
Confluence of Genes, Environment, Development, and Behavior
in a Post-GWAS World

Scott I. Vrieze1,*, William G. Iacono1, and Matt McGue1,2

1Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN,
55455.
2Department of Epidemiology, University of Southern Denmark, J.B. Winsløws Vej 9B, DK-5000
Odense C

Abstract
This article serves to outline a research paradigm to investigate main effects and interactions of
genes, environment, and development on behavior and psychiatric illness. We provide a historical
context for candidate gene studies and genome-wide association studies, including benefits,
limitations, and expected payoff. Using substance use and abuse as our driving example, we then
turn to the importance of etiological psychological theory in guiding genetic, environmental, and
developmental research, as well as the utility of refined phenotypic measures, such as
endophenotypes, in the pursuit of etiological understanding and focused tests of genetic and
environmental associations. Phenotypic measurement has received considerable attention and is
informed by psychometrics, while the environment remains relatively poorly measured and is
often confounded with genetic effects (i.e., gene-environment correlation). Genetically-informed
designs which—thanks to ever cheaper genotyping—are no longer are limited to twin and
adoption studies, are required to understand environmental influences. Finally, we outline the vast
amount of individual differences in structural genomic variation, most of which remains to be
leveraged in genetic association tests. While the genetic data can be burdensomely massive (tens
of millions of variants per person), we argue that improved understanding of genomic structure
and function will provide investigators with new tools to test specific a priori hypotheses derived
from etiological psychological theory, much like current candidate gene research, but with less
confusion and more payoff than candidate gene research has to date.

Over the past 50 years, twin and adoption research has revealed much about the origins of
individual differences in behavior. We know that genetic factors influence individual
differences in a wide range of psychological outcomes, in part because genetic factors
appear to contribute substantially to both the stability of behavior as well as to behavioral
change. We also know that the genetic and environmental factors that influence a specific
behavioral outcome are not necessarily statistically independent nor do we expect them to be
additive in their effect. The emergence of the concept of gene-environment correlation (not
to be confused with gene-environment interaction) in the psychological literature arose out
of a need to account for what might, at least initially, seem a paradoxical result – genetic
factors appear to contribute to differences in a wide array of environmental measures
including peer-group characteristics, features of the parent-child relationship, exposure to
psychological stress, and becoming married as well as divorced (Kendler & Baker, 2007).
The paradox is resolved by recognizing that environments are not distributed randomly; that
individuals can have a major impact in shaping their experiences both directly, through the
choices they make, and indirectly, through the reactions their behaviors elicit from others
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(Jaffee & Price, 2007; Scarr & McCartney, 1983). Alternatively, the concept that genetic
and environmental factors interact in their effects has been enthusiastically embraced by
psychologists; gene-environment interaction research is one of the most rapidly expanding
research paradigms within psychology (Dick, 2011).

Today, the field of behavioral genetics is at a crossroads. The twin and adoption studies that
helped establish that important psychological outcomes are influenced by genetic factors in
the aggregate are increasingly giving way to molecular genetic investigations aimed at
characterizing the nature of the contribution of specific genetic variants. This transition has
not been entirely smooth. Reports of associations between specific genetic variants and
behavior have been notoriously difficult to replicate, and the validity of research
investigating the interaction between specific functional genetic variants and the
environment has recently been called into question (Duncan & Keller, 2011; N. Risch, et al.,
2009). How we think about the genetics of behavior is likely to be further challenged by
recent developments in genomic science, which allow psychological researchers today to
efficiently and economically interrogate vast numbers of genetic variants and, in the not-too-
distant future, will allow us to sequence the entire genomes of our research participants.
Genetically-minded researchers will soon be awash with genetic data and now is the time to
consider the implications of this new type of genetic data and especially how it can be
integrated with our knowledge of the nature of environmental influence to bring about a
better understanding of individual differences in, and developmental etiology of, behavior
and mental illness.

