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Abstract
Much of the research utilising genome-wide ChIP and DamID assays aims to understand the
combinatorial feature of transcription factor binding and the chromatin modification code.With
these experimental methods becoming more affordable and widespread, the focus of research is
shifting to making sense of the data. Amongst the many challenges arising from data analyses, we
are concerned with identifying biologically meaningful co-occurrences of transcription factor
binding or chromatin modifications, using genome-wide profiles generated from ChIP and DamID
assays. Co-occurrences are reflected in overlapping and adjacent signals in multiple ChIP or
DamID profiles. We review existing quantitative methods to score overlaps and to cluster binding
events in ChIP and DamID profiles. For pairwise comparison, existing methods either are based
on a single score at the genome level or take a genomic, region-specific view. To draw inference
from many profiles simultaneously, methods exist to cluster regions by their regulatory
importance or to infer cis-regulatory modules for a particular region. We provide a simple guide to
some of the statistical tools used by these methods.

Introduction
The combinatorial binding of transcription factors (TFs) to gene regulatory regions is an
integral component of gene regulation. The binding of a few different regulatory proteins to
individual gene promoters can already be observed in prokaryotic organisms such as E.
coli,1,2 and simple eukaryotic organisms such as S. cerevisiae.3-5 In higher organisms, the
size and composition of regulatory regions seen for many genes involved in metazoan
development provide a glimpse into the complexity of transcriptional regulation.
Specifically, different enhancer and silencer sequences often integrate the binding of a
variety of TFs to enable a precise context-specific target gene response. These complex
regions are embedded into the chromatin structure, and the accessibility of TFs to their
target sites is determined by an entire set of histone modifications.6 Such a complex
regulatory region can be found in the vertebrate globin locus that requires the integration of
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many cis- and trans-acting factors for the process of ‘globin switching’.7 The most
intriguing and extensively studied examples of the control of spatio-temporal gene
expression by the integration of various TF input signals include the regulation of individual
stripes of the pair-rule gene even-skipped in Drosophila development,8-10 and the control of
CyIIIa and Endo16 genes in the sea urchin.11 Auto- and co-regulating TFs form functional
modules, and ultimately, gene regulatory networks as those seen in early developmental
processes in flies and Echinoids.12,13

In this review, we consider the problem of inferring potentially biologically meaningful co-
occurrences in terms of transcription factor binding events or chromatin modifications
(including histone modifications and DNA methylation). ‘Co-occurrence’ refers to multiple
TFs binding to or several chromatin modifications occurring in the same genomic region or
genomic regions close to each other (Box 1A). Insights from these investigations will
provide an entry point to detecting functional modules formed by two or more TFs, to
deciphering important combinations of histone modifications in gene regulation, as well as
to identifying genomic regions with an elevated level of regulatory input (‘co-localisation
hotspots’14).

Chromatin immunopurification (ChIP) is currently the method of choice to detect
transcription factor binding sites (TFBSs) and chromatin modifications on the genome-wide
level. It is an in vivo method that captures genomic DNA bound and cross-linked to a DNA-
binding protein.15 It is versatile, allowing for the probing of site-specific TFs, the basal
RNA polymerase machinery, other DNA-binding proteins, as well as chromatin
modifications using specific antibodies. DamID, a variation of this technique, is useful when
no suitable antibodies exist for ChIP, although it suffers a lower resolution than the ChIP
method in general. Specifically, DamID employs a fusion of Dam methyltransferase to the
DNA-binding protein of interest.16 As there is no equivalent endogenous enzyme in most
eukaryotic species, only DNA lying in the vicinity of the binding site is methylated and can
be purified using a methyl-N6-adenine-specific antibody. The ChIP method is being used in
conjunction with microarrays (ChIP-on-chip) to probe large portions of the genome,17-20 or
with massively parallel and next-generation sequencing (ChIP-seq)21-24 where no whole-
genome array is available. These high-throughput techniques enable the genome-wide
detection of ChIP-enriched sequences in an unprecedented manner. With current advances
in genomic microarrays and high-throughput sequencing, they are likely to become even
more widely used (for a comparative review, see Aleksic and Russell25 in this issue).

