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Anatomical Characterization of a Rabbit Cerebellar Eyeblink
Premotor Pathway Using Pseudorabies and Identification of
a Local Modulatory Network in Anterior Interpositus

Jimena Gonzalez-Joekes!? and Bernard G. Schreurs!?
'Blanchette Rockefeller Neurosciences Institute, and Departments of 2Neurobiology and Anatomy, and 3Physiology and Pharmacology, West Virginia
University, Morgantown, West Virginia 26506

Rabbit eyeblink conditioning is a well characterized model of associative learning. To identify specific neurons that are part of the
eyeblink premotor pathway, a retrograde transsynaptic tracer (pseudorabies virus) was injected into the orbicularis oculi muscle. Four
time points (3, 4,4.5,and 5 d) were selected to identify sequential segments of the pathway and a map of labeled structures was generated.
At 3 d, labeled first-order motor neurons were found in dorsolateral facial nucleus ipsilaterally. At 4 d, second-order premotor neurons
were found in reticular nuclei, and sensory trigeminal, auditory, vestibular, and motor structures, including contralateral red nucleus. At
4.5 d, labeled third-order premotor neurons were found in the pons, midbrain, and cerebellum, including dorsolateral anterior inter-
positus nucleus and rostral fastigial nucleus. At 5 d, labeling revealed higher-order premotor structures. Labeled fourth-order Purkinje
cells were found in ipsilateral cerebellar cortex in cerebellar lobule HVI and in lobule I. The former has been implicated in eyeblink
conditioning and the latter in vestibular control. Labeled neurons in anterior interpositus were studied, using neurotransmitter immu-
noreactivity to classify individual cell types and delineate their interconnectivity. Labeled third-order premotor neurons were immuno-
reactive for glutamate and corresponded to large excitatory projection neurons. Labeled fourth-order premotor interneurons were
immunoreactive for GABA (30%), glycine (18%), or both GABA and glycine (52%) and form a functional network within anterior
interpositus involved in modulation of motor commands. These results identify a complete eyeblink premotor pathway, deep cerebellar

interconnectivity, and specific neurons responsible for the generation of eyeblink responses.

Introduction

Delay eyeblink conditioning is a well characterized model of as-
sociative learning but the locus of learning is still a matter of
debate. Possible sites of plasticity have been found in the anterior
interpositus nucleus (AIN) of the deep cerebellar nuclei (DCN)
(McCormick et al., 1982; Marek et al., 1984; Nowak and Gor-
mezano, 1990; Thompson and Steinmetz, 2009; Freeman and
Steinmetz, 2011), lobule HVI of the cerebellar cortex (Yeo et al.,
1985; Gould and Steinmetz, 1996; Schreurs et al., 1998; Jirenhed
et al., 2007; Kellett et al., 2010), and anterior lobule (Perrett and
Mauk, 1995; Green and Steinmetz, 2005). Identification of a
complete cerebellar premotor pathway of the eyeblink response
can be of great value in elucidating the specific components in-
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volved in the generation and modulation of eyeblink
conditioning.

DCN is the final filter that integrates all the information pro-
cessed in the cerebellum and generates its sole output. However,
unlike the cerebellar cortex, the circuitry of the DCN is poorly
understood. There are at least six types of neurons in the DCN,
including large glutamatergic projection neurons, two types of
inhibitory projection neurons, and at least two types of interneu-
rons. The only excitatory output of the DCN is generated by large
glutamatergic neurons that project to different extra-cerebellar
sites and comprise ~50% of the total DCN neuronal population
(Batini et al., 1992; Teune et al., 2000). The first type of inhibitory
projection neuron is a small GABAergic neuron that projects to
the inferior olive and forms the nucleo-olivary feedback loop
(Tolbert et al., 1976; de Zeeuw et al., 1989). The second type is a
large glycinergic neuron (recently discovered in the fastigial nu-
cleus) that projects to vestibular and reticular sites (Bagnall et al.,
2009). Recent electrophysiological studies in transgenic mice ex-
pressing GAD-eGFP or GlyT2-eGFP were able to distinguish at
least two types of interneurons: a GABAergic or mixed GABA/
glycinergic interneuron and a non-GABAergic (possibly gluta-
matergic) interneuron (Uusisaari and Knopfel, 2010, 2011).
However, the role of these interneurons is unknown and their
interactions have not been studied.

Retrograde transsynaptic viral tracers are a powerful tool for
identifying neuronal networks. Attenuated pseudorabies virus



Gonzalez-Joekes and Schreurs @ Pseudorabies Traces Rabbit Eyeblink Premotor Pathway

B

N U It

Figure 1.

in the AIN of the cerebellum and other areas.

Bartha (PRV) (Bartha, 1961) reveals that hierarchical chains of
functionally connected neurons and multisynaptic pathways can
be identified by following the extent and time course of the PRV
infection (Daniels et al., 1999; Billig et al., 2000; Kerman et al.,
2006; Van Daele and Cassell, 2009). In the present study, the
premotor pathway of the rabbit orbicularis oculi muscle (OOM)
responsible for the eyeblink was traced retrogradely using PRV.
Neurons in the AIN involved in the pathway were characterized
based on their neurotransmitter content. Of particular impor-
tance, three different types of inhibitory interneurons that are
part of the OOM premotor pathway were revealed to form a
possible functional network within the AIN for the modulation
of motor commands.

Materials and Methods

Animals

Twenty-four adult male New Zealand rabbits (Oryctolagus cuniculus),
between 3 and 4 months of age, weighing ~2.5 kg, were supplied by
Harlan. Four rabbits were assigned to each of four different time points
for PRV anatomical tracing (3 d, 4 d, 4.5 d, and 5 d) and four rabbits were
assigned to each of two time points for neurotransmitter immunohisto-
chemistry (4.5 d and 5 d). Rabbits were housed in individual cages, given
ad libitum access to food and water, and maintained on a 12 h light/dark
cycle, all in accordance with the National Institute of Health guidelines.
All procedures were approved by the West Virginia University Animal
Care and Use Committee.

PRV injections

An attenuated PRV expressing an enhanced green fluorescent protein
(PRV-152) was used as a retrograde transsynaptic tracer (Smith et al,,
2000). The PRV was a kind gift from L. W. Enquist (Princeton University,
Princeton, NJ). PRV enters the neuron terminals by fusion. Once inside,
the virus caspids interact with the neuron’s dynein, a cellular
microtubule-associated motor protein, and it travels retrogradely to the
nucleus where it replicates. After replication, it moves to the dendrites
where it infects synaptically connected cells (Curanovi¢ et al., 2009;
Curanovic and Enquist, 2009). PRV does not label sensory pathways, and
even though it can be taken up by sensory neurons, its exclusively retro-

