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Abstract

Viral replication relies on host metabolic machinery and precursors to produce large numbers of progeny - often very
rapidly. A fundamental example is the infection of Escherichia coli by bacteriophage T7. The resource draw imposed by viral
replication represents a significant and complex perturbation to the extensive and interconnected network of host
metabolic pathways. To better understand this system, we have integrated a set of structured ordinary differential
equations quantifying T7 replication and an E. coli flux balance analysis metabolic model. Further, we present here an
integrated simulation algorithm enforcing mutual constraint by the models across the entire duration of phage replication.
This method enables quantitative dynamic prediction of virion production given only specification of host nutritional
environment, and predictions compare favorably to experimental measurements of phage replication in multiple
environments. The level of detail of our computational predictions facilitates exploration of the dynamic changes in host
metabolic fluxes that result from viral resource consumption, as well as analysis of the limiting processes dictating
maximum viral progeny production. For example, although it is commonly assumed that viral infection dynamics are
predominantly limited by the amount of protein synthesis machinery in the host, our results suggest that in many cases
metabolic limitation is at least as strict. Taken together, these results emphasize the importance of considering viral
infections in the context of host metabolism.
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Introduction

Any virus is necessarily a metabolic product of its host, since

viruses lack the macromolecule machinery and small molecule

precursors required to replicate. This dependence has been

underscored by recent screens to determine the host genes

required for viral infection in a variety of species. The published

sets of host-gene viral dependencies have consistently included

metabolic genes - both enzymes and regulators - in systems

ranging from phages T7 and lambda, to the human viruses HIV

and influenza [1–8]. In complementary findings, some bacterial

viruses have recently been shown to encode components as well as

direct modifiers of host metabolic machinery [9,10]. Taken

together, these studies emphasize the need to understand viral

infection in the context of host metabolism [11].

Viral host dependency screens are useful for identifying

individual host genes involved in the metabolic interplay of viral

infection; however, studying any of these single points of

connection is likely to reveal a complex network of host-viral

interactions [12]. Understanding infection as a highly integrated

system is therefore necessary to predict the outcome of viral

infection following perturbations, such as changes to the host

nutritional environment. Similarly, metabolism is a deeply

interconnected network, and viral infection represents a dynamic

perturbation of it. Achieving a systems-level understanding of host-

viral metabolic interaction therefore requires, a strong set of

computational tools coupled with quantitative dynamic measure-

ments.

Given the challenge presented by developing such modeling

tools and making the needed measurements, bacteria and their

viruses, particularly E. coli and certain of its bacteriophages, are

favorable candidate model systems for building a systems-level

understanding of infection. These systems have a long history of

study, individually and together, and as a result are associated with

a wealth of well-established observations and experimental

protocols. Additionally, the host-viral dependency screens involv-

ing E. coli identified sets of genes whose products were far better

characterized and annotated than in any other screen [1,2]. These

systems also have industrial relevance: threatening large-scale

cultures [13], and alternately providing highly specific disinfection

tools [14].

Critically, E. coli and its phage are sufficiently understood to

enable the construction of predictive computational models. Phage

T7 replication has been described with structured ordinary

differential equations (ODEs), that account for the dynamic

production of molecular species that comprise the phage during
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infection [15] (Figure 1A right). This model was used to

computationally predict the infection outcome of phage genome

modifications [16,17]. Separately, host E. coli metabolism has been

most comprehensively modeled using Flux Balance Analysis

(FBA), which uses linear optimization of an objective function to

solve a system of steady-state mass balance ODEs [18]. FBA-based

models have expanded to account for essentially all of the known

metabolic functionality in E. coli (Figure 1A upper left) [19–21];

these models capture growth rates and nutrient exhaustion as well

as the impact of genome perturbation and evolutionary outcomes

over time [22–24].

Two previous extensions of the E. coli FBA and T7 ODE models

have attempted to encode some dependence of viral replication on

host state. One effort was based on the E. coli FBA model, with

metabolic reactions added to describe production of MS2 virions

[25], thus demonstrating the fundamental translation of viral

composition to host metabolic terms (the analogous translation for

T7 is denoted in Figure 1A, lower left). The implemented FBA

objective function assumed that the host optimized all of its

resources toward viral production immediately upon infection,

resulting in an overprediction of phage production. The other

modeling effort added a set of correlations between the host

growth rate and the availability of replication machinery for T7

processes [26], improving the model’s predictions (Figure 1A

upper right) to the T7 ODE model.

Both of these efforts strongly suggest that a comprehensive,

detailed effort to integrate the host and virus into a single

computational model will significantly advance our understanding

of viral infection in its metabolic context. Ideally such an effort

would build on previous work with this host-virus system, despite

the different ODE and FBA modeling techniques. Integration of

FBA and ODE-type models sets the flux values for a subset of

reactions using available kinetic rate equations [27], providing a

conceptual framework for combining the host and viral models as

depicted in Figure 1A.

Here we present an integrated model that is based equally on E.

coli FBA and the T7 ODEs. It includes a mathematical description

of metabolic reactions and demand introduced by the virus, as well

as a simulation algorithm that facilitates interaction between the

two models throughout the entire course of infection. Our

integrated modeling approach enables us to predict phage

production changes as the host nutritional environment shifts,

and provides insight into the underlying limiting factors in T7

infection.