Unfortunately, the resolution of these genome-wide techniques is nowhere near the actual
DNA sequence recognised by TFs yet. Target sequences of TFs are thought to be less than
15 bp in length in most cases. Signal-enriched genomic regions in the ChIP and DamID
profiles, however, often range between 500 bp and 5 kb, depending on chromatin
preparation, detection technique and platform (more details below). Computational methods
to improve the physical resolution of ChIP assays do exist26,27 but have not seen broad
application yet. Computer programs also exist to identify the causative TFBSs specifically in
ChIP-enriched regions,28-30 which resembles de novo motif finding and has not been solved
sufficiently.31,32

Despite these shortcomings, ChIP and DamID methods have generated extremely valuable
data, which one can use to study co-occurrences of TFBSs or chromatin modifications
(together referred to as ‘events’ hereinafter). These co-occurrences are represented by
overlapping and adjacent signals in the profiles of two or more factors (Box 1 and more
details below). In this review, we review existing methods for scoring these overlapping and
adjacent signals for pairs of factors and for many factors. Our review is by no means
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exhaustive, but aims to lay out some basic ideas, their connections to each other and their
relative merit.

ChIP and DamID profile data
Because of different designs, ChIP (ChIP-on-chip and ChIP-seq) or DamID assays generate
different types of raw data that have different resolutions. The genomic resolution of
microarrays used in ChIP-on-chip depends on the length and distribution of the probes (Box
1B). ChIP-seq, on the other hand, generates a large amount of overlapping short reads over
the whole genome (see Aleksic and Russell25). Hence, the raw data from ChIP-seq are
counted in many short genomic regions of varying lengths. As a variant of ChIP-on-chip
assays, DamID assays also produce probe intensities. However, their resolution is
determined by the chromatin preparation itself, but not the microarray resolution. In fact,
early applications of DamID utilised cDNA arrays for detection, as the methylation tag tends
to spread far into gene regions even in cases of intergenic TFBSs.

The raw and processed data represent ChIP and DamID profiles at three levels of resolution;
in decreasing order: the probe level, the peak-region level and the gene level. Profiles at the
probe level contain the raw intensities at all probes. Those at the peak-region level process
the raw data to focus on ‘signal-enriched genomic regions’, associating each region with a
score summarising the regional signal intensity or a binary value. This method is also
applied for ChIP-seq data. Dichotomising the raw data and assigning intergenic events to
nearby genes generates gene-level profiles. This approach implies that the closest gene is the
regulatory target, which is probably fair to assume when the events are within the proximal
promoter but can be arbitrary for binding events occurring just in between two genes.

ChIP and DamID profiles are thus imperfect representations of true binding events and
chromatin modifications (Box 1C). These imperfections will affect the inference of co-
occurrences and conclusions drawn from the inference.

Co-occurrences and their representations in ChIP or DamID profiles
To infer co-occurrences, we may compare ChIP or DamID profiles from the same
microarray (e.g. intensities from the same probes), from different assays (e.g. binary peak-
region profiles from different ChIP-on-chip assays) or across platforms (e.g. binary gene-
level profiles between ChIP-on-chip and ChIP-seq assays).

Co-occurrences are represented by overlapping and adjacent signals in ChIP or DamID
profiles. At high resolutions, such as at the peak-region and probe levels, completely
overlapping, partially overlapping and adjacent signals are all informative of co-
occurrences. At the gene level, one can usually observe only complete overlaps (Box 1C).

Methods of scoring overlapping and adjacent signals in ChIP or DamID
profiles

The complexities with ChIP or DamID profile data, including uncertainty, measurement
error and different resolutions, pose challenges to inferring and scoring co-occurrences
between factors. How to score co-occurrences across different platforms? How to measure
the amount of complete as well as partial overlaps? How close to each other should the
events be to be considered adjacent? How to evaluate the statistical significance of the co-
occurrence score? What assumptions underlie these statistical considerations? These are
relevant questions in light of the current endeavours to map TFBSs and chromatin
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modifications on a large scale. In addition, the wealth of data previously generated may
require the cross-platform integration, even at a comparatively low resolution.