=

Schematic diagram of the 00M premotor pathway labeled with PRV. A shows the location of 5 PRV injections (green
dashed lines) in 00M thatinclude the orbital, preseptal, and pretarsal muscles. B shows the retrograde transsynaptic spread of PRV
through the 00M premotor pathway. Directional and sequential spread of PRV through first-order (1°) motor neurons in the facial
nucleus (7N), second-order (2°) premotor neurons in the red nucleus (RN) and other areas, and third-order (3°) premotor neurons
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grade properties confine the virus to the sen-
sory neuron soma and it does not spread any
further (Smith et al., 2000; Mettenleiter, 2002;
Mettenleiter et al., 2006). The same batch of
PRV was used for all injections at a concentra-
tion of 2.3 X 10® plaque-forming units per
milliliter (PFU/ml). After arrival, PRV was ali-
quoted and stored at —80°C. Before PRV injec-
tions, rabbits were anesthetized with 20 mg/kg
Ketamine and 4 mg/kg Xylazine. Their right
eyelid was shaved and cleaned with isopropyl
alcohol. After thawing, PRV was sonicated for
2 min. A glass, 10 ul Hamilton syringe with a
31-gauge needle was rinsed three times in 95%
ethanol, sterile dH,O, sterile saline, and PRV.
Fifteen microliters of PRV divided into 5 injec-
tions of 3 ul each were injected into the right
OOM. Each injection was transverse to the
muscle fibers and delivered at a constant rate
through the orbital, preseptal, and pretarsal
portions of the OOM to ensure adequate viral
distribution. After injection, the syringe was
left in place for 10 min to achieve complete
viral absorption and to prevent any leakage. A
basic diagram of the PRV procedures is de-
picted in Figure 1.

Tissue processing

The 16 rabbits used for the delineation of the
OOM premotor pathway were injected with
Euthasol (sodium pentobarbital, 390 mg/ml)
and exsanguinated with 1.0 cc Euthasol (sodium pentobarbital, 390
mg/ml) at 3 (n = 4),4 (n =4),41/2 (n = 4),0r 5 (n = 4) d after
PRV-injections. They were perfused transcardially with 1.51 of 0.9%
saline (pH 7.4 at room temperature) followed by 11 of 4% formalde-
hyde. For anti-PRV immunohistochemistry, brains were collected
and placed in fixative for 4 h and transferred to 30% sucrose for
cryoprotection until they sank and 50 um sections were cut on a
freezing microtome.

Eight rabbits were used for characterization of AIN neurons based on
their neurotransmitter immunoreactivity. Animals were injected with
Euthasol (sodium pentobarbital, 390 mg/ml) and exsanguinated with 1.0
cc Euthasol (sodium pentobarbital, 390 mg/ml) at 4.5 (n = 4) or 5 (n =
4) d after PRV-injections. They were perfused transcardially with 1.5 1 of
0.9% saline (pH 7.4 at room temperature) followed by 11 of 2.5% glu-
taraldehyde and 1.5% formaldehyde. Brains were placed in fixative for
6 h, transferred to 30% sucrose for cryoprotection until they sank, and 25
um sections were cut. All sections were marked on the contralateral side
of injection to distinguish laterality.

Anti-PRV immunohistochemistry

Free-floating sections were washed in 0.5 M Tris and placed in 3% H,0O,
for 30 min to quench endogenous peroxidases. Antigen retrieval was
accomplished by incubating the sections in citrate buffer, pH 3.0, for 30
min at 37°C. After washing, the sections were blocked for 1 h in 3%
normal rabbit serum and incubated in a goat anti-PRV primary antibody
overnight at 4°C ( polyclonal gb-320 developed by R. Miselis, Philadel-
phia, PA, 1:10,000). The PRV primary antibody has been described ex-
tensively (Chen et al., 1999; Aston-Jones and Card, 2000; Aston-Jones et
al., 2004; James et al., 2008). After washing, the sections were placed in a
secondary antibody (biotinylated rabbit anti-goat 1:200) for 1 h. The
sections were then washed and placed in ABC (Vector Kit, Vector Labs)
for 1 h, washed once more, and stained with DAB (Vector Kit, Vector
Labs) for 2—4 min until color developed.

The location of each PRV-labeled neuron was plotted on sequential cor-
onal sections of the rabbit brain but a specific structure was only considered
to be labeled and reported here if more than one neuron was labeled in that
structure in each of the four rabbits used for a given time point.
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neurotransmitter immunoreactivity A
The 25 wm free floating sections were treated
with 0.5% sodium borohydride in 0.1 m PBS,
pH. 7.2, for 30 min to quench autofluorescence
produced by glutaraldehyde, and followed by
repeated washes. Sections containing the DCN
were incubated with primary antibodies for
72 h and with secondary antibodies for 48 h at
4°C in a buffer solution containing 0.1 M PBS,
pH 7.2, 3% normal goat serum, and 0.1% so-
dium azide (preservative). After specificity
tests, an optimal immunolabeling protocol was
developed. First, sections were incubated in a SRR W
polyclonal goat anti-PRV (gb-320 1:10,000) S5,
followed by its secondary antibody (donkey c o
anti-goat Alexa 488, Invitrogen; 1:500). Sec-
ond, sections were incubated in a mixture of
monoclonal mouse anti-L-glutamate conju-
gated to glutaraldehyde and bovine serum al-
bumin (anti-Glu-G-BSA; Millipore MAB5304,
1:1000), polyclonal guinea pig anti-GABA con-
jugated to glutaraldehyde and keyhole limpet
hemocyanin (anti-GABA-G-KLH; Millipore
AB175, 1:1000), and polyclonal rabbit anti-
glycine conjugated to glutaraldehyde and BSA
(anti-Gly-G-BSA; Millipore AB139, 1:1000).
After primary antisera incubation, sections
were washed several times over 24 h with 0.1 m E
PBS and 0.1% sodium azide. Sections were

then incubated with secondary antibodies

(goat anti-rabbit Alexa 405, goat anti-mouse

Alexa 546, and goat anti-guinea pig Alexa 633; :
Invitrogen, 1:400). The sections were then ; AR *‘ N
washed and mounted on gelatin-covered
mounting slides and coverslipped using KF

Fluoromount-G mounting media (Southern-
Biotech) and #1.5 coverslips (Fisher Scientific).

Antibody characterization W

Monoclonal mouse anti-glutamate antiserum
(Millipore, MAB5304) has been previously
characterized in several studies (Chagnaud et
al., 1989; Roche et al., 2003; Wu et al., 2005).
Specificity testing by competition experiments
using ELISA performed by the manufacturer
showed no cross-reactivity with aspartate-G-
BSA, GABA-G-BSA, or Gly-G-BSA.

Polyclonal guinea pig anti-GABA antiserum
(Millipore, AB175) has been used to identify
GABAergic neurons by light and electron microscopy (manufacturer’s
technical information) and tested in dot blots showing specificity for its
conjugated antigen, and immunoreactivity can be removed by preab-
sorption with its antigen (Chalazonitis et al., 2008). In addition, anti-
GABA-G-KLH has been extensively characterized in different
preparations and species (McDonald and Pearson, 1989; Roettger et al.,
1989; Dmitrieva et al., 2001; Rubio and Juiz, 2004; Stani¢ et al., 2010).

The polyclonal rabbit anti-glycine antiserum (Millipore, AB139) has been
used in different tissue preparations and species (Avendafio et al., 2005;
Fredrich et al., 2009; Kuo et al., 2009; Downie et al., 2010). Specificity testing
by competition experiments using ELISA performed by the manufacturer
showed no cross-reactivity with GABA-G-BSA, Glu-G-BSA, taurine-G-
BSA, or aspartate-G-BSA. The specificity of this antiserum was also tested by
Western blotting in sea lamprey brain homogenates and showed high spec-
ificity for Gly-G-BSA (Villar-Cervifo et al., 2006).