Figure 1. Model approaches, scopes, and additions used in the
current integration. (A) The computational methods and the
organisms represented by previous modeling efforts that are combined
in this study. (B) The additional reactions constructed in this study for
the purpose of translating T7 ODE reaction rates into host metabolite
use. Shown at the top for each category is a schematic of metabolite
connections to host metabolism, and under it the full stoichiometric
reaction, which may be a formula based on nucleotide or amino acid
sequence (the gene designations i taking both decimal and integer
values in correspondence with the naming of T7 genes [36], a total of
n = 59 included). Assumptions made in formulating the reactions are
expanded in Methods and SI, and the metabolite abbreviations used
are consistent with the FBA model definition.
doi:10.1371/journal.pcbi.1002746.g001

Author Summary

Viral infection is a serious problem with relatively few
known solutions. Much of the complexity of viral infection
is contributed by the host’s own resources that the virus
commandeers. Viruses lack the machinery and precursors
required to replicate, and thus may be considered
metabolic products of their host. Our goal is a systems-
level understanding of host-viral metabolic interaction via
computational tools and quantitative dynamic measure-
ments. Here we present an integrated model of T7 phage
viral replication and host E. coli metabolism that predicts
phage production changes across media conditions and
provides insight into the underlying limiting factors in T7
replication. The model simulations, supported by our
experimental measurements, highlight the role of host
metabolism in determining the dynamics of viral infection.

Host Metabolic Limitations on Viral Replication
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Results

An Integrated Model of E. coli and T7 Infection
Our integration of the T7 ODEs and E. coli FBA (Figure 1A)

began with a set of additions to each of the individual models. The

E. coli FBA model stoichiometric matrix required new reactions to

describe the routing of host precursors and energy towards viral

synthesis. One reaction was constructed for the synthesis of each

viral species represented in the ODE model: mRNA and protein

for each of 59 viral genes, viral genome synthesis, and a reaction

enforcing the recharge of nucleotide monophosphates (NMPs)

released from host genome degradation (123 total reactions;

Figure 1B and Methods). The T7 ODEs required one ‘production

only’ reaction rate equation for each of the 123 phage reactions

that consume the host metabolites that were added to the host

FBA; the net concentration change rate for each molecular species

in the original T7 ODEs consisted of production minus

consumption terms. However, only the production rate term

constrained the stoichiometric reaction in the FBA.

Furthermore, predictions based on the T7 ODEs are valid for a

single infection cycle only, and lysis has not been modeled because

knowledge of the proteins involved is still insufficient to inform a

meaningful representation [28]. As a result we constrained the

scope of the integrated model to one single infection cycle.

Next, we expanded the integrated-FBA approach beyond its

original capacity to handle the viral demand for resources when

these resource demands outpaced the host production capacity.

The original implementation of integrated-FBA [27] included

ODEs based on central metabolism, which were informed by the

environmental state and thus remained within the capacity of host

metabolism without any direct communication of host limitations.

In contrast, the T7 ODEs do not encode variation in the

environmental conditions or the corresponding changes in the host

network state’s supply of metabolites. As a result, conflicts between

the viral metabolite demands and host metabolite supply can arise

during the simulation. We therefore encoded communication of

information about host limits to the T7 ODEs. This strategy was

complicated by the fact that the kinetic formulation of the T7

ODEs is largely independent of small molecule concentrations,

except for the nucleotides required for T7 genome synthesis.

Furthermore, FBA does not provide concentration information.

Consequently, we devised a metabolite allocation-based ap-

proach to bounding reaction rates. Recognizing that the host-viral

metabolic interface is the set of common metabolites used in

macromolecule synthesis, we split the matrix formulation

(Figure 2A) into a sum of metabolite rate vectors that represent

the host supply and viral demand, where the former constrains the

latter. Given a selected host flux distribution, we calculate a strict

bound on viral metabolite use. Due to the lack of kinetic

information about how the viral metabolic reactions contribute

to the metabolite demand, we assume that all viral reactions have

an equal and high affinity for precursor metabolites. After

calculating rates for the viral reactions from the T7 ODEs to

determine the demand for viral metabolites, we scale the rates of

all reactions consuming a given metabolite by the same fraction

such that total demand is brought within host supply. This method

assures that while all reactions are limited evenly, no reaction is

limited by a metabolite it does not consume; if amino acids are

scarce but dNTPs are available, genome synthesis can proceed but

translation cannot.

In summary, this allocation method converts the information

about the host metabolic network state into constraints on the T7

ODEs. We implemented this method as part of an algorithm for

T7 ODE and E. coli FBA integration with bidirectional

information exchange and mutual constraint at each time step

(Figure 2B). After initial specification of the host nutritional

environment, the overall viral demand is calculated (without

consideration of host limits) using the T7 ODEs, and the host

capacity calculated using FBA. Host supply and viral demand are

reconciled by calculating the upper bounds on viral production

fluxes, after which the T7 ODEs are re-evaluated over the

integration time step because metabolite limitation of one viral

ODE may affect the ODE solution as a whole. Finally, the infected

host flux distribution is calculated using optimization on the host

metabolic network, with viral fluxes bounded exactly to con-

strained T7 ODE reaction rate values.