The methods reviewed here are listed in Table 1. With only two profiles, existing methods to
score co-occurrences generally take one of these two approaches: one summarises the
genome-wide level of co-occurrence in a single score, which effectively ignores the
variability of events across genomic regions; the other acknowledges this variability and
assesses the level of co-occurrence in individual genomic regions. When the profiles are
available for many factors, it is possible to identify ‘co-localisation hotspots’, or identify cis-
regulatory modules for each of a small set of genes. In addition to reviewing these methods,
we provide a simple guide to basic statistical concepts behind some of the approaches
discussed here.

Methods for pairs of factors
Methods based on a genome-wide score

Simple counting—This strategy is suitable for scoring (complete) overlaps in two
profiles. At each of the probe, peak-region and gene levels, one may simply count the
number of genomic regions where either or both factors bind. These counts can be
summarised in a contingency table (Box 2) and displayed in a Venn diagram showing the
overlaps as the intersection of two circles.

The potential to learn about the modular binding of DNA-binding proteins on a genome-
wide level was already recognised in some of the first ChIP-on-chip publications. A simple
counting strategy was employed when Lieb et al.18 probed the genomic binding of yeast
Rap1 and its binding partners. They found a general agreement in the signals based on the
counts and presented this in a Venn diagram. The same strategy was adopted in the
pioneering work of Iyer et al.17 on the binding profiles of yeast SBF and MBF complexes
during cell cycle progression. In fact, most studies published to date have used a similar
strategy. Recent examples include the comparison of TFBSs from different tissues at the
gene and peak-region levels to account for the effect of different resolutions,33 and the
probing of chromatin complexes such as Polycomb and its DNA-binding partner
Pleiohomeotic, the two of which are likely to co-occur.34

Simplicity is the main advantage of the counting strategy. It provides a quick and succinct
summary of the level of co-occurrence for large profiles. This summary is also easily
interpretable even to non-experts, but this simplicity leads to the following problems: (i) it
does not work well for partial overlaps (e.g. partially overlapping peak regions; see Box 1).
Treating a partial overlap as a complete one can lead to overestimation of co-occurrence,
whereas treating it as no overlap can lead to underestimation. (ii) It ignores spatial
information, e.g. information about recurrent clusters of binding sites may be lost. The
counts treat all probed regions as equally spaced and their positions interchangeable. This
treatment may lead to underestimation of co-occurrence, considering that TFBSs and certain
chromatin modifications tend to cluster.

Correlation coefficient—Another summary statistic of the overall similarity between
pairs of profiles is Pearson’s correlation coefficient r (Box 2), which can be computed for
intensities as well as dichotomised data and at each of the three levels (probe, peak-region
and gene). On a scale of 0 (independent) to 1 (fully correlated), scores higher than r = 0.4 are
generally interpreted to indicate significant levels of similarity. For example, Orian et al.35

compared the genomic binding of dMyc/dMax/dMad by calculating rs between microarray
intensities for the cDNAs in their DamID assay. This quantity was also used to correlate
ChIP and DamID binding data of Drosophila TFs on the probe level from a tiling array.14,36
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As part of the ENCODE project, Zhang et al.37 computed rs for pairs of dichotomised
profiles (i.e. each base pair is scored ‘1’ for binding and ‘0’ for no binding) of more than
100 TFs.

One needs to be careful when interpreting r. It is a measure of the overall similarity (co-
occurrences and non co-occurrences) rather than co-occurrences only. Consider the
following over-simplified example. Binding profile ‘10000’ for both TF1 and TF2 leads to r
= 1. Binding profiles ‘11110’ and ‘11100’ for TF3 and TF4, respectively, give r = 0.6.
However, TF3 and TF4 clearly have more co-binding events than TF1 and TF2 do. In other
words, high correlation coefficient values can be due to many co-occurrences as well as a
large number of un-occupied regions. Other distance measures (e.g. the weighted Hamming
similarity in the case of binary profiles) may therefore be more suitable.

Similar to simple counting, the use of correlation coefficients also discards spatial
information in the data, treating probed regions as equally spaced and their positions
interchangeable. To adjust for this effect, Zhang et al.37 further applied a sliding-window
approach to the binary binding profiles at the base pair level. They counted the number of 1s
in each sliding window and then computed rs for these sliding windows for pairs of TFs.
This adjustment, however, effectively modifies the original binding profile, putting most
weight at the centre of each enriched region, although this is not necessarily the most
suitable approach.