This paper is concerned with the impact of recent developments in genomics on the study of
human behavior. It begins by describing those developments. Because genomics has been
applied primarily with non-behavioral phenotypes, a discussion of the challenges uniquely
associated with behavioral phenotypes follows. This includes a discussion of what we have
learned from twin and adoption research about how best to assess the phenotype and
conceptualize the nature of environmental influence and, most critically, about how genes,
environment, and development be integrated to move psychology forward. Finally, we
describe ongoing developments in genomics that are likely to soon have an impact on
behavioral research and speculate about what the nature of what that impact is likely to be.
Unfortunately, most of current genomics research on human behavior is not
developmentally informed; we emphasize the importance of a developmental perspective
throughout.

GWAS: Genomics in a Post-Genomic World
The heritability estimates derived from twin and adoption studies imply that aggregate
differences in the DNA sequences we inherit contribute in some way to differences in our
behavior. The conclusion of the Human Genome Project (see Lander [2011] for a
discussion) has ushered in an era of precisely measured genomic variation. At the time of
this writing it is possible to obtain your entire sequence of DNA, approximately 3.5 billion
base pairs, for a couple thousand dollars. The genetic information currently used in
candidate gene studies by social and behavioral scientists is a mere fraction of the total
variation, and represents the tip of the genomic iceberg. This section lays the foundation for
our discussion of how to incorporate a developmental perspective into modern behavioral
genetic studies by briefly cataloging common forms of genetic variation, describing how
behavioral scientists have typically investigated this variation, and discussing how these
behavioral investigations are likely to change due to recent technological developments
within genomics.
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Human DNA Structure and Variability
Normal human DNA is contained in 23 chromosomes—22 autosomes and a single sex
chromosome. Humans also have small segments of DNA residing in cell mitochondria. We
focus here on chromosomal DNA. Each autosome has two copies, one copy from the mother
and one from the father. Each copy is composed of base pairs of nucleotides, the familiar A,
T, C, and G (adenine, thymine, cytosine, and guanine). The nucleotides are always found in
pairs, and the same nucleotides always pair with each other. An example autosomal
segment, along with major types of DNA variation can be found in Figure 1.

Single nucleotide polymorphisms (SNPs) represent one major source of genetic variation,
with over 15 million SNPs identified in humans as of this writing (Altshuler, et al., 2010).
An example SNP is given in Figure 1, where a single base pair differs between the maternal
and paternal autosomal segment. Of the 15 million catalogued SNPs, only ~10 million are
considered common in that they have a minor allele frequency > .05 in one or more
populations (the frequency in the population of the less frequently occurring, or minor,
allele). Note that the rarity, as well as the definition, of the minor allele is population-
specific. A particular allele might be very common in one population (e.g., individuals of
Han Chinese descent), and rare or even non-existent in another (e.g., individuals of Yoruban
descent; see The International HapMap Project [2003]). Whatever racial population is under
study, it is the common SNPs, and not the rare SNPs, that have been the focus of most
genetics research. This is because, all else being equal, the larger the minor allele frequency
the greater the power to detect an effect (Bansal, Libiger, Torkamani, & Schork, 2010).
Simply put, the typical sample will not contain many individuals carrying rare SNP alleles,
so a focus on common SNPs is driven in large part by pragmatics. There are many examples
of studies of SNPs within psychology. Perhaps most familiar amongst these is the
Val158Met (rs4680) polymorphism in catechol-O-methyltransferase (COMT) , which
involves a single base pair substitution that changes the coding sequence of the gene
(Meyer-Lindenberg, et al., 2006).