Comparing Model and Experimental Data - Tryptone
Media

To validate the ability of the model to predict infection

phenotypes, we observed E. coli infection by T7 during growth on

Figure 2. Format and method for the integrated simulation. (A) The combined host-viral form of the integrated FBA problem is a
stoichiometric matrix (Stoich.) that can be considered as blocks: left, the independent host stoichiometric matrix; right, viral reactions consuming host
metabolites. The combined matrix may be further organized by host metabolites that do not supply viral reactions (rows of the 0 matrix in the upper
right) and host metabolites that are consumed by viral reactions (rows at the bottom aligned with Host-Viral Stoich). The vector of fluxes contains
host reaction rates at the top and viral reaction fluxes at the bottom to multiply properly with the host-left and viral-right organization of reactions in
the stoichiometric matrix. Accumulation is allowed at the intersections of host viral metabolism (Met. Accumulation; right), but the steady-state
assumption is enforced for host-only metabolites (0). A simplified flowchart (B) of the algorithm for integrated simulations, where Initialize indicates
the definition of media nutritional conditions and the start of iterations across time, simulating at each integration time point the individual T7 ODEs
and E. coli FBA, then reconciling the viral rate metabolite demand with host network state supply (Allocate). Both models are then recalculated to
incorporate information on their mutual constraint (Revised Viral Demand, and Infected Host Fluxes). Update of environmental information and
regulatory constraints at the initiation of each integration step (not specifically denoted on figure) further constrains the host-viral system.
doi:10.1371/journal.pcbi.1002746.g002

Host Metabolic Limitations on Viral Replication
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tryptone broth. We first measured the growth of E. coli cultures in

the presence and absence of T7 (Figure 3A). The culture is cleared

within 35 minutes, representing approximately two infection

cycles at 370C.

Unfortunately, with standard OD resolution, the infected and

uninfected cultures were not distinguishable from one another

within the single infection cycle (Figure 3A) simulated by the

model. Thus, differences in host growth rate were not a useful

metric to assess the prediction performance of our computational

model. We therefore returned to the traditional plaque assay-

based approach to determine the number of phage produced per

infected host cell during a single initial infection cycle, consistent

with previous work with the T7 ODEs [15,26] (Figure 3B). We

observed rapid increases in the number of phage beginning

around 10 minutes.

To compare model predictions to observations, we simulated

phage production time courses under the same environmental

conditions using our fully integrated model as well as the T7

ODEs alone. We found that the T7 ODEs alone substantially

overpredicted the production of T7 phage over time (Figure 3B).

This overprediction has been reported previously [15,26]. The

integrated model more accurately captured the phage production

time course (Figure 3B), suggesting that the integrated model is

limiting the production of T7 virions (detailed comparison across

media given below).

To determine the cause of this limitation, we considered the

model’s predictions of phage production and host metabolism in

more detail. We compared simulated intracellular concentrations

of selected phage components for the integrated simulation to

those during simulation of the T7 ODEs alone (Figure 3C). The

model predicts that production of Gene Product (GP) 1 is limited

at translation; GP 1 is the T7 RNA polymerase and is required to

transcribe middle and late T7 genes. Despite reduced transcription

capacity, sufficient mRNA for the major capsid protein (Gene

10A) is still produced. Major capsid protein production is

metabolically limited at translation, and thus procapsid availability

for phage assembly is decreased, resulting in fewer phage

produced during late infection than predicted by the T7 ODEs

alone. In the integrated simulation, although phage T7 genome is

produced at the same rate as the T7 ODEs alone, it is not

Figure 3. Host population and phage population time courses. (A) Dynamic time courses of experimental host population data uninfected
(line is mean of n = 2) and infected cultures (line is mean of n = 3); an immediate drop in population density occurs when the solution of phage is
added at t~0, due to dilution. Initial infection multiplicity was 0.1. (B) Measured and simulated phage production per infected host in tryptone broth
media (circles are mean, error bars shown are the standard deviation, n = 3). Simulation presented for the integrated model and T7 ODEs alone
simulated at m~1:5 hour{1 . (C) Expanded comparison of the simulated concentrations of critical phage replication machinery and phage virion
components compared to T7 ODEs alone. Gene Product 1 is the T7 RNA polymerase; Gene product 10A is the major capsid protein.
doi:10.1371/journal.pcbi.1002746.g003

Host Metabolic Limitations on Viral Replication
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packaged as quickly, with a considerable fraction of the total

genomes produced remaining unpackaged after assumed lysis.

This excess phage T7 genome resulting from phage production

limitation at the protein level is consistent with previous

experimental observations [15]. The most prominent limitation

by metabolism appears during the later steps of replication: mid

and late gene product synthesis and genome production. In

contrast, mRNA production is relatively unperturbed early in the

simulation, suggesting that metabolic limitation varies in its impact

over different periods during infection.

After considering the phage reaction changes in the integrated

simulation, we used the model to investigate the changes in host

metabolism during infection. The flux-balance component of the

integrated model calculates a predicted flux distribution for E. coli

growth on tryptone in the presence and absence of phage.

Essentially all of the non-zero fluxes change dynamically over time

in the presence of T7; a subset of these changes are shown

alongside the underlying metabolic map (Figure 4). Many

metabolic reactions experienced prominent flux changes that were

coordinated during infection. Dynamic coordination of fluxes in

time is not particularly surprising considering the underlying

network structure of constraints. However, these similarities in

addition to the sheer number of total fluxes that require

consideration render unaided visual inspection of infection

dynamic information rather uninformative. We found it useful to

cluster the flux dynamics into broad categories, which facilitate

interpretation of the interesting flux patterns in central and

peripheral metabolism during viral replication.

The majority of the observed flux clusters are driven by viral

flux requirements (Figure 4B). The increase in amino acid

synthesis and uptake corresponds in time to the synthesis of viral

proteins (Figure 4Bi–ii), and similarly flux through nucleotide

phosphorylation is high during the period of host genome

digestion to dNMPs and viral use of dNTPs (Figure 4Biii–iv).

Increased nucleotide recharge and pooling is known to occur

during phage T7 replication, due at least in part to interactions

between phage gene products and host metabolic enzymes [2].

Some complex host flux dynamics result from multiple viral

resource interactions (Figure 4Bv–vii); flux towards nucleotides

first increases during rapid early viral mRNA production, and

then decreases as viral genome synthesis occurs, corresponding to

the presence of large quantities of nucleotides.