Hypothesis tests based on a single score—Counts of overlaps between profiles do
not themselves indicate statistical significance. For example, a nearly ubiquitously binding
factor may overlap with all events of a more rarely binding factor. Are their overlaps
convincing evidence for a recurrent pairwise interaction? To answer this question, current
methods generally set it up as a hypothesis testing problem, with the ‘null’ hypothesis being
that co-occurrences between two factors are due to chance, and draw conclusions based on
the p-value (Box 2). The first three tests reviewed below are based on contingency tables
and make explicit distribution assumptions on the counts in the contingency table. Although
having a theoretical appeal, these tests ignore adjacent signals and discard the spatial
structure in the observed events along the two profiles. Permutation tests have been used or
proposed to address these issues.

Hypergeometric test—A hypergeometric test (Box 2), as a simple case of Fisher’s exact
test, can be applied to the contingency table for two profiles to assess the significance of the
counts. In one of the first genome-scale ChIP experiments, Simon et al.20 reported the
genomic binding to a target gene promoter of nine TFs involved in cell cycle control. The
authors dichotomised the binding profiles and determined the statistical significance of the
preference for a TF to bind to genes active during specific stages of the cell cycle assuming
a hypergeometric distribution, thus establishing the connection of the cell cycle-regulating
TFs with their target genes. On the other hand, the authors did not assess the statistical
significance for TF co-occurrence.

The data of these initial experiments in yeast were complemented with binding profiles of a
further set of TFs, yielding genome-wide binding information for 203 proteins, some of
which were assayed in a variety of physiological conditions.3 Several groups attempted
‘regulatory code breaking’ on these data, looking at either combinatorics at the promoter
level3 or the regulatory network structure.5 By integrating ChIP profiles, phylogenetic
conservation and published evidence, Harbison et al.3 determined the binding specificity of
102 TFs and inferred putative TFBSs based on these position weight matrix (PWM)
matches. Altogether, this yielded a map comprising of 3353 TF–DNA interactions at 1300
promoter regions. Amongst those hundreds of co-occuring TFs, the authors used the
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hypergeometric test to detect almost 100 pairs of TFs that may co-bind to some genomic
regions more often than expected at random.

The hypergeometric test has long been used on gene-level counts as the examples above
show. A more recent example is the mapping of binding sites of the stem cell chromatin
remodelling complex esBAF by ChIP-seq.38 The authors assigned esBAF binding as well as
occurrences of Oct4, Sox2, Nanog and others to genes. Hypergeometric testing revealed a
significant overlap between esBAF and these core pluripotency players.

Chi-square test—With improved microarray resolution, profiles on the peak level result
in large counts in the contingency table. A chi-square test provides a good approximation to
the hypergeometric test (Box 2). For the comparison of binding profiles for Polycomb PRC1
proteins on a 10 Mb tiling array, Nègre et al.36 dichotomised probe signals and carried out a
chi-square test to prove that PRC1 proteins significantly co-occur.

Log-linear model—Another approach is to fit a log-linear model to the contingency table.
Datta and Zhao39 used this idea to assess co-binding between TFs based on the ChIP-on-
chip data from Harbison et al.3 Instead of the contingency table obtained directly from the
profiles, they used the p-values for the microarray intensity values as the data to infer the
true binding states for two TFs. The inferred binary binding states across genes were
summarised in a contingency table. They then fitted this inferred contingency table with a
log-linear model (Box 2). Under standard theory, one can test whether the coefficient for the
interaction term is significantly greater than 0. If so, then one may conclude significant co-
binding and potential cooperativity between the two TFs. Their simulation study confirmed
that this approach, working with those p-values rather than the dichotomized binding data,
has more power. Meanwhile, the authors acknowledged that this regression approach does
not easily generalise to comparing multiple TFs simultaneously, because in general, higher-
order interactions (interactions between at least three TFs) are not easily detectable.

Permutation test—As mentioned before, permutation tests (Box 2) offer a flexible
alternative to the above three tests. They are applicable to any co-occurrence score defined
by the user and use a null distribution generated from permuting the observed profiles,
which helps preserve the spatial structure inherent in the data.