SNPs have been the primary focus of behavioral genetics research because they can be
efficiently genotyped and have consequently been extensively mapped, but it is important to
recognize that other types of genetic variants are likely also to be relevant to understanding
behavior. Insertions/Deletions (“InDels”) are variants where a small number of DNA bases
(usually < 100 bases) is either inserted or deleted into the DNA sequence. The most
prominent In/Del in psychology involves a 44base deletion in the promoter region of the
gene that codes for the serotonin transporter (5-htt; Heils, et al., 1996). Variable number of
tandem repeats (VNTRs) represent another form of genetic variation. VNTRs involve a
short segment of DNA that is repeated in tandem, but where the number of repeats varies
from person to person. The most widely studied VNTR in psychology involve a 48-base
sequence in the coding sequence of the DRD4 gene that is repeated from 2 to 10 times
(Lichter, et al., 1993). Finally, copy number variants (CNVs) are relatively long sequences
of DNA (100,000 bases or more) where individuals can carry other than the typical two
copies. Although CNVs are generally rare, they have been implicated in multiple diseases
including autism and schizophrenia (Stankiewicz & Lupski, 2010b).

While it might seem that comprehensive assessment of common SNP variation would
require genotyping research participants on each of the 10 million common SNPs, in fact a
small fraction of this number would suffice. This is because SNPs that are located near one
another on the same chromosome tend to be correlated with one another, a phenomenon
known as linkage disequilibrium (LD). Chromosomes are not transmitted across generations
unaltered. Rather, during meiosis, when homologous chromosomes pair up, there is an
opportunity for an exchange, or recombination, of genetic material between the maternally-
inherited and the paternally-inherited chromosomes. The greater the distance between two
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markers, the more likely it is that the markers will recombine. But rather than occur
randomly, recombination takes place most frequently at recombination hotspots along the
chromosome. SNPs that are located within the same resulting chromosomal block will
consequently tend to be passed along together to the next generation, and knowing one SNP
in the block allows one to infer the others with a high degree of certainty. The upshot is that
a minority of well-chosen SNPs (e.g., one million) contains information about nearly all the
common SNPs in the genome—the well-chosen SNPs serve as proxies for neighboring
SNPs in high linkage disequilibrium (Hirschhorn & Daly, 2005).

Until a few years ago, the existence of LD did little more than allow geneticists to speculate
about the possible impact of comprehensively surveying common variation throughout the
entire genome (Risch & Merikangas, 1996). The advent of high-throughput SNP
genotyping, however, allowed speculation to become a reality. The first genome-wide
association study (GWAS) was a proof-of-principle sponsored by the Wellcome Trust and
involved genotyping nearly 500,000 SNPs in 14,000 cases, representing 7 different inherited
disorders, and a common control sample of 3,000 (Burton, et al., 2007). This initial GWAS
tentatively identified 24 SNPs as being associated with one of the seven diseases and
spurred hundreds of subsequent GWAS that have resulted in the identification of several
thousand SNP associations (Visscher, Brown, McCarthy, & Yang, 2012). Although GWAS
posed several methodological challenges, such as how to deal with the multiple-testing
burden (Hirschhorn & Daly, 2005) or how to control for subtle population differences (such
as ethnicity) between cases and controls (Kang, et al., 2010; Price, et al., 2006), for the most
part these issues have been addressed and a GWAS analysis today involves little more than a
simple exercise of fitting an additive regression model, albeit repeated hundreds of
thousands and even millions of times.

GWAS of Anthropometric Measures, Medical Diseases, and Behavioral Traits
While the statistical exercise is simple, reliable identification of significant GWAS
associations has been challenged by two factors. First, addressing the multiple-testing
burden requires use of a p-value threshold of p < 5×10-8 (Hirschhorn & Daly, 2005).
Second, the effect associated with any specific SNP is very small, typically accounting for <
0.5% of the variance in the trait. Addressing these challenges requires sample sizes that are
typically beyond the capabilities of any single investigator. For example, to have 80% power
to detect an effect accounting for 0.1% of variance using the GWAS p-value threshold
would require a sample of nearly 40,000 individuals. Detection of these small effects has
motivated the establishment of large consortia, combining GWAS findings using meta-
analytic methods. A consortium on height used data from over 180,000 individuals to
identify 180 SNP variants that collectively accounted for approximately 10% of the variance
in height (Allen, et al., 2010). Consortia for body mass index (BMI, nearly 250,000
individuals, 18 variants identified, and 1.5% of variance accounted for; Speliotes, et al.,
2010), and blood lipids (more than 100,000 individuals, 95 identified variants, 10-12% of
variance accounted for; Teslovich, et al., 2010) have produced similar results. Since the
percent of phenotypic variance accounted for by known SNPs is far less than heritability
estimates from twin and family studies, researchers have concluded that much of trait
heritability remains “missing” (Manolio, et al., 2009).