Figure 2.

Controls and specificity tests

In the present study, additional neurotransmitter antisera specificity tests
were performed. First, omission controls in which the primary antibod-
ies were replaced with incubating buffer eliminated immunoreactivity.
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Examples of PRV-labeled neurons in the rabbit brain 3 and 4 d after injection. A, PRV-labeled first-order motor
neurons are located in the dorsolateral facial nucleus ipsilaterally 3 d after PRV injection into the right 0OM. DL, Dorsolateral; L,
lateral; Int, intermediate; M, medial; VM, ventromedial subnuclei. B—F, PRV-labeled neurons 4 d after PRV injection. B shows
PRV-labeled neurons in the medial vestibular nucleus (MVe) ipsilaterally and absence of PRV labeling in the superior salivatory
nucleus (SSN) and abducens nucleus (6N). € shows PRV labeling in the ventral spinal trigeminal nucleus, oral part (Sp50) ipsilat-
erally. D, Discrete PRV labeling in the rostral dorsal cochlear nucleus (DC) ipsilaterally. E shows PRV-labeled neurons in the
parabrachial nucleus (PB) and Kélliker-fuse nucleus (KF) ipsilaterally. F shows PRV-labeled neurons in the dorsolateral red nucleus
(RN) contralaterally. Scale bars: 1 mm.

Second, preabsorption of the primary antibodies with the immunizing
peptide (purchased from Invitrogen or Vector Labs) also eliminated
immunoreactivity. Third, preabsorption of each primary antibody with
the other two conjugated peptides did not reduce immunoreactivity
(e.g., 5 ul of anti-GABA-G-BSA preabsorbed with 1 ul of glycine-G-BSA
and 1 ul of glutamate-G-BSA did not reduce immunoreactivity for
GABA; the same was true for the other two conjugated antibodies). In
addition, identical immunoreactivity was seen in experiments where the
three preabsorbed primary antibodies were used sequentially compared
with experiments where primary antibodies were used simultaneously.
All control tests were performed on the cerebellar cortex where the neu-
rotransmitter profile of cells has been well characterized and where gran-
ule cells are exclusively glutamatergic, stellate and basket cells are
GABAergic, globular cells are glycinergic, and Golgi cells are both
GABAergic and glycinergic (Ottersen et al., 1988; Simat et al., 2007).

Image acquisition

Light microscopy. Images were acquired using an upright Olympus AX70
light microscope with a motorized stage and with 4X (NA 0.15) or 10X
(NA 0.4) objectives. Some pictures of different brain structures were
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Table 1. Labeled areas after PRV injection into the right 00M
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Days after PRV injection

3d(n=4) 4d(n=4)

45d(n=4)

5d(n=4)

Facial Nucleus All areas previously labeled +
Medullary reticular nuclej (P * ot
Spinal trigeminal nucleus ¢
Nucleus of the solitary tract (P
Periolivary nuclei ®

Nucleus of the trapezoid body P
Cochlear nucleus P
Kolliker-fuse nucleus
Parabrachial nuclei P!

Medial vestibular nucleus

Red nucleus ™: dorsolateral
Pararubral nucleus "

Ipsix + Cont)

All areas previously labeled +
Anterior Interpositus nucleus '
Fastigial nucleus P

Trigeminal motor nucleus

Lateral vestibular nucleus Psi* * ot
Lateral lemniscus (Psix * Cont
Oculomotor nucleus P * <ot
Periaqueductal gray 1P *+ Cont
Interstitial nucleus of Cajal
Nucleus of Darkschewitsch (i *+ Cont

| (Ipsi + Cont)

All areas previously labeled +
Fastigial nucleus 1Psi* * cont
Interpositus nucleu
Dentate nucleus (Ps* + cont

Cerebellar cortex ": lobule I and HVI
Cuneate nucleus Psix * Cont

Gracile nucleus (Psi* *+ Cont)

Deep mesencephalic nucleus i + ot
Retrorubral field 1°si + Cont

Superior colliculus

S (Ipsix + Cont)

Substantia nigra 1Psix * cont

Ipsi, Ipsilateral; Cont, contralateral; (*) predominant.

acquired using the virtual slice module to produce high resolution im-
ages (West Virginia University, Microscopic Imaging Facility).

Confocal microscopy. Neurotransmitter immunofluorescent reactivity
of the DCN of rabbits previously injected with PRV (4.5 and 5 d) was
visualized using a confocal laser scanning microscope (Zeiss LSM 710;
Carl Zeiss International). Images were acquired using 405, 488, 514, and
633 nm lasers, sequential multichannel line scan, averaged twice, pinhole
aperture of 1 AU, 1024 X 1024 resolution, and the filters were set man-
ually to detect the spectral peak of each fluorophore. All coronal sections
(25 um) of the DCN were visualized first usinga 10X objective (NA 0.4)
to locate all PRV-labeled neurons. Only PRV-labeled neurons with a
visible nucleus were included in this study to standardize data acquisition
and to avoid over counting. Classification of DCN cell neurotransmitter
immunoreactivity was performed using a 63X oil-immersion objective
(NA 1.4). Images were exported to Adobe Photoshop 8.0 and only minor
adjustments of brightness and contrast were made.

Results

The directional and temporal pattern of PRV retrograde spread
through synaptically connected circuits can be used to identify
specific pathways. In the present study, four different time points
were used to identify each step in the rabbit OOM premotor
pathway. Based on pilot data, four time points were selected to
best represent the progression of PRV labeling through each
step in the pathway (3d,n =4;4d,n =4;4.5d,n =4;and 54,
n=4).

Mapping the OOM premotor pathway

Three days after PRV injections in the OOM, first-order motor
neurons labeled with PRV were seen in the ipsilateral facial nu-
cleus (Fig. 2A). Labeled neurons were located in the dorsolateral
and dorsal portions of the intermediate and lateral subdivisions
of the nucleus, forming a cap-like distribution in agreement with
the location of motor neurons innervating the OOM found in
previous studies (Radpour, 1977; Komiyama et al., 1984; Klein et
al., 1990; VanderWerf et al., 1998; Horta-Jtnior et al., 2004; Mc-
Neal etal., 2008). Importantly, the same region of the nucleus was
labeled in all rabbits. Exclusive PRV uptake by OOM motor neu-
rons was corroborated by examination of motor and preauto-
nomic structures known to innervate other ocular muscles and
glands. The abducens nucleus that innervates extraocular mus-
cles was not labeled with PRV at any of the time points examined
(Fig. 2B). In addition, the superior lacrimal and salivatory nu-
cleus, which contains preganglionic autonomic efferents to the
eyelid glands and smooth muscle, was also not labeled with PRV
in any of the subjects used in this study at any of the time points
(Fig. 2B). The facial nucleus and other structures labeled with
PRV at 3, 4, 4.5, and 5 d are shown in Table 1.