Flux towards host membrane components and cofactors

decreases as the ability of the host to synthesize biomass is

reduced by the viral draw on components (biomass flux decrease

before 5 min) and energy (biomass flux decrease between 5 and 10

mins during dNTP recycling) (Figure 4Bvii–ix; light blue). This

cluster is the largest of the nonzero flux clusters across and within

media, and the sharp decrease in flux within 5 min represents the

shutdown in processes that are not required by the virus.

Interestingly, this shutdown is not explicitly encoded by either

model and therefore represents an emergent property of the

integrated model system. The detailed flux maps therefore provide

potential for a deeper biological insight regarding the underlying

metabolic changes that occur during viral infection.

Comparing Model and Experimental Data - Other Media
The T7 ODEs were originally parameterized to fit data where

E. coli grew on tryptone broth or other rich media [15]. Later work

incorporated correlations between available host machinery (e.g.,

ribosomes) and host growth rate into the ODEs in order to

account for the effect of growth rate on infection dynamics [26].

Host metabolism is encoded explicitly in our integrated host-virus

model, and so instead of a given growth rate parameter, the

integrated model requires only the environmental conditions as

inputs.

Unlike either individual model, the integrated model is capable

of predicting the viral infection dynamics for many different

culture conditions. We tested model predictions for three

previously unmodeled conditions: glucose, succinate, and acetate

minimal media. In each case, we measured the phage production

over time (Figure 5, bottom left and top panels). For glucose and

succinate media, the models produced dynamics nearly identical

to each other as well as similar to the experimental data. However,

for infections on acetate minimal media, the integrated model was

more accurate than the T7 ODEs alone. The two predicted time

courses differ because the integrated model accounts for the slow

growth and nutritional limitation of E. coli on acetate (roughly half

of the growth rate on succinate). In particular, small decreases in

gene product synthesis result in delayed achievement of the

thresholds necessary for phage genome replication initiation.

Furthermore, all of the simulations, from both the integrated

model and the ODEs alone, deviate from the typical one-step-

growth phage production trajectory. This is due to the rigid

description of host DNA degradation and incorporation into viral

genomes in the ODEs, which was originally characterized under a

single environmental condition. Quantitative comparison of our

observations to the model predictions verified that tryptone

simulations were the most indicative of experiment, and that the

tryptone and acetate integrated model simulations outperformed

those of the ODEs alone (Figure 5, bottom right panel).

We next wanted to understand how the host and viral fluxes

change under these different nutrient conditions. Detailed

individual media flux maps analogous to 4 are provided for

glucose, succinate, and acetate media in Figures S2, S3, and S4

respectively. To generate a global evaluation of the host flux

response to infection on varying media, we analyzed the aggregate

similarity of the total flux distribution between pairs of media

(Figure S5). Generally this comparison indicated that the flux

distribution for infection during growth on acetate was very similar

to the distribution during growth on succinate, while there was

more divergence between the tryptone and glucose flux distribu-

tions than for any other media pair.

Figure 6 displays the dynamic metabolic flux distribution for all

four infection simulations, normalized to facilitate comparison. Of

the fluxes that are non-zero in any of the media conditions, a large

fraction show highly similar dynamics. These fluxes include critical

biomass-related reactions such as those that contribute to

membrane (Figure 6Bi–iii) or ribonuclotide biosynthesis. In some

regions of the metabolic network, flux dynamics depend more on

the media conditions; for example, in central metabolism the flux

direction is often reversed between glucose and the other media

because glycolysis is occurring rather than gluconeogenesis

(Figure 6Biv). Reactions involved in amino acid synthesis also

exhibit this phenomenon, as they increase in rate on all three

minimal media, yet are zero on tryptone medium (Figure 6Bv),

which contains amino acids. Another interesting example involves

citric acid cycle activity, which is especially increased during the

high energy demands of nucleotide recycling (Figure 6Bvi). One

final subset, adjacent to key metabolites such as pyruvate (PYR),

oxaloacetate (OAA), and succinate (SUCC), displayed erratic and

rapid jumps between their extreme values, which results from

equivalent optimal flux distributions calculated by FBA in highly

interconnected sections of the metabolic network.

Finally, we used our model results to address the issue of host-

based limitation of viral infection. Many studies assume that phage

infection of E. coli is limited by ‘‘machinery’’ – the number of

ribosomes, RNA polymerases, and similar factors. Another

Host Metabolic Limitations on Viral Replication
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Figure 4. Infected host fluxes on tryptone media. (A) Flux dynamics are displayed for a subset of the metabolic network map. Arrows
representing reactions and the subplots of flux through those reactions are colored according to clustering of flux dynamics. Positive flux values
correspond to the reaction direction indicated by the colored arrowhead, negative flux direction is depicted with light grey barbs. Asterisks (*)
represent an abbreviation of the arrow for uptake from media. Metabolite abbreviations are consistent with FBA model definition. For clustering,
fluxes were treated as vectors with (1-correlation) as distance, and clustered using average hierarchical grouping with a cutoff height of 0.25. Clusters
with fewer than ten members appear in black, and clusters with constant dynamics are highlighted in grey. All nonzero fluxes in any media (tryptone,
glucose, succinate, and acetate) were included in the flux clustering so that cluster designation and color coding is consistent across media and
figures. Maps for media other than tryptone are included in the SI. (B) Select flux dynamics expanded for clarity ordered to exemplify host flux
changes driven by viral dynamics: (i) host amino acid synthesis, (ii) major viral capsid protein synthesis, (iii) host nucleotide phosphorylation, (iv) viral

Host Metabolic Limitations on Viral Replication
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possibility is that in some cases the host metabolic rates are limiting

factors; however, decoupling this limitation is difficult due to the

regulation of E. coli protein synthesis capacity by the availability

and type of nutrients [29]. We sought to compare the effects of E.

coli machinery- or metabolic-based limitation on T7 infection, an

exploration enabled by our integrated simulation which can be

perturbed in ways not practical experimentally. The detailed

simulation output presented in Figure 3C indicates that metabolic

limitation may be more prominent for certain phage processes and

during specific periods of infection. As a summary output for

comparison across conditions, we chose the phage production at

seventeen minutes post infection. This point is shortly after which

all cultures had begun to lyse, releasing phage, and thus making

the bulk quantity relevant to phage propagation across generations

within a host population.