The challenge associated with finding the missing heritability is heightened in recognizing
that the SNPs identified thus far are likely the low-lying fruit, those with the largest effect
sizes. Accounting for greater percentages of variance will require ever larger samples to
identify even smaller SNP effects. Figure 2 illustrates the projected sample sizes needed for
height and BMI to increase the variance being accounted for by identified SNPs. For height,
to increase from the current 10% to 15% will require a combined sample of 487,000
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individuals. For BMI, going from the 1.5% that is accounted for now to a mere 5% will
require a projected sample size of 730,000.

As with anthropometric traits, large samples have been needed to reliably identify SNP
effects in GWAS of behavioral and psychiatric traits. A meta-analysis (de Moor, et al.,
2009) of 17,375 individuals assessed for Big 5 personality traits returned one genome-wide
significant SNP for Openness, and one for Conscientiousness, neither of which subsequently
replicated in a small sample (N = 3,294). A genome-wide meta-analysis of alcohol
consumption (Schumann, et al., 2011) returned one SNP identified in a discovery sample of
26,316 individuals and replicated in a sample of 21,185, and a recent GWAS investigation
of more than 12,000 individuals with bipolar disorder and 50,000 controls reported 18
replicated SNP effects (Sklar, et al., 2011). Not unexpectedly, most of the heritable variance
for behavioral phenotypes remains missing. For example, a GWAS analysis of more than
3,000 individuals with schizophrenia and more than 3,000 controls was able to account for
approximately 3% of the variance in schizophrenia liability (Purcell, et al., 2009), far less
than the estimated 80% liability heritability for schizophrenia.

Accounting for missing heritability may not, however, be a simple matter of achieving ever
larger pooled sample sizes, if the relevant genetic variation is not being captured by the
GWAS platforms being used. Genome-wide complex trait analysis, or GCTA (Yang, Lee,
Goddard, & Visscher, 2011; Yang, Manolio, et al., 2011), is a statistical method that uses
the genetic relatedness among individuals, as measured by the genotyped SNPs, to estimate
the variance in the phenotype accounted for by the aggregate of all of those SNPs. The
method can be likened to a twin study except that instead of using twin zygosity to estimate
genetic relatedness, GCTA uses the aggregate genetic similarity, as estimated by the
genotyped SNPs, among each pair of research participants in a sample. Consequently, while
GCTA does not tell us which of the million or so genotyped SNPs contribute to phenotypic
variance, it does tell us how much variance the relevant SNPs would account for if we could
sift them out. In a sample of only ~4,000 individuals, Yang, et al. (2010) found that the
genotyped common SNPs accounted for 45% of the variance in height, a great deal more
than the 10.5% of variance found by the Allen, et al. (2010) meta-analysis of ~185,000
individuals, but still a far cry from the 80% heritability routinely identified in twin studies.
GCTA has been similarly used in large samples to estimate the variance accounted for by
genotyped common SNPs to be 23% for schizophrenia (Lee, et al., 2012) and 40-50% for
general cognitive ability (Davies, et al., 2011), values both well below heritability estimates
for these phenotypes derived from twin and family data. Consequently, while much of the
heritability of complex phenotypes could, in principle, be accounted for by the SNPs
genotyped in GWAS, clearly a large portion of the heritability would remain missing even if
we could achieve pooled samples in the multiple millions. In all likelihood there are sources
of genetic variance in addition to common SNPs, and the additive regression model that has
been the basis of GWAS analysis may need to be extended to consider non-additive effects.