Four days after PRV injection, premotor structures were la-
beled. A group composite of PRV-labeled neurons was plotted in
a map of coronal sections (Fig. 3) to best represent the distribu-
tion of labeled neurons at this time. PRV-labeled neurons were
found in the dorsal, intermediate, and ventral medullary reticular
nucleus predominately ipsilaterally but some were seen on the
contralateral side. In addition, labeled neurons were found in the
magnocellular, gigantocellular, lateral paragigantocellular, parvi-
cellular, and lateral reticular nucleus mostly ipsilaterally. Vestib-
ular second-order labeled neurons at this time were seen only in
the ventral part of the medial vestibular nucleus ipsilaterally (Fig.
2 B). In addition, labeled neurons were found in the medial and
ventral portions of the caudal, interpolar, and oral spinal trigem-
inal nucleus and in the ventral part of the principal sensory tri-
geminal nucleus exclusively on the ipsilateral side, in agreement
with the location of spinal and principal sensory trigeminal neu-
rons that have been shown to make monosynaptic connections to
the facial motor nucleus and generate reflex eyeblink responses
(Hinrichsen and Watson, 1983; Yokota et al., 1991; van Ham and
Yeo, 1996a, 1996b; Henriquez and Evinger, 2007). Figure 2C de-
picts a characteristic neuron located in the ventral spinal trigem-
inal nucleus (oral part). Second-order auditory areas including
the nucleus of the trapezoid body, periolivary nuclei, and dorsal
cochlear nucleus were labeled ipsilaterally at this time. Labeling
of the trapezoid body was confined to the dorsolateral region. A
few labeled neurons were seen in the medial and lateral perioli-
vary nuclei. The rostral portion of the dorsal cochlear nucleus was
also labeled with PRV on the ipsilateral side at this time (Fig. 2 D).
A discrete group of labeled neurons were found in the Kélliker-
fuse nucleus and the ventral part of the medial parabrachial nu-
cleus on the ipsilateral side (Fig. 2 E). The Koélliker-fuse and the
parabrachial nucleus are involved in the modulation of breathing
and may play a role in synchronizing OOM activity and respira-
tion (Chamberlin and Saper, 1994; Bonis et al., 2010; Song et al.,
2012). Finally at this time point, labeled neurons were seen in the
dorsolateral red nucleus on the contralateral side (Fig. 2F). These
neurons were located in the caudal portion of the magnocellular
red nucleus, a region that has been shown to innervate the OOM
portion of the facial nucleus and generates blink responses when
stimulated (Takada et al., 1984; Daniel et al., 1987; Chapman et
al., 1988; Holstege and Tan, 1988). In addition, a small number of
labeled neurons were found in the adjacent contralateral para-
rubral nucleus.

Examples of PRV-labeled premotor neurons 4.5 d after PRV
injection and a group composite are depicted in Figures 4 and 5,
respectively. An increase in labeling was seen at this time and
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Figure 3.  Distribution of PRV-labeled neurons in the brain 4 d after PRV injection in the right 00M. A composite of the location of PRV-labeled neurons found across four animals plotted in
sequential sections to best represent the pattern of PRV labeling. Sections are arranged caudorostrally (A—K). The arrow indicates the side of PRV injection. Each dot represents one PRV-labeled
neuron. 3N, Oculomotor nudleus; 4N, trochlear nucleus; 5N, motor trigeminal nucleus; 7N, motor facial nucleus; 12N, hypoglossal nucleus; AIN, anterior interpositus; (G, central (Figure legend continues.)
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found in the superior and lateral vestibu-
lar nuclei bilaterally. PRV-labeled neu-
rons became more numerous in the
contralateral red nucleus and the pararubral
nucleus, and a few labeled cells were seen on
the ipsilateral side of these nuclei at this
time (Fig. 4A). Also, PRV-labeled neurons
were found in the interstitial nucleus of
Cajal (Fig. 4 A) and the nucleus of Darksche-
witsch bilaterally, with ipsilateral predomi-
nance. Labeled neurons were also found in
the oculomotor nucleus, supraoculomotor

e UG S, T

Figure 4.  A-D, Examples of PRV-labeled premotor neurons 4.5 d after injection. A shows PRV-labeled neurons in the dorso-
lateral red nucleus (RN) and pararubral nucleus contralaterally. The oculomotor nucleus (3N), interstitial nucleus of Cajal (InC), and
supraoculomotor periaqueductal gray are labeled bilaterally. B shows PRV-labeled neurons in the lateral lemniscus (LL) and
periaqueductal gray (PAG) ipsilaterally. € shows a few PRV-labeled neurons in the dorsolateral AIN ipsilaterally. D shows PRV-

labeled neurons in the rostral fastigial nucleus (FN) ipsilaterally. Scale bars: 1 mm.

higher-order structures that comprise third-order neurons were
revealed. Labeled neurons in the medullary and reticular nuclei
became more numerous bilaterally. The nucleus of the trapezoid
body and the medial and lateral periolivary nuclei showed an
increase in labeling that remained mostly ipsilateral. In addition,
PRV-labeled neurons were seen in the medial ventral periolivary
nucleus. The spinal and principal sensory trigeminal nucleus
showed an increase in labeling, and a few labeled neurons were
seen on the contralateral side. A few labeled neurons were found
in the ipsilateral motor trigeminal nucleus. The dorsal cochlear
nucleus was labeled bilaterally and also some labeled neurons
were seen in the ventral cochlear nucleus ipsilaterally. The para-
brachial and Kolliker-fuse nucleus showed a small increase in
labeling and only a few neurons were seen on the contralateral
side. Labeling in the medial vestibular nucleus became more
dense and bilateral. In addition, PRV-labeled neurons were

<«

(Figure legend continued.)  gray; Cn, cuneiform nucleus; DC, dorsal cochlear; Dk, nucleus of
Darkschewitsch; LL, lateral lemniscus; dMe, deep mesencephalic nucleus; DN, dentate nucleus;
PAG, periaqueductal gray; DpG, deep layer of the superior colliculus; FN, fastigial nucleus; Gi,
gigantocellular reticular nucleus; Gr, gracile nucleus; I, inferior colliculus; InC, interstitial nu-
cleus of Cajal; InG, intermediate gray layer of the superior colliculus; InW, intermediate white
layer of the superior colliculus; KF, Kolliker-fuse nucleus; LRt, lateral reticular nucleus; MdD,
dorsal medullary reticular nucleus; MdV, ventral medullary reticular nucleus; MG, medial genic-
ulate nucleus; MVe, medial vestibular nucleus; Op, optic nerve layer of the superior colliculus;
PaR, pararubral nucleus; PB, parabrachial nucleus; Pn, pontine nucleus; Pn0, pontine reticular
nucleus, oral; PO, periolivary nucleus; Pr5, principal sensory trigeminal nucleus; RN, red nucleus;
RRF, retrorubral field; SN, substantial nigra; Sol, solitary nucleus; Sp5C, spinal trigeminal nu-
cleus, caudal; Sp5l, spinal trigeminal nucleus, interpolar; Sp50, spinal trigeminal nucleus, oral;
SpVe, spinal vestibular nucleus; SuG, superficial gray layer of the superior colliculus; tth, tri-
geminothalamic tract; Tz, nucleus of the trapezoid body; VC, ventral cochlear nucleus.
Scale bar, 5 mm.