The boundary representing machinery limitations is provided

by evaluation of the T7 ODEs alone across varied input growth

rates (Figure 7). The region that falls below the model prediction is

feasible (dark gray), and everything above is not (light gray). To

calculate the bounding metabolic phage production limitation, we

simulated the integrated model with the modification that excess

host replication machinery components were provided to the

ODE model (accomplished by passing a higher host growth rate to

the ODEs than that predicted by FBA). This calculation was

carried out for carbon- and oxygen-limited growth at each

resulting growth rate, which resulted in uniform predictions of

phage production at each growth rate. Metabolic feasibility here

refers to the supply of small molecule metabolites needed to build

phage virions; the metabolic limit increases smoothly with host

growth rate because the phage is made of a subset of the

metabolites included in the host biomass reaction that represents

FBA growth, and a state of host growth maximization is assumed

for host supply. This context reveals the integrated model to be

slightly mechanistically limited over the range of growth rates

between approximately 0.4/hour and 1/hour, and more severely

metabolically limited at higher and lower growth rates; however,

simulations at very low growth rates do produce empty capsids,

reflecting the strong repression of virion DNA production encoded

in the ODEs. Metabolic limitation at high and low growth rates

explains the better performance of the integrated model than the

T7 ODEs alone in predicting phage production on acetate and

tryptone media (Figure 3 and 5 respectively).

Discussion

In summary, we investigated the role of host metabolism in viral

infection. E. coli infection by T7 provided a unique opportunity to

address this issue because each system had been modeled,

parameterized, and tested independently. We integrated the host

metabolic FBA and T7 ODE models and compared the resulting

integrated model predictions with new experimental observations.

We found that our integrated model was not only a better

predictor of viral infection dynamics than either of the individual

models for a range of experimental conditions, but also shed new

insight on the interplay between virus and host during infection.

Most of the active host metabolic pathways were highly impacted

by the metabolic demand imposed by virion production.

Moreover, we grouped and categorized these pathways by their

dynamics; these groups were directly related to the timing of viral

demand for key virion components.

It is commonly assumed that viral infection dynamics are

predominantly limited by the amount of protein synthesis

machinery in the host [15,30]. In contrast, our results suggest

that in many cases metabolic limitation is at least as severe as

machinery limitation. This conclusion in turn implies that the

wealth of available metabolic reconstructions may enable compu-

tational predictions on virion production even when detailed

information about interaction with host macromolecules is lacking.

More broadly, these results emphasize the importance of

considering viral infections in the context of host metabolism.

Finally, we anticipate that models such as this integrated model

may be used to rationally perturb the viral infection process by

manipulating the host. The modeling and integration approaches

developed here are general to a host flux-balance model and a set

of viral ODEs, and by integrating the two it may be possible to

predict key host metabolic factors whose absence would hamper

infection, even as these factors depend on environmental

conditions.

Materials and Methods

Bacterial Strains, Phages, Media, and Assays
The bacterial host strain used was E. coli K12 BW25113, and

WT T7 phage (ATCC, BAA-1025-B2) was propagated according

to established protocol [31]. Tryptone media contained 10 g/liter

digestion of host genome to dNMPs, (v) purine biosynthesis, (vi) viral mRNA synthesis, (vii) viral genome synthesis, (viii) host cell envelope
biosynthesis, (ix) host biomass accumulation.
doi:10.1371/journal.pcbi.1002746.g004

Figure 5. Measured and simulated phage production. Shown per
infected host, across time, experiment compared to model predictions
for integrated model system, and the T7 ODEs alone, on M9 minimal
media with glucose, succinate, or acetate as carbon source (growth rates
for T7 ODEs alone are m~0:66 hour{1, 0:45 hour{1, 0:27 hour{1 ,
respectively). Error bars are standard deviation of n = 3. For glucose
and succinate media the T7 ODEs time course is not visible because it falls
directly beneath the integrated simulation line. The lower right panel
quantifies the goodness of fit of the integrated simulation and the T7
ODEs alone to experimental observations using normalized mean
squared error.
doi:10.1371/journal.pcbi.1002746.g005

