayes’ rule (f/a)(z) = P(A = 1|Z = z) f (z) is P(A = 1) times the
conditional density of Z given A = 1. Therefore, we may estimate f/a by a nonparametric

density estimator based on the subsample (Zi : Ai = 1) times .

Tangent space and first order influence function
The one-dimensional submodels  induced by paths of the form at = a + tα, bt = b +
tβ, and ft = f (1 + tϕ) for given directions α, β and ϕ yield scores

, for , ,  the score operators for the three parameters, given
by

The first-order influence function is well known to take the form

(26)

To see this it must be verified that this function satisfies, for every path  as described
previously,

For the paths at = a + tα, bt = b + tβ and ft = f(1 + tϕ) the left side of this equation is ∫ (β +
bϕ) f dν. The right side can easily be evaluated to be the same, where it may be noted that
conditional expectations of functions of Y and A given Z factorize, with E(Y – b(Z)|Z) =
E(Aa(Z) – 1|Z) = 0 and E (Y – b(Z)2|Z = b(1 – b)(Z).

The advantage of choosing a an inverse probability is clear from the form of the (random
part of the) influence function, which is a bilinear function in (a, b). The error of the
corresponding von-Mises representation can be computed to be, for a given initial estimator

,

(27)

This is quadratic in the errors of the initial estimators. Actually, the form of the bias term is
special in that square estimation errors of the two initial estimators  and  do no arise, but
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only the product of their errors. This property, termed “double robustness” in Rotnitzky and
Robins (1995), Robins and Rotnitzky (2001), van der Laan and Robins (2003), makes that it
suffices that one of the two parameters is estimated well. A prior assumption that the
parameters a and b are α and β regular, respectively, would allow estimation errors with
rates n–α/(2α+d) and n–β/(2β+d). If the product of these rates is o(n–1/2), then the bias term is
negligible, and the linear estimator (3) attains a rate n–1/2. This leads to the condition (25). If
this condition fails, then the “bias” (27) is greater than O(n–1/2). The linear estimator then
does not balance bias and variance and is suboptimal.

It may be noted that the marginal density f does not enter the first order influence function.
Even though the functional depends on f, a rate on the initial estimator of this function is not
needed for the construction of the first order estimator. This will be different at second
order.

Quadratic estimator
We proceed to the computation of a second order influence function using Lemma 1, by

searching a function  such that, for every x1 = (y1a1, a1, z1), and all directions
α, β, ϕ,

(28)

Here the expectation is relative to the variable X2 only. Let  be the kernel of an
operator Kη: L2(f) → L2(f) (i.e., Kηg(x1) = ∫ K(x1, x2)g(x2) f (x2) dμ(x2)), and define

(29)

For this choice the right side of Eq. (28) can be seen to reduce to

(Note that var (Aa(Z)|Z) = a(Z) – 1.) Thus the choice Eq. (29) of  satisfies Eq. (28) for
every (α,β,ϕ) such that Kηα = α and Kηβ = β. Were Kη equal to the identity operator, then
Eq. (28) would be satisfied for every (α, β, ϕ), and an exact second order influence function
would exist. Unfortunately, the identity operator is not given by a kernel. As in Sect. 4 we
have to be satisfied with an influence function that gives partial representation.

To ensure that  is symmetric we choose Kη(z1, z2) = Πη(z1, z2)/a(z2) for Πη a symmetric
function. Specifically, we choose Πη the kernel of an orthogonal projection Πη: L2(f/a) →
L2(f/a) onto a space L. The corresponding operators then (trivially) satisfy Kηg = Πηg for
every g ∈ L2(f/a), and hence Kη will approximate the identity if L is large. The function (29)
that results from this choice can be seen to be both symmetric and degenerate, and hence is a
candidate “approximate” influence function. If S2 symmetrizes a function of two variables
(i.e., 2 S2 g(X1, X2) = g(X1, X2) + g(X2, X1)), then this influence function can be written as

(30)

For an initial estimator  based on independent observations we now construct the estimator
(8).
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Let  and  denote conditional expectations given the observations used to construct ,
and let ∥ · ∥2 be the norm of L2(f/a). Assume that the true functions a, f and the estimators ,

 are bounded away from 0 and ∞.