How to permute the observed profile has been an issue though. Allowing a uniform random
distribution over the genome may not well reflect its regulatory architecture, e.g.
concentrated occurrences of TFBSs around core promoters. Haiminen et al.40 is one of the
few studies that explicitly tackles this problem. Through simulation, they demonstrated that
the above naive scheme is prone to false positives. They therefore proposed two other
permutation schemes. The first permutation scheme, also used in Hannenhalli and Levy,41

and Klein and Vingron42 in the analysis of computationally predicted binding sites, fixes the
positions of binding sites of the two TFs and randomly assigns a site to a TF, according to
the frequency of the binding events of each TF. The second permutation scheme retains the
observed binding profile for one TF and permutes other profiles according to the first
scheme. Both schemes produced much fewer false positives than the naive scheme did,
based on simulated data. The second proposed scheme, however, applies only to three or
more profiles, and may not be symmetric amongst profiles.

Methods to account for variability of events across genomic regions
The above methods based on a genome-wide score provide an overview of the level of co-
occurrence. It is, however, reasonable to expect different amounts of co-occurrences across
different genomic regions. Hence, methods that account for the spatial variability may offer
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more insights on the study of co-occurrences between pairs of factors, although not many
methods are available for this purpose.

By assuming that key parameters in different genomic regions vary according to a common
probability distribution, hierarchical modelling is an effective approach to incorporate
variability across genomic regions. Feng et al.43 used this approach to compare binding
profiles of RNA Polymerase II (PolII) before and after certain treatment for each gene using
ChIP-seq. The authors modelled the count of PolII-targeted fragments for each gene with a
Poisson distribution with a gene-specific mean parameter. These mean parameters were
further assumed to come from two categories, different (category 1) and not different
(category 2) after the treatment. The Poisson mean parameters in each category follow a
distribution. They then estimated the posterior probability (i.e. the probability after
accounting for the observations and prior knowledge) of the counts belonging to, say,
category 1, for each gene. A high value for this posterior probability would indicate that the
binding behaviour in that gene is more likely to be different before and after treatment.
Using gene-specific Poisson distributions to retain the stochasticity in genes, this method
allows for the identification of individual genes that are bound differently before and after
the treatment.

The hierarchical model in Feng et al.43 considers the gene-level profiles and assumes
independence amongst the genes. This assumption, however, does not hold at higher
resolutions. Xu et al.44 applied the widely-used hidden Markov model (HMM) approach to
compare two ChIP-seq profiles of histone modifications, accounting for spatial dependence
across genomic regions, each of length 1 kb. The HMM consists of two layers: the hidden
Markov chain, on which each variable represents which profile is significantly enriched in a
genomic region; the observed layer, i.e. the ChIP-seq counts of the two profiles given rise to
by the hidden variables. Inferring the hidden enrichment state in each region depends on the
observed ChIP-seq counts in that region as well as the enrichment state in the neighbouring
regions. Although it might be difficult to work with ChIP-seq data at even higher
resolutions, the HMM can be a powerful tool to incorporate spatial variability in binding
events or chromatin modifications.

Simple regional comparisons are also possible without assuming any underlying signal
distribution. In their study to capture the binding preference of the histone acetyl-transferase
MOF in Drosophila, Kind et al.45 normalised ChIP signals within gene regions according to
the gene lengths, binned the normalised signals into fragments of 10% the length of a
‘standard gene’, and thus established the differences in MOF binding to genes on the X
chromosome and on autosomes.

Methods for many factors
With more ChIP profiles becoming available, pairwise comparison is not adequate to reveal
the interplay between many factors. Binding information from many factors gives one more
power than pairwise comparison does in terms of identification of ‘co-localisation hotspots’
and cis-regulatory modules.