Host Metabolic Limitations on Viral Replication
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Figure 6. Comparing normalized infected host flux dynamics spark-lines for all four media. (A) Metabolic map and normalized flux
dynamics for tryptone, glucose M9, succinate M9, and acetate M9 media. Flux values were shifted to the uninfected value (t~0), and then normalized
to their maximum magnitude on each medium; zero (initial) value is indicated by a grey horizontal line. Metabolite abbreviations are consistent with
FBA model definition. (B) Expansion of a selected subset of normalized fluxes. Host cell envelope synthesis (i), and biomass accumulation (ii) decrease
similarity across media. Purine synthesis (iii) exhibits dynamic similarity across media. Glycolysis (iv) is observed on glucose while gluconeogenisis
occurs on other media. Amino acid synthesis (v) increases on minimal media but not on amino acid-rich tryptone; and the citric acid cycle (vi)
demonstrates similarity in dynamic flux change timing, but differences in scaling and direction.
doi:10.1371/journal.pcbi.1002746.g006
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Tryptone (BD Bionutrients BactoTM Tryptone) and 5 g/liter NaCl

consistent with previous T7 work [15,31]. M9 minimal media

contained 56.4 g/liter Difco M9 Minimal salts, with added

2 mM MgSO4 and 0:1 mM CaCl; carbon sources glucose,

succinate, and acetate were added at 10 mM, 15 mM, and

30 mM to media preparations, respectively. All culture experi-

ments were conducted at 370C in a circulating water bath at a

volume of 30 ml culture in a 250 ml flask that was magnetically

stirred. Infections were at an initial MOI of 0.1 to assure hosts

would only be infected once, and replicates were taken from

separately infected flasks. Host population was measured as the

optical density (OD) using a spectrophotometer at a wavelength of

595 nm. Phage dilution and storage was in SM phage buffer [26].

Measurements of phage titer were made by plating phage sample

with 200 ml fresh bacterial culture at 1 OD from tryptone media in

3 ml tryptone broth with 0.7% agar atop tryptone broth 1% agar,

and incubating the plate in an inverted position at 370C for

approximately 3 hr [31].

Phage Time Course Assays
One-step phage growth experiments were conducted consistent

with published protocols [15,26,28]. Prior to infection, bacterial

hosts grew exponentially to a total density of 0.2 OD. Pilot

experiments suggested that essentially all phage absorbed into the

host cells within five minutes. Therefore, after 5 minutes of

infection in the initial culture flask, a sample was diluted 1000-fold

in warm shaken media into another flask of the same total culture

volume (30 ml) to minimize adsorption of produced phage to new

hosts. At 6 and 7 minutes (time points selected as just following

complete phage absorption)infected hosts were counted. To count

infected hosts 100 ml samples were transferred into ice-cold 900 ml

aliquots of phage buffer, returned to ice, and plated less than

30 minutes later. At 6 and 7 minutes, as well as all other time

points, 100 ml samples were transferred into room-temperature

900 ml aliquots phage buffer with 40 ml chloroform for host lysis.

The chloroformed samples were incubated at room temperature

for 30 minutes with periodic vortexing, then stored at 40C until

plating, usually within an hour. Phage from lysed samples at later

time points are reported normalized to the infected host count

obtained by the difference of unlysed and lysed samples at 6 and

7 minutes.

Modeling Approach
We implemented the T7 ODEs in MATLAB (R2011a The

MathWorks Inc.), informed by the equations presented in the

initial publication [15] as well as the code available for the most

recent version [26]. The T7 ODEs were originally compared to

phage production data at 300C having been simulated using

parameters measured at either 300C or 370C [15,26]. The

published flux bounds and regulatory rules of FBA correspond

to E. coli growth at 370C, and therefore for consistency the T7

parameters were modified to 370C where necessary (Table S5).

This modification included kinetic parameters and promotor

strengths to maintain prediction constancy with the proportion of

phage gene products produced [32], (Tables S4). A stiff solver

(ode15s) was used for all solutions of T7 ODEs, as required by

discontinuous rate definition equations.

The regulatory-FBA model reaction equations and metabolites

are iMC1010v2 [33], with the minor change that a few reversible

reactions were reversed for pathway direction consistency. Media

definitions for simulated M9 minimal were consistent with past

publications and tryptone media was approximated as amino acids

(Table S1); the short time of T7 infection meant that media

components were in excess for all simulations with growth rate

limitations resulted from flux bound constraints. Some regulatory

rules were updated to permit growth on rich media (Table S2).

Flux bounds were mostly consistent with previous publications,

with the exception of the relevant set used during growth on

tryptone amino acids that were fit using growth rates we collected

(Figure S1).

Phage stoichiometry reactions were included in the FBA system

(Figure 1B), one for each gene’’s mRNA and each gene product, as

well as for phage genome synthesis and a reaction accounting for

degraded host genome dNMP recycling to dNTPs. Included in

these reactions are the precursor small molecules that make up

each final macromolecule, as well as the energy required for

transcription or translation. The FBA host biomass reaction

energy requirements are typically phrased in terms of ATP only; to

be consistent, the GTP used for energy in phage production

processes is included in the reaction stoichiometry as ATP, and the

energy requirements for the T7 DNA helicase, which is known to

use dTTP preferentially [34] for energy, were also converted to

ATP. A full list of assumptions and references for generating phage

stoichiometry reactions is in Table S3.

We added a production rate equation consisting of only the

positive terms from the net rate equation for each molecular

species in the original T7 ODE model, to bound the forward-only

reaction fluxes in FBA. Furthermore, another ODE was added to

account for the fraction of the host genome material remaining for

Figure 7. Variation in the limiting factor for phage production
across host growth rates. Modeling results overlaid with exper-
imental phage production measurements. The machinery-feasible
region represents phage production values from T7 ODEs alone, with
the growth rate supplied to correlations for availability of the host
replication machinery; phage production values above the machinery-
feasible boundary are considered machinery infeasible. The upper
boundary of the metabolically feasible region was calculated using the
integrated simulation, but with access to excess host replication factors,
which we simulated by multiplying the host growth rate from FBA by a
factor of 1.25 when it was passed to the T7 ODE host machinery
correlations. Growth rate variation for calculating limitation boundaries
and integrated simulation was evaluated with a set of modified flux
bounds, with most growth rate sampling values simulated with both
carbon and oxygen limitation, which produced essentially identical
phage production predictions (resulting points lie within width of the
line displayed). Error bars are standard deviation of n = 3.
doi:10.1371/journal.pcbi.1002746.g007
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degradation. A set of input arguments to the T7 ODEs was also

introduced to pass limits on one or more of the production rates. If

a production rate was limited, its value is accounted for in the net

rate equation. Implicit in this implementation is the assumption

that if an mRNA or gene product is degraded, the components are

not available to metabolism during infection [35].