Theorem 1 The estimator  with (approximate) influence functions

 and  defined by (26) and (30) with Πη the kernel of an orthogonal projection in L2(f/a)
onto a k-dimensional linear subspace satisfies

Proof From Eqs. (27) and (30) we have

The double integral on the far right with  replaced by Πη can be written as the single

integral . Added to the first integral on the right this gives

By the Cuachy-Schwarz inequality this is bounded in absolute value by the second term in
the upper bound for the bias.

Replacement of  by Πη in the double integral gives a difference

By the Cauchy-Schwarz inequality the absolute value of this is bounded above by

Here  is multiplication by the function , and

 is the  for the measure  defined by . Considering  as the
projection in  with weight 1, and Πη as the weighted projection in  with weight
function , we can apply Lemma 4 to the middle term and conclude that this is bounded in

absolute value by . Because we assume that the functions f/a and
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 are bounded away from zero and infinity, this can be seen to yield the first term in the
upper bound on the bias.

The function  is uniformly bounded and hence the (conditional) variance of  is of the
order OP(1/n). Thus for the variance bound it suffices to consider the (conditional) variance
of . In view of Lemma 6 this is bounded above by

The variables  and  are uniformly bounded. Hence the last term on

the right is bounded above by a multiple of , which is bounded

by , by Lemma 3. The first order term is of the order O(1/n). To see this we first
note that

Here the variables  and  are uniformly bounded, and the second
moment of  is bounded by  times the second moment of g in , for every g.

Conclusion
Assume that the parameters a, b and f/a are known to be “regular” of degrees α, β and ϕ,
respectively, in the sense that there exists a sequence of k-dimensional linear spaces Lk such
that, for some constant C,

This is true, for instance, if the functions a, b and f/a are defined on a compact, convex
domain in  and are known to belong to Hölder (or Besov) spaces of functions of
smoothness α, β and ϕ. The approximation is then valid even with the uniform norm on the
left side, where the spaces Lk can be taken to be generated by polynomials, splines or
wavelets.

In this case there also exist estimators  and  and  that achieve convergence rates
n–α/(2α+d), n–β/(2β+d) and n–ϕ/(2ϕ+d), respectively, uniformly over these a-priori models. Then
the estimator  of Theorem 1 attains the square rate of convergence

The optimal value of k balances the first and fourth terms and is of the order k ~
n2d/(d+2α+2β). The resulting rate is n–γ for

Robins et al. Page 16

Metrika. Author manuscript; available in PMC 2012 October 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This reduces to the rate n–1/2 under condition (25), but also if (α + β)/2 ≥ d/4 and ϕ is
sufficiently large:

(In this case we can also choose k = n independent of α and β.) In case the rate n–γ is slower
than n–1/2, then it is still better than the rate n–α/(2α+d)–β/(2β+d) obtained by the linear
estimator (3).

Thus the quadratic estimator outperforms the linear estimator.

6 Technical results
Let L be a given closed subspace of  and  a bounded, measurable
function. Define operators  by

Thus Π is the ordinary orthogonal projection on the space L, and Πw is a weighted
projection. The projections can be characterized by the orthogonality relationships ∫ (g –
Πg)l dμ = 0 and ∫ (g – Πg)l w dμ = 0, for every l ∈ L.

Lemma 4 Let Πw and Π be theweighted projections onto a fixed subspace L of L2(μ)
relative to the weight functions w and 1, respectively, and let Mw be multiplication by the
function w. Then .

Proof The orthogonality relationships for the projections Π and Πw imply that, for every l ∈
L and g,

Because Πwg – (wg) is contained in L,

An application of the Cauchy-Schwarz inequality and next cancellation of one factor
 gives that . The right side is bounded

above by .

Lemma 5 For degenerate, symmetric functions  we have  and
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Lemma 6 For any measurable function , and f1(x1) = ∫ f(x1, x2) dP(x2),

Proof The first lemma follows by writing the square sum  as a double sum (over
ordered pairs i < j). The expected values of the off-diagonal terms vanish by degeneracy.

For a general measurable function  the mean Pf2 is the projection onto the

constant functions, and the function  defined by  is the
projection of f in L2(P2) onto the mean zero functions of one variable. The decomposition

where f12 is defined by the equation yields the Hoeffding decomposition

 of the U-statistic in orthogonal parts, with  degenerate. Using

Lemma 5 we see that the variance of  is equal to . The

norm of  is smaller than the norm of f1. Because f12 is projection of f, its norm is bounded
by the norm of f.
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