nucleus (Fig. 4A) bilaterally, and periaque-
ductal gray (Fig. 4B) mostly ipsilaterally.
Some PRV-labeled neurons were also seen
in the lateral lemniscus, mainly ipsilaterally
(Fig. 4B). More importantly, the first la-
beled neurons in the DCN were seen at this
time in the dorsolateral AIN and rostral fas-
tigial nucleus ipsilaterally (Fig. 4C,D). It
should be noted that the PRV-labeled neu-
rons found in the AIN 4.5 d after PRV injec-
tion were located in a region that has been
extensively implicated in eyeblink condi-
tioning. In addition, electrical stimulation
of dorsolateral AIN neurons can generate
blink responses (Lavond et al., 1984; Stein-
metz et al., 1992; Thompson and Steinmetz,
2009). The fastigial nucleus projects primar-
ily to vestibular and reticular nuclei and its
rostral part is involved in vestibulospinal
control, including regulation of muscle tone (Gardner and Fuchs,
1975; Biittner et al., 1991; Siebold et al., 1997).

Five days after PRV injection, an increase in PRV-labeled neu-
rons was seen throughout. In addition to previously labeled re-
gions, labeled neurons were found in the cuneate (Fig. 6A), and
gracile nucleus bilaterally. Labeled neurons were seen in the su-
perficial gray and optic nerve layer of the contralateral superior
colliculus (Fig. 6 B) (McCormick et al., 1983; Halverson et al.,
2009). An increase in labeling was seen in the pararubral nucleus,
the deep mesencephalic nucleus, and periaqueductal gray bilat-
erally (Fig. 6C). A few labeled neurons were seen in the substantia
nigra, mainly ipsilaterally. At this time, an increase in labeling was
seen in the DCN. Labeled neurons were found in specific regions
of the fastigial, interpositus, and dentate nuclei bilaterally with
ipsilateral predominance.

Only two discrete regions in the ipsilateral cerebellar cortex
showed PRV-labeled Purkinje cells at this time. The first region
corresponds to lobule HVI in the longitudinal zone C3 (Fig.
6D, F). Interestingly, HVI has been extensively implicated in de-
lay eyeblink conditioning (Yeo et al., 1985; Schreurs et al., 1991;
Gould and Steinmetz, 1996; Schreurs et al., 1997; Schreurs et al.,
1998; Jirenhed et al., 2007; Kellett et al., 2010). Purkinje cells in
HVI can generate a blink response and can be activated by peri-
ocular stimulation (Berthier and Moore, 1986; Hesslow, 1994).
In addition, these Purkinje cells receive inputs from climbing
fibers that also send collaterals to the AIN (Yeo et al., 1985; Pijpers
et al., 2005; Sugihara and Shinoda, 2007).

The location of PRV-labeled Purkinje cells was determined by
careful analysis of their location using three different rabbit brain
atlases (McBride and Klemm, 1968; Girgis and Shih-Chang,
1981; Shek et al., 1986) and publications by Ramnani and Yeo
(1996), Kellet et al. (2010), and Vogel et al. (2009). PRV-labeled
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Figure 5.  Distribution of PRV-labeled neurons in the brain 4.5 d after PRV injection in the right 00M. A composite of the location of PRV-labeled neurons found across four animals plotted in
sequential sections to best represent the pattern of PRV labeling. Sections are arranged caudorostrally (A—L). The arrow indicates the side of PRV injection. Each dot represents one PRV-labeled
neuron. See Figure 3 for abbreviations. Scale bar, 5 mm.
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Figure6. A-F, Examples of PRV-labeled premotor neurons 5 d after injection. A shows PRV-labeled neurons in the Cu (cuneate
nucleus) ipsilaterally. B shows PRV-labeled neurons in the superior colliculus (SC) contralaterally. € shows PRV labeling in the red
nucleus (RN) and pararubral nucleus (PaR) mainly contralaterally and deep mesencephalic nucleus (DMe) bilaterally. D shows
PRV-labeled neuronsin HVIlongitudinal zone C-3 ipsilaterally; note AIN PRV-labeled neurons in the same section. £ shows a group
of PRV-labeled Purkinje cells in HVI zone C-3 ipsilaterally. F shows PRV-labeled cerebellar lobule | (L1) longitudinal zone A
ipsilaterally, note PRV-labeling in the rostral fastigial nucleus (FN), lateral and medial vestibular nucleus (MVe) ipsilaterally. Scale

bars: A-D, F, 1 mm; E, 200 wm.

Purkinje cells were located in a small region of HVI. This region
corresponds to the dorsolateral posterior portion of HVI, adja-
cent to the ventromedial region of the paramedian lobule. La-
beled Purkinje cells were found in the same coronal plane as the
anterior interpositus nucleus and located —3.0 through —4.0
mm relative to lambda based on the coordinates used by Yeo and
colleagues (Kellett et al., 2010; Ramnani and Yeo, 1996), and 0.0
mm through 1.0 mm anterior to lambda based on the coordinates
used by Vogel et al. (2009). Based on their direct connection to
the AIN and their topographical and anatomical location, labeled
Purkinje cells were located in longitudinal zone C3. Further com-
parison with the Sanchez et al. (2002) study of the parasagittal
compartmentalization of the rabbit cerebellar cortex revealed by
the expression of zebrin II +/— stripes shows that PRV-labeled
Purkinje cells were located between zebrin II +/— stripes p4+
and p5+ of HVI, and most probably in p4—. The pattern of
expression of zebrin II +/— stripes is highly reproducible be-
tween individuals and conserved across species (Brochu et al.,

1990; Sanchez et al., 2002; Sillitoe et al.,
2005). Purkinje cells located in zebrin II
+/— stripe p4— have been shown to proj-
ect to AIN in mice and rats (Sugihara and
Shinoda, 2007; Sugihara and Quy, 2007;
Sugihara, 2011), and in the rabbit it may
correspond to p4b— (Sanchez et al,
2002). However, in the present study, the
location of PRV-labeled Purkinje cells
within a specific zebrin II +/— stripe can
only be inferred.

The second region of Purkinje cell la-
beling corresponds to the rostral part of
lobule I in longitudinal zone A (Fig. 6E).
Purkinje cells located in lobule I longitu-
dinal zone A have been shown to project
to the fastigial nucleus (Armstrong and
Schild, 1978). Labeled Purkinje cells in
lobule I may be part of a cortico-nucleo-
vestibular pathway involved in control-
ling the tone and position of the eyelid
with respect to the eyeball and may serve
as a muscle position and motion detector
to modulate the coordination of different
muscles during eyelid movements
(Shaikh et al., 2005; Brooks and Cullen,
2009). The distribution of labeled Pur-
kinje cells seems to delineate two distinct
cerebellar OOM premotor pathways. The
first involves HVI, AIN, red nucleus, and
facial nucleus, whereas the second may in-
volve lobule I, fastigial nucleus, vestibular
nucleus, and facial nucleus. Together,
these data show a comprehensive map of
the premotor pathway of the OOM and
important structures involved in the eye-
blink response.