Overall assessment of co-occurrence
One can count the number of observed events (from different factors) in each genomic
region and summarise these counts in a histogram, also known as an empirical distribution.
This empirical distribution reflects the genome-wide level of co-occurrence amongst many
factors. A different type of permutation test from the one reviewed above can be used to
assess whether the observation of this empirical distribution is due to randomness. The
common strategy is to permute occurrences of different TFs or chromatin modifications
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amongst occupied regions, or the other way round. For example, in the first large-scale
ChIP-on-chip experiment for the majority of an organism’s TF repertoire, Lee et al.4

obtained binding data for 106 yeast TFs. By randomly shuffling regulators amongst bound
promoters, the authors found many promoters bound by four or more TFs, which is unlikely
to be a result of chance, thus confirming the existence of multi-input motifs. Chen et al.46

also used this strategy and established that four or more TFs of the core pluripotency
network in stem cells occupy a highly significant proportion of enhancer sites. Cuddapah et
al.47 used a similar strategy to determine the significance of mapped CTCF binding sites
falling into specific chromatin domains.

Identification of ‘co-localisation hotspots’
Multiple testing based on Poisson distribution—One can test in each genomic
region whether a statistically significant number of binding events from different factors co-
occurred in this region. Chen et al.46 termed regions with significant enrichment for multiple
TFs ‘multiple transcription factor binding loci’ (MTLs). To identify MTLs, they used
Poisson distributions combined with Fisher’s method to assess the statistical significance of
co-binding in individual regions. One can assume that the majority of genomic binding
events of a factor occur independently at a relatively low frequency along the genome. This
behaviour is best described with a Poisson distribution (Box 2). The authors calculated a p-
value for each TF using a Poisson distribution to determine if the number of binding events
in a genomic region under consideration appears more often than would be expected looking
at the overall occurrences of this TF in the genome. The multiple p-values for all the TFs
calculated this way provide the basic material for local clustering of TFs. The authors then
derived a combined p-value using Fisher’s method (Box 2) for each region. Whether each
combined p-value is significant was further determined by applying the Benjamini–
Hochberg method, which controls the genome-wide false positive rate.48

Clustering—Instead of determining the statistical significance of co-occurrence in
individual regions, one can also cluster genomic regions according to their binding affinity
to TFs or chromatin modifications. Here, we borrow the term ‘co-localisation hotspots’ from
Moorman et al.14 to refer to clusters with a high affinity for factors. Many available
clustering algorithms49,50 take one of the two approaches. One is the non-hierarchical
clustering approach (e.g. the widely-used K-means clustering), which requires the user to
specify the number of groups. This has been used, for example, for clustering of non-
overlapping genomic windows of 100bp within 10 kb around gene transcription start sites,
and has been used in Heintzman et al.51 to correlate four classes of histone modification sets
with gene activity. The other method is the hierarchical clustering approach, which does not
make this requirement and generally produces a dendrogram by repeatedly pairing similar
items (e.g. Zhang et al.37 organised 18 frequently co-occuring TFs into a dendrogram based
on the pairwise correlations amongst the profiles).

Moorman et al.14 combined K-means clustering with a self-organising map (SOM; which,
roughly speaking, can be considered as non-hierarchical clustering) in a two-step procedure
to identify ‘co-localisation hotspots’ using the tiling array profiles for a set of factors
including seven TFs. Their profile data consist of normalised intensity values of 1 kb
genomic tiles of a 3 Mb region. They applied the SOM method in their first step. Genomic
regions to which a similar set of TFs tends to bind are grouped together. Unlike other
clustering techniques, this self-organising map approach locates the clusters of genomic
regions on a hypothetical grid, which has a much lower dimension than the number of
genomic regions. This grid then retains information of the distances between clusters. K-
means clustering in the second step used this distance information to carry out ‘super-
clustering’—grouping similar nodes (genomic regions) on the grid together to further reduce
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dimensions. The authors found eight clusters, termed ‘chromatin types’, with different
binding affinity for different sets of TFs. In particular, the authors defined genomic regions
in the chromatin type to which essentially all the TFs investigated bound as ‘co-localisation
hotspots’. Although this two-step clustering procedure may have over-simplified the
problem as the authors pointed out, the identified chromatin types did provide a coarse
summary of the binding affinity of the probed regions over the whole genome for many
factors.