The code used in preparation of this article is available at

http : ==simtk:org=home=t7phagefba.

Integrated Simulation Algorithm
A simplified flowchart of the integrated simulation algorithm is

shown in Figure 2B. The FBA and ODE numerical simulations

interacted at every 10 seconds of simulation time. Since host lysis

is not modeled by the T7 ODEs, there is not a single logical exit

criterion for the simulation. Thus the simulation is run for a set

time length slightly greater than what is expected to be the

productive duration of infection. A text expansion of the

integrated simulation algorithm flowchart shown in (Figure 2B)

follows, with further detail presented in (Text S1 and Figure S6):

1. Specification: Define media composition of nutrient con-

centrations, including those that are replenished (often O2) and

those that are exhaustible (usually carbon source).

2. Initialization, Host: Determine steady regulation state and

growth rate in media, set all media to replenished, and run

sequential rFBA simulations until convergence. Set initial time

point host regulation state and pass growth rate to T7 ODEs.

3. Initialization, Virus: Evaluate T7 ODE host growth rate

correlations to set model parameters for host machinery

availability. Set initial concentration state of viral ODEs to 0,

except for the variable representing host genome for degrada-

tion, which is set from growth rate correlations.

4. Initial Viral Demand: Evaluate T7 ODEs without any

limits imposed for initial estimates of the amount of resources

the virus will request from host metabolism. Many viral sub

time steps are made within integration time step as determined

by ODE solver.

5. Host Supply: Set flux bounds based on environmental

availability, and regulatory rules referencing environment and

host state. Evaluate host linear programming problem

(maximize biomass flux in this case) to determine host resources

feasibly available to viral reactions.

6. Allocate Host Supply To Viral Demands: Distribute

metabolites to viral fluxes and set production reaction rate

bounds (see expanded section that follows).

7. Revised Viral Demand: Evaluate T7 ODEs with produc-

tion reaction limits. Many viral sub time steps within

integration time step as determined by ODE solver.

8. Infected Host Fluxes: Set viral reaction fluxes in FBA vector

to net viral production rate averaged over integration time step,

and evaluate combined linear programming problem (maxi-

mize biomass flux) to arrive at overall flux distribution.

9. Update States: Consumption and excretion to/from the

environment, flux distribution values, viral concentrations.

Return to 4 or exit.

Metabolite Distribution
Because the T7 ODE kinetic rates do not depend on small

molecule concentrations, we bound the phage macromolecule

production rates themselves to host production capacity. The

method to determine rate limits relies first on an initial ‘viral

demand’ which is based on an evaluation of the T7 ODEs without

applied limits over the integration time step. Implementation of

this strategy takes advantage of the divided matrix formulation of

the problem shown in Figure 2A. We further split the matrix

(detail in supplement) into summed terms representing the small

metabolites provided by the host
dx

dt

� �
host

, and those consumed

by the viral production fluxes
dx

dt

� �
viral

. In the resulting

relationship, shown in Eq. 1 (consistent with convention of FBA

intake to organism being negative flux),
dx

dt

� �
host

is the solution of

the typical host FBA problem neglecting biomass exchange, taking

advantage of the fact that host biomass is composed of a superset

of the small metabolites consumed by viral reactions. The

simplified form of this relationship is enabled by allowance of

metabolite accumulation at the intersection of host and viral

reactions.

0 SHV½ �
0

vviral

� �
~

dx

dt

� �
viral

¢{
dx

dt

� �
host

ð1Þ

Once a feasible host flux distribution is selected (by solving for a

‘host supply’ flux distribution), Eq. 1 provides a simple relation

that must be obeyed by viral production flux rates in order to

assure a solution exists to the combined host viral metabolic

problem. The method devised to select a vector of maximal viral

fluxes or rates (to pass to T7 ODEs) is detailed in the supplement,

but essentially allows the maximal evenly scaled flux through viral

reactions consuming any given metabolic precursor. For example,

allowing full production of viral DNA even if amino acid

availability is limiting protein synthesis, yet restricting both if a

shared reactant such as ATP is limiting.

Supporting Information

Figure S1 Time courses of uninfected E. coli growth on tryptone,

succinate, glucose and, acetate. Each time course was fit by a

simple exponential (dotted) as well as using dynamic FBA (solid

line), where initial conditions were determined by the first

experimental measurement.

(EPS)

Figure S2 Infected host fluxes on glucose M9 minimal media.

(A) Flux dynamics are displayed for a subset of the metabolic

network map. Arrows representing reactions and the subplots of

flux through those reactions are colored according to clustering of

flux dynamics. Positive flux values correspond to the reaction

direction indicated by the colored arrowhead, negative flux

direction is depicted with light grey barbs. Asterisks (*) represent

an abbreviation of the arrow for uptake from media. Metabolite

abbreviations are consistent with FBA model definition. For

clustering, fluxes were treated as vectors with (1-correlation) as

distance, and clustered using average hierarchical grouping with a

cutoff height of 0.25. clusters with fewer than ten members appear

in black, and clusters with constant dynamics are highlighted in

grey. All nonzero fluxes in any media (tryptone, glucose, succinate,

and acetate) were included in the flux clustering so that cluster

designation and color coding is consistent across media and

figures. (B) Select flux dynamics expanded for clarity ordered to

exemplify host flux changes driven by viral dynamics: (i) host

amino acid synthesis, (ii) major viral capsid protein synthesis, (iii)

host nucleotide phosphorylation, (iv) viral digestion of host genome

to dNMPs, (v) purine biosynthesis, (vi) viral mRNA synthesis, (vii)
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viral genome synthesis, (viii) host cell envelope biosynthesis, (ix)

host biomass accumulation.