PRV rate of spread

We found that PRV consistently traced
the same pathway in a time-dependent
manner across all subjects. PRV axonal
transport and the replication cycle seem
to be dependent on viral titer, neuronal
activity, strength of functional synapses,
and species. Axonal transport has been estimated to occur at rates
of 8-12 mm/h in vivo (Tomishima et al., 2001) and on average,
the virus’s complete replication cycle in the nervous system is
~6-16 h to the point of egress (Whealy et al., 1988; Ugolini,
2011). It has been suggested that postsynaptic neurons that in-
nervate the soma and make numerous synapses onto an infected
cell may become infected sooner than those making distal and
fewer contacts (Song et al., 2005). Likewise, neuronal activity
seems to influence the rate of PRV labeling and this is supported
by our data. Neurons in the red nucleus that project to the facial
nucleus are phasically active (Gibson et al., 1985), whereas DCN
neurons are tonically active. PRV labeled the red nucleus
(second-order neurons) in 24 h and DCN (third-order neurons)
in 12 h, even though PRV had to travel the same distance. In
addition, PRV labeled fourth-order Purkinje cells (that are also
tonically active) in 12 h, suggesting that the time-dependent
spread of PRV correlates with neuronal activity rather than
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Figure7. Distribution of PRV-labeled premotor neuronsin the DCN 4.5 and 5 d after PRV injection. Sections are arranged rostrocaudally (a— e). Note each dot represents a group of 2—5 PRV-labeled neurons
of atypical subject. A shows the distribution of PRV-labeled neurons in the rostral fastigial nucleus (FN) and dorsolateral AIN that are found exclusively on the ipsilateral side 4.5 d after PRV-injection. B shows the
distribution of PRV-labeled neurons in the FN, AIN, posterior interpositus nucleus (PIN), and dentate nucleus (DN) that are found bilaterally with ipsilateral predominance 5 d after PRV injection. Scale bar, 5 mm.

distance traveled, and it could be of par-
ticular importance for delineating func-
tionally relevant pathways.

Distribution of premotor neurons in
the DCN

To further characterize the distribution of
DCN premotor neurons, the location of
PRV-labeled cells 4.5 and 5 d after injec-
tion was plotted in a map of coronal sec-
tions. The first PRV-labeled neurons seen
in the DCN at 4.5 d were consistent with
third-order premotor neurons and were
found in the dorsolateral AIN and rostral
fastigial nucleus exclusively on the ipsilat-
eral side at this time (Fig. 7A). These two
distinct areas may hold particular impor-
tance in the cerebellar premotor pathway
of the OOM. An increase in PRV labeling
was seen bilaterally in the DCN 5 d after
injection (Fig. 7B). At this time, groups of
large and small PRV-labeled neurons were
seen in all three nuclei consistent with
third and fourth-order neurons. The dis-
tributions of these neurons could be of
importance in elucidating the somato-
topic organization of the OOM in all three
nuclei.

Neurotransmitter immunoreactivity in
the AIN

The large and small PRV-labeled neurons
seen in the ipsilateral AIN 5 d after injec-
tion (Fig. 7B) were presumably third-
order glutamatergic projection neurons
and fourth-order interneurons. To fur-

Figure8. Glutamate, GABA, and glycine immunoreactivity in the cerebellar cortex. Glutamate-immunoreactive granule cells and their
numerous axon terminals extending through the molecular layer are seen in the top left panel. GABA-immunoreactive neurons including
Purkinje cells, basket, and stellate cells in the molecular layer, and Golgi cells in the granule cell layer are shown in the top right panel.
Glycine-immunoreactive neurons in the cerebellar cortex including Lugaro cells in the Purkinje cell layer, and Golgi cells in the granule cell
layer are shown in the bottom left panel. A merged image of glutamate-, GABA-, and glycine-immunoreactive neurons is shown in the
bottom right panel. Colocalization of GABA and glycine-immunoreactive neurons can be seen in some Golgi and Lugaro cells. Glu, Gluta-
mate; Gly, glycine. Scale bar, 200 pm.
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Scale bar, 400 m.

ther investigate this local network, we used glutamate, GABA,
and glycine immunoreactivity to label these neurons. All sections
containing the ipsilateral DCN were immunolabeled, and as a
control, the cerebellar cortex was examined in each section to
confirm the specificity of neurotransmitter immunoreactivity.
Figure 8 shows glutamate-, GABA-, and glycine-immunoreactive
neurons in the cerebellar cortex. Granule cells and their numer-
ous axon terminals extending through the molecular layer were
immunoreactive for glutamate. Purkinje cells, small basket and
stellate cells in the molecular layer, and Golgi cells in the granule
cell layer were immunoreactive for GABA. Neurons immunore-
active for glycine include Lugaro cells in the Purkinje cell layer
and Golgi cells in the granule cell layer. Colocalization of
GABA and glycine immunoreactivity can be seen in some
Golgi and Lugaro cells in the granule cell layer, known to be
GABA/glycinergic neurons (Crook et al., 2006; Simat et al.,
2007).

Glutamate-, GABA-, and glycine-immunoreactive neurons in
the DCN including the AIN, dentate nucleus, and granule cell
layer of the cerebellar cortex are shown in Figure 9. Large neurons
in the DCN and small granule cells in the cerebellar cortex are
glutamate immunoreactive. Small neurons and numerous termi-
nals in the DCN are GABA immunoreactive. In addition, several
Golgi cells in the granule cell layer in the same section are

Glutamate, GABA, and glycine immunoreactivity in the DCN and cerebellar cortex. A section that contains the dorso-
lateral AIN, dorsal dentate nucleus (DN), and the granule cell layer of the cerebellar cortex is shown. Glutamate-immunoreactive
neurons are shown in the top left panel. Note large glutamate-immunoreactive neurons in the DCN and numerous granule cells in
the cerebellar cortex. GABA-immunoreactive neurons are shown in the top right panel. Note smaller GABA-immunoreactive
neurons and numerous terminals in the DCN and several Golgi cells in the granule cell layer. Glycine-immunoreactive neurons are
shown in the bottom left panel. Note small distinctive glycine-immunoreactive neurons evenly distributed in the DCN. A merged
image of glutamate, GABA, and glycine-immunoreactive neurons is shown in the bottom right panel. Glu, Glutamate; Gly, glycine.
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also GABA immunoreactive. Glycine-
immunoreactive neurons are small and
evenly distributed in the DCN. In addi-
tion, glutamate was found to colocalize
with most GABA-immunoreactive neu-
rons to various degrees. Because gluta-
mate is a precursor of GABA, it is present
in GABAergic cells as a function of their
metabolic state (Ottersen and Storm-
Mathisen, 1984; Sultan et al., 2002). Also,
glutamate labeling was never found in
purely glycine-immunoreactive neurons.
However, GABA/glycine-immunoreactive
neurons showed glutamate labeling to vari-
ous degrees. Consequently, glutamate-
immunoreactive neurons were classified as
glutamatergic only when they did not colo-
calize with other neurotransmitters. An ex-
ample of a 4.5 d PRV-labeled neuron
immunoreactive for glutamate is shown in
Figure 10. PRV-labeled neurons immuno-
reactive for glutamate were large (29 um;
range 21-27 um), and an average of 20 neu-
rons (range 13-27) were found in the AIN
4.5 dafter injection.