Identification of TFs for cis-regulatory modules for a gene—Instead of clustering
genomic regions, Zeng et al.52 used a regression-based approach to cluster TFs for a gene,
thus identifying cis-regulatory modules (CRMs) based on ChIP measurements, as opposed
to theoretical TFBS and CRM predictions.53-56 The authors used time-course data of the
yeast cell cycle and regressed the expression levels of a gene of interest on those of the
genes corresponding to a set of TFs. The aim then was to select a subset of TFs whose gene
expression levels are highly correlated with that of the gene of interest. During this selection
process (variable selection in statistical terms), it was also desirable to keep all the TFs with
high correlations with the gene, rather than just one or two as the representatives (which the
authors showed was indeed the case with several variable selection techniques). Zeng et
al.52 applied factor regression to the TFs, regressing the TFs on a few factors (groups of
TFs). Factors significantly correlated with the expression levels of the gene of interest were
then considered to be co-binding at CRMs.

Conclusions
In this article we have reviewed a variety of methods for scoring co-occurrences across ChIP
or DamID profiles. As a concluding remark, we would like to emphasise visual display of
the profile data as an important aspect of exploratory data analysis.57 As mentioned before,
Moorman et al.14 used a self-organising map to display the genome-wide binding landscape
for several factors. Zhang et al.37 displayed in a biplot three types of relationship for the
ENCODE data: TFs and TFs, TFs and genomic regions, and between genomic regions.
Clusters and other patterns are easily identified from those displays.

It is also important to apply different methods to the data before settling on the most suitable
ones. This is because each method may offer a unique perspective (e.g. very different
contingency tables may lead to the same small p-value), but depends on sometimes
unsuitable assumptions (e.g. Pearson correlation coefficient measure similarity rather than
co-occurrence).

Last but not least, we are interested in using ChIP measurements, rather than theoretically
predicted binding sites, to score co-occurrences. Although most methods reviewed here
should apply also to these computationally predicted profiles, we believe that observed
profiles provide more direct information of the binding behaviours, and therefore may lead
to more biologically sensible conclusions on the functional relationship between TFs and
chromatin modifications.
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Box 1: Co-occurrences and their representations in ChIP/DamID profiles
Overlapping and close-by signals are representations of potentially meaningful co-
occurrences between multiple factors. With our limited understanding of a eukaryotic
regulatory logic, we do not yet know the precise spatio-temporal requirements for
modulating a regulatory function. We can, however, begin to infer some of these rules based
on genome-wide measurements from ChIP/DamID assays. We illustrate this with an
example of two transcription factors and their binding sites:
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(A) Co-occurrence of transcription factor (TF) binding refers to the binding sites of
one TF being physically close to those of another TF. Displayed are the binding sites of
two TFs (blue and green squares) on a piece of genome encoding five genes (grey boxes;
arrows denoting their transcription start sites). While the factors exhibit some independent
binding, the clustered occurrence of binding sites for both around the transcription start sites
of genes 1 and 5 may well represent an important feature.

(B) ChIP-on-chip arrays detect transcription factor binding sites (TFBSs) with
different resolution and genomic coverage. ChIP assays detect TFBSs by extracting
DNAs bound to the TFs and then identifying these DNAs using microarrays (ChIP-on-chip)
or sequencing-based (ChIP-seq) methods. Upper Panel: Promoter arrays, the first-
generation detection platform, capture TF binding with one probe per intergenic region of
length on the order of kilobases. Middle Panel: Genomic tiling paths of PCR amplicons
cover essentially the entire genome with a much higher resolution. Lower Panel:
Oligonucleotide arrays cover the whole genome with probes of ~25–75 bp densely spaced
(often less than 100 bp apart). ChIP-seq (not shown) detects binding events at slightly
improved resolution over oligo arrays (see also Aleksic and Russell25 in this issue).

(C) Dichotomised binding profiles are imperfect representations of the truth. These
imperfections affect the scoring of overlapping and nearby signals as well as making
inferences about co-occurrence. Microarrays following ChIP assays deliver one intensity
value per probe as the readout. Sequencing methods deliver stacks of sequence reads over a
genomic region. Shown here are inferred binary ‘enriched regions’ from dichotomising
those raw intensities (this is also known as ‘peak finding’). Enriched regions can be
represented also by a continuous value (e.g. the average intensity value over the region, or
the p-value associated with the peak).