(EPS)

Figure S3 Infected host fluxes on succinate M9 minimal media.

(A) Flux dynamics are displayed for a subset of the metabolic

network map. Arrows representing reactions and the subplots of flux

through those reactions are colored according to clustering of flux

dynamics. Positive flux values correspond to the reaction direction

indicated by the colored arrowhead, negative flux direction is

depicted with light grey barbs. Asterisks (*) represent an abbrevi-

ation of the arrow for uptake from media. Metabolite abbreviations

are consistent with FBA model definition. For clustering, fluxes were

treated as vectors with (1-correlation) as distance, and clustered

using average hierarchical grouping with a cutoff height of 0.25.

clusters with fewer than ten members appear in black, and clusters

with constant dynamics are highlighted in grey. All nonzero fluxes

in any media (tryptone, glucose, succinate, and acetate) were

included in the flux clustering so that cluster designation and color

coding is consistent across media and figures. (B) Select flux

dynamics expanded for clarity ordered to exemplify host flux

changes driven by viral dynamics: (i) host amino acid synthesis, (ii)

major viral capsid protein synthesis, (iii) host nucleotide phosphor-

ylation, (iv) viral digestion of host genome to dNMPs, (v) purine

biosynthesis, (vi) viral mRNA synthesis, (vii) viral genome synthesis,

(viii) host cell envelope biosynthesis, (ix) host biomass accumulation.

(EPS)

Figure S4 Infected host fluxes on acetate M9 minimal media.

(A) Flux dynamics are displayed for a subset of the metabolic

network map. Arrows representing reactions and the subplots of

flux through those reactions are colored according to clustering of

flux dynamics. Positive flux values correspond to the reaction

direction indicated by the colored arrowhead, negative flux

direction is depicted with light grey barbs. Asterisks (*) represent

an abbreviation of the arrow for uptake from media. Metabolite

abbreviations are consistent with FBA model definition. For

clustering, fluxes were treated as vectors with (1-correlation) as

distance, and clustered using average hierarchical grouping with a

cutoff height of 0.25. clusters with fewer than ten members appear

in black, and clusters with constant dynamics are highlighted in

grey. All nonzero fluxes in any media (tryptone, glucose, succinate,

and acetate) were included in the flux clustering so that cluster

designation and color coding is consistent across media and

Figures S2, S3, and S4. (B) Select flux dynamics expanded for

clarity ordered to exemplify host flux changes driven by viral

dynamics: (i) host amino acid synthesis, (ii) major viral capsid

protein synthesis, (iii) host nucleotide phosphorylation, (iv) viral

digestion of host genome to dNMPs, (v) purine biosynthesis, (vi)

viral mRNA synthesis, (vii) viral genome synthesis, (viii) host cell

envelope biosynthesis, (ix) host biomass accumulation.

(EPS)

Figure S5 Similarity of flux dynamics within a media condition

compared to similarity across different media conditions. Correlation

of each pair of fluxes within a metabolic class (Y), plotted against the

correlation between a single flux between pair of media (Y-X). T,

tryptone; G, glucose; S, succinate; A, acetate. Flux dynamics were

treated as vectors to calculate the Pearson correlation. Only pairs that

include one non-zero flux value were considered; for constant-constant

pairs of flux dynamics a correlation of 1 was assigned, and for constant-

varying pairs a correlation of 0 was assigned. Individual flux

correlations were aggregated as density for plotting (darker as more

dense), using kernel smoothing with a grid of 80 points and a

bandwidth of 0.25. The density shading scale is not comparable

between pairs. Similarity, as measured by positive correlation, of flux

distributions indicated by high density on the right of the axis, and

similarity within a single media indicated as density in upper regions.

Centered density on either axis indicates dissimilarity, or lack of

correlation. Panels highlighted with green are the highly similar flux

dynamic distribution pair acetate succinate, most alike to the analysis of

media with itself for reference, bounded in black. Panels highlighted

with a blue border (glucose to succinate or acetate) are largely similar

with some uncorrelated fluxes. Panels highlighter with red border

(tryptone to any of the minimal media) are largely dissimilar. All media

pairs display a large correlated fluxes because viral fluxes which are

constrained by the T7 ODEs, which have dynamics that are similar

except for scale across media. Inverse correlation within media and

metabolic class potentially arises from the arbitrary directionality

assigned to reversible reactions in the FBA definition.

(EPS)

Figure S6 Detailed algorithm used for integrated simulation of

E. coli FBA and T7 ODEs. Solid lines are each integration time

step, from beginning to end of iteration top to bottom. Shaded

boxes are stored states describing model time course. Dotted lines

completed for initialization. Dashed line connecting Viral

Demand and Host Supply is needed or not needed depending

on the optimization method being implemented in the latter. Full

expansion of steps in Text S1.

(EPS)

Table S1 FBA simulation media definitions.

(PDF)

Table S2 List of FBA rules relaxed for rich media growth.

(PDF)

Table S3 Assumptions and references for construction of phage

stoichiometry reactions.

(PDF)

Table S4 Table of major T7 ODEs genome definition update.

(PDF)

Table S5 T7 ODEs parameter updates, values, and references.

(PDF)

Text S1 Expanded methods detail.

(PDF)
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