Next, characterization of PRV-labeled
neurons 5 d after injection revealed an av-
erage of 34 (range 25-43) glutamate-
immunoreactive neurons and an average
of 66 (range 54-78) interneurons immu-
noreactive for GABA and/or glycine. The
interneurons were immunoreactive for
GABA (30%), glycine (18%), or for both
GABA and glycine (52%). The average
soma diameter for PRV-labeled interneu-
rons immunoreactive for GABA was 16
pm (range 12-20 um), for glycine 15 um
(range 11-19 wm), and for GABA/glycine
17 wm (range 12-22 pum). An example of
a PRV-labeled interneuron 5 d after injection is shown in Figure
11. In this case, a PRV-labeled interneuron is immunoreactive for
both GABA and glycine. We were able to follow the PRV-labeled
axon of this neuron and found its terminal apposed to an adja-
cent interneuron that was also GABA/glycine-immunoreactive.
Interestingly, the terminal of the PRV-labeled interneuron
was glycine immunoreactive only, suggesting that mixed
GABA/glycinergic interneurons in the DCN can selectively
release either neurotransmitter from their terminals. Differ-
ential neurotransmitter release from mix GABA/glycinergic
neurons has been previously hypothesized (Dumoulin et al.,
2001; Dugué et al., 2005; Dufour et al., 2010; Benarroch,
2011).

Discussion

The present study shows the premotor pathway of the rabbit
OOM using PRV as a retrograde transneuronal tracer. Relevant
structures involved in the generation or modulation of the rabbit
eyeblink response were identified and provide anatomical valida-
tion of a direct premotor network that involves the dorsolateral
AIN of the DCN and HVI of the cerebellar cortex, which have
been implicated in eyeblink conditioning. Of particular impor-
tance, classification of fourth-order premotor interneurons
based on their neurotransmitter immunoreactivity revealed three
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Figure 10.

Glutamate immunoreactive PRV-labeled neuron in the AIN 4.5 d after injection into the 00M. Glutamate immunoreactivity is shown in the top left panel. Note a large glutamate-

immunoreactive neuron at the bottom of the panel indicated by the asterisk. GABA-immunoreactivity is shown in the top middle panel. Four GABA-immunoreactive interneurons are visible and note
the presence of glutamate immunoreactivity in their cell bodies. Numerous GABA-immunoreactive terminals are evident apposed to different neuronal processes and glutamate-immunoreactive
somas. Glycine-immunoreactivity is shown in the top right panel. Note a small interneuron that is exclusively glycine-immunoreactive. A few glycine-immunoreactive terminals apposing dendrites
and somas of glutamate-immunoreactive and GABA-immunoreactive neurons are shown. A PRV-labeled neuron is shown in the bottom left panel. A merged image of glutamate-, GABA-, and
glycine immunoreactivity and PRV is shown in the bottom right panel. Note that the PRV-labeled neuron colocalizes with a large glutamate-immunoreactive neuron. A small interneuron
immunoreactive for both GABA and glycine is also shown. Glu, Glutamate; Gly, glycine. Scale bar, 40 m.

different types of inhibitory interneurons that are part of the
OOM premotor pathway and form a functional network within
the AIN for the modulation of motor commands.

Premotor pathway of the rabbit OOM

At 3 d after PRV injection, first-order motor neurons were found
ipsilaterally in the dorsolateral facial nucleus. At 4 d, the dorso-
lateral magnocellular red nucleus was labeled contralaterally. At
4.5 d, third-order premotor neurons were found in dorsolateral
AIN and the rostral fastigial nucleus ipsilaterally. At 5 d, the fas-
tigial, interpositus, and dentate nucleus were labeled bilaterally
with ipsilateral predominance. A number of fourth-order Pur-
kinje cells were found in two cerebellar cortex locations, HVI
zone C3 and lobule I zone A, and two distinct pathways were
discerned. The first involves HVI, AIN, red nucleus, and facial
nucleus, and the second may involve lobule I, fastigial nucleus,
vestibular nucleus, and facial nucleus. In addition, second- and
third-order premotor neurons were found in reticular nuclei and
sensory trigeminal, auditory, vestibular, and motor structures.
These may constitute secondary pathways and are no doubt in-
volved in the modulation of eyelid movements by other response
systems (e.g., startle, orientation, attention). These higher-order
pathways have been reviewed extensively by Morcuende et al.
(2002).

Cerebellar cortex

There is an ongoing controversy about which lobules in cerebel-
lar cortex control conditioned eyeblinks. Rabbit lesion, infusion,
and recording studies have implicated HVI in eyeblink condi-
tioning (Berthier and Moore, 1986; Gould and Steinmetz, 1996;
Attwell et al., 2001). More recent studies suggest anterior lobules
HIV and HV are also involved in conditioning (Garcia et al.,
1999; Green and Steinmetz, 2005; Kalmbach et al., 2010). How-
ever, the functional organization of cerebellar cortex is consistent
with longitudinal zones that span multiple lobules, and regions
controlling the rabbit eyelid may not be confined to a single lob-
ule. In fact, there are multiple eyelid microzones in cerebellar
cortex that receive climbing fiber inputs during periocular stim-
ulation, exhibit eyeblink-related activity patterns, and project to
the AIN. An additional rabbit eyelid microzone has been identi-
fied in the ventral portion of HVI (Mostofi et al., 2010). It is
conceivable that different eyeblink microzones encode different
types of information including time, position, intensity, and du-
ration, and that together these microzones convey information to
their target nuclear cells that then elicit a motor command.

To date, itis not clear how Purkinje cell activity controls eyelid
movement. On the one hand, a pause in inhibitory, tonically
active Purkinje cells allows target nuclear cells to produce the
necessary activation required to generate a motor command. On
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glycine. Glu, Glutamate; Gly, glycine. Scale bar 20 wm.

the other hand, a burst of Purkinje cell activity may produce
inhibition of target nuclear cells that is followed by rebound
depolarization that results in a motor command (Pugh and
Raman, 2006; Alvina et al., 2008; Molineux et al., 2008). Re-
cordings from eyeblink microzones show that some Purkinje
cells increase their firing rate while others decrease their firing
during performance of a conditioned eyeblink response.