Raw and processed ChIP profiles are imperfect representations of the true binding profiles.
ChIP assays may miss true binding events by design: the promoter array missed the two blue
TFBSs within gene 5. This promoter array also does not allow separation of the distinct
binding events between genes 3 and 4. Dichotomisation lowers the resolution: the enriched
regions for the blue factor in gene 5 merge into each other and are indistinguishable, perhaps
due to dichotomisation with an improper threshold.

The inference of co-occurrence from these overlapping and nearby signals is strongly
affected by these imperfections. Whereas the complete overlap from the promoter array
correctly detects co-binding upstream of gene 1, it would produce a false signal for the
intergenic region between genes 3 and 4, and fail to detect the co-occurrence around gene 5.
Partial overlaps from the tiling and oligo arrays provide more precise information on co-
occurrence locations. Clustered but non-overlapping signals, e.g. blue and green enriched
regions at gene 5, are also indicative of co-occurrence, but they are more sensitive to
distance thresholds needed to capture such events.
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Box 2: Distributions, tests and binding profiles
Here, we explain some basic concepts underlying the methods reviewed in the text.
Numerical results given in some concepts are based on the dichotomised binding profiles of
two transcription factors, TF1 and TF2, over 20 genomic regions given below:

TF1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0

TF2 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1

1. Contingency table: counting the genomic regions occupied by TF1 and/or TF2 or
neither gives the following table:

TF2

0 1 Sum

TF1 0 4 2 6

1 4 10 14

8 12 20

2. Pearson correlation coefficient r: this quantity gives equal weight to co-binding
(1,1) and co-non-binding (0,0). Hence, high values may not necessarily imply high
levels of co-occurrence. For the above example, r = 0.36.

3. p-Value: under the null hypothesis of overlaps occurring at random, the p-value is
the probability to observe, say, 10 and even more overlaps as in the example. That
is,

where T is the test statistic (e.g. number of overlaps), t the observed value (10
here), and H0 the null hypothesis. One rejects the null hypothesis for small p-
values.

4. Hypergeometric test: it tests for co-occurrence based on the contingency table,
which can be re-written using random variables:

TF2

0 1 Sum

TF1 0 n − k + t m − t m + n − k

1 k − t t k

n m m + n

Assume that the row and column sums (m, n, k) are fixed. The probability of
observing t is hypergeometric. The p-value for the example is
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5. Chi-square test: it tests for dependence (not co-occurrence) between TF1 and TF2,
and applies to contingency tables with very large counts (when the calculation of
hypergeometric probabilities becomes cumbersome). Under this test, the difference
between observed and expected counts can be approximated by a chi-square
distribution with one degree of freedom. The difference is defined as

where Oijs are the observed counts, and Eijs are the expected counts under the null
hypothesis, and are computed using the fixed row and columns sums. For example,
E22 is calculated as

The example has small counts in most cells. Hence, the chi-square test does not
apply.

6. Permutation test: it tests for co-occurrence through repeatedly permuting observed
enriched regions (or binding events) in one or both profiles many times. A pre-
defined co-occurrence score is calculated for each permutation. Many permutations
produce a null distribution of the co-occurrence score. One can then use this null
distribution to compute a p-value for the observed co-occurrence score.

7. Poisson distribution: it can be used to compute how likely it is for a single TF to
have, say, three binding events in 1 kb with 300 events in 1 Mb. The formula is

where ρ is the binding rate per bp.

8. Fisher’s method for combining p-values: one can calculate a p-value for each TF in
a genomic region to assess whether that TF has more binding sites than expected in
this region. To assess whether both TFs bind to more sites than expected, p-values
can be combined using Fisher’s method

where n is the number of TFs. The quantity P has a chi-square distribution with 2n
degrees of freedom. As before, a small combined p-value associated with the
quantity P suggests co-occurrence.

9. Log linear model: as a type of regression model, it fits the counts in a contingency
table as follows:
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in which Cij is the count in the (i,j)th cell, βs the effects and εij the error term.
Hence, the logarithm of each count depends on the main effects (β1 and β2) of the
two TFs as well as the interaction effect β12. An estimate of β12 significantly
greater than 0 indicates co-occurrence.
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