The microcircuit of the AIN

Information processed in the cerebellum is integrated in the
DCN where motor commands are generated and executed. De-
spite their importance, little is known about the components that
constitute this local network and their interconnections. Poten-
tial interactions among interneurons in the DCN and their role in
learning are largely unknown. The AIN has been implicated in
eyeblink conditioning, and synaptic changes responsible for a
conditioned response are hypothesized to occur in this nucleus.
Lesion and inactivation studies show that the AIN is critical for
conditioned responses (Lavond et al., 1984; Steinmetz et al.,
1992; Krupa and Thompson, 1997). Single unit recordings in
AIN show some neurons increase their firing rate during condi-
tioned responses in a pattern that precedes and predicts the re-
sponse (McCormick and Thompson, 1984). In vitro studies in the
interpositus show large neurons can undergo different types of

GABA and glycine immunoreactive interneuron labeled with PRV. GABA immunoreactivity is shown in the top left
panel. Note two GABA-immunoreactive interneurons and numerous GABA-immunoreactive terminals. Glycine immunoreactivity
is shown in the top right panel. Note two Glycine-immunoreactive interneurons and a few and densely packed Glycine-
immunoreactive terminals. PRV-labeled fourth-order interneuron and its PRV-labeled terminal are shownin the bottom left panel.
A merged image of GABA immunoreactivity, glycine immunoreactivity, and PRV is shown in the bottom right panel. Note that the
PRV-labeled interneuron is immunoreactive for both GABA and glycine and its PRV-labeled terminal is immunoreactive solely for
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synaptic plasticity, including LTP and
LTD (Pugh and Raman, 2006). Recently,
the electrophysiological properties of
DCN interneurons have been studied in
transgenic mice expressing GAD-eGFP or
GlyT2-eGFP (Uusisaari and Knopfel,
2011). However, little is known about the
synaptic connections and interactions
among the different neuronal types.

Our results show three types of in-
terneurons that are directly connected to
large glutamatergic projection neurons
and possibly involved in modulating their
output. The DCN is a complex structure
and different components and interac-
tions contribute to the integration of a fi-
nal cerebellar output. Here, we show a
local network within AIN consisting of a
glutamatergic projection neuron and
three types of inhibitory interneurons that
are part of the OOM premotor pathway.
PRV-labeled fourth-order interneurons
were immunoreactive for GABA, glycine,
or both GABA and glycine. Interconnec-
tivity was found in a PRV-labeled mixed
GABA/glycinergic interneuron in which
we were able to follow the axon. The ter-
minal of this interneuron was labeled with
PRV and apposed the soma of another
GABA/glycinergic-immunoreactive  in-
terneuron that was not labeled with PRV,
suggesting these two interneurons contact
different glutamatergic neurons. GABA
and glycine are frequently coexpressed in
the same cell and coreleased from the
same terminals (Ottersen et al., 1988; Du-
moulin et al., 2001; Dugué et al., 2005).
Mixed GABA/glycinergic neurons are
thought to modulate the ratio of neu-
rotransmitter release as these neurotransmitters have different
effects on their postsynaptic targets (Benarroch, 2011). Interest-
ingly, the synaptic terminal of the PRV-labeled mixed GABA/
glycinergic interneuron was immunoreactive solely for glycine,
suggesting differential neurotransmitter release. Glycine has been
implicated in different types of synaptic plasticity, including LTP
(Martina etal., 2004), and is required for the activation of NMDA
receptors (Johnson and Ascher, 1987), suggesting another possi-
ble mechanism of plasticity in AIN.

Based on the observed interconnectivity of interneurons de-
scribed above and current knowledge of AIN organization, a
schematic diagram of possible interactions is depicted in Figure
12. The figure shows Purkinje cell inhibitory inputs as well as
excitatory mossy fiber and climbing fiber collateral inputs arriv-
ing at large glutamatergic projection neurons. Also depicted are
Purkinje cell inhibitory inputs and presumed mossy fiber and
climbing fiber collateral projections to interneurons that provide
their only excitatory input. Finally, the figure proposes inhibitory
connections between interneurons. These connections allow one
to speculate about the consequences of interactions among and
between interneurons and projection neurons. For example, al-
though mossy fiber and climbing fiber collaterals activate a PRV-
positive glutamatergic projection neuron, they also activate
inhibitory interneurons that, in turn, inhibit adjacent PRV-
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negative projection neurons creating an
inhibitory surround. In addition, the in-
hibitory interneuron contacted by these
mossy fiber and climbing fiber collaterals
also synapses onto a second interneuron,
which, in turn, disinhibits the PRV-
positive projection neuron. As a result of
releasing inhibition, sensory inputs could
increase excitation of the PRV-positive
projection neuron while indirectly inhib-
iting adjacent PRV-negative projection
neurons. These interactions are modu-
lated by Purkinje cell inhibition. One con-
sequence of this combination of
excitation and inhibition of projection
neurons could be coordination of the
OOM and levator palpebrae, allowing clo-
sure of the eyelids (Sdnchez-Campusano
etal., 2012). In the case of eyeblink condi-
tioning, increased Purkinje cells inhibi-
tion of the inhibitory interneurons
apposing a projection neuron would in-
crease the likelihood of that cell firing and
producing a conditioned response.
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Comparison with other transsynaptic
studies of the OOM

A study in mouse using PRV (Sun, 2012)
and another in rat using rabies virus
(Morcuende et al., 2002) also delineated
the eyeblink premotor pathway. Despite
some similarities, there are significant dif-
ferences between our results and those of
Sun (2012). Although motor neurons
were found in ipsilateral facial nucleus af-
ter PRV injection, labeling was also found
in ventral and dorsal red nucleus bilater-
ally, rather than our contralateral labeling
in dorsolateral red nucleus that agrees
with previous research (Takada et al.,
1984; Holstege and Tan, 1988). This sug-
gests Sun (2012) may have identified path-
ways not directly connected to the facial nucleus because
averaging across different time points combined different synap-
tic steps. This is true for the cerebellum as well because of exten-
sive bilateral labeling of all three deep nuclei as well as bilateral
labeling throughout the cerebellar cortex. Thus, a direct premo-
tor pathway from cerebellum to the facial nucleus may have
been present in PRV-injected mice, but it was obscured by more
indirect pathways.

An earlier study of the rat OOM premotor pathway was per-
formed using rabies (Morcuende et al., 2002) and corresponds well
with the rabbit OOM premotor pathway identified using PRV, at
least to the level of third-order premotor neurons. Morcuende et al.
(2002) found rabies-labeled neurons in caudolateral AIN and dor-
solateral hump of DCN, whereas in the rabbit, third-order neurons
were located in dorsolateral AIN and the rostral fastigial nucleus. In
addition, they found fourth-order labeled Purkinje cells in the ver-
mis and paravermis zones C1-C3, whereas in the rabbit, fourth-
order Purkinje cells were found exclusively in HVI zone C3 and
Lobule I zone A. These differences may reflect anatomical or func-
tional differences between species or variations in viral kinetics.

Figure 12.

parallel fibers.
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Organization of the AIN circuit. A schematic representation of different neuronal populations and their connections
in the AIN. The premotor pathway of the 00M is shown with black arrows that delineate the direction of PRV labeling. Two
representative glutamatergic (GLU) projection neurons are shown. A PRV-labeled third-order GLU neuron projecting to the red
nucleus (RN) is depicted with a black arrow. Three types of PRV-labeled fourth-order interneurons are shown to make a direct
connection onto the PRV-labeled GLU neuron. Possible connections among different AIN neurons are represented with excitatory
(+) and inhibitory (—) terminals (colored triangles). Excitatory input reaches the AIN by mossy fiber (MF) and climbing fiber (CF)
collaterals that make connections on GLU neurons and possibly (dashed lines) on different interneurons. Inhibitory input to AIN
neurons is provided by Purkinje cells (PC) and local interneurons. 7N, Facial nucleus; GrC, granule cell layer; 10, inferior olive; PF,
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