While GWAS has been successful in identifying a large number of SNP variants for a large
number of important traits, some have expressed disappointment that SNP effects have been
uniformly small and that the vast majority of heritable variance remains missing (Gershon,
Alliey-Rodriguez, & Liu, 2011). Nonetheless, GWAS has moved the field beyond a research
agenda being driven by a few false positive genetic findings (Ioannidis, Castaldi, &
Evangelou, 2010). We believe the question now is not so much whether GWAS has worked
as it is how we can use what we have learned about the genetic architecture of complex
phenotypes to better understand the origins of individual differences in behavior. We are
optimistic about the future of genetically-informed behavioral research, especially if that
research builds on what we have learned about the nature of heritable variation for
behavioral traits; involves a consideration of environmental and developmental context; and
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expands to consider sources of genetic variance other than the common SNPs that have been
the focus of GWAS.

The Nature of the Behavioral Phenotype
Phenotypic Definition and Measurement

Despite a long history in psychology of measurement and assessment, much work on the
genetics of psychiatric disease has focused on diagnostic status or symptomatology of
mental disorder categories defined by the Diagnostic and Statistical Manual of Mental
Disorders (DSM; American Psychiatric Association, 2000). In part this is a practical issue,
as DSM diagnoses and symptoms are often gathered as part of standard assessment protocol.
This makes DSM-related measurements useful as they can easily be combined across studies
in meta-analytic style, which has become standard practice in genetics.

While a categorical measurement of disease status may effectively facilitate the pooling of
resources, it may not be an optimal way to measure disease and/or a trait. It is well-known
that binary diagnoses throw away an immense amount of information, and have lower
statistical power compared even to rough quasi-continuous measures of the same constructs,
like symptom counts (Markon, Chmielewski, & Miller, 2011). It is rarely true in psychology
that a binary classification is better for statistical analysis than a quasi-continuous one
(Grove, 1991), but arguments favoring of the use of quantitative indicators is not based on
statistical power alone. Some of the phenotypic measurements of interest to
psychopathologists appear to be better represented by continuous dimensions of variation
rather than as discrete entities (Krueger, Markon, Patrick, & Iacono, 2005; Vrieze, Perlman,
Krueger, & Iacono, 2011; although see Vrieze, in press), a conclusion that has moreover
been consistently supported in behavioral genetic research.

Used well, measurement models inform the nature and etiological structure of a phenotype
for behavioral genetic investigations. For example, alcohol, nicotine, and cannabis
dependence have long been considered as technically separate conditions in the DSM, but
work during the last decade indicates that a significant proportion of etiology among them is
shared, and is largely genetic in origin (Kendler, Jacobson, Prescott, & Neale, 2003). Factor
analytic approaches give single factor solutions, suggesting similar shared causal
mechanisms among nicotine, alcohol, marijuana, and illicit drugs (Hicks, Schalet, Malone,
Iacono, & McGue, 2011; Krueger, et al., 2002), which begs the question of what these
shared causes might be. One popular answer involves the gateway hypothesis (Kandel &
Jessor, 2002), where it is proposed that the use of one drug causes use of another. Perhaps
individuals use multiple drugs in their search for bigger and better highs, resulting in the
strong correlations that are observed among substance dependence symptoms. Another
hypothesis is that more impulsive, sensation-seeking individuals are more likely to
experiment indiscriminately with drugs, and will use and become addicted to multiple drugs
simultaneously, which would also result in observed correlations among different drugs.
This has been termed the disinhibitory hypothesis, holding that the more disinhibited one is,
the more likely one is to experiment and use indiscriminately (Iacono, Malone, & McGue,
2008).

Like many etiological theories, the gateway and disinhibitory hypotheses are developmental,
in that they hypothesize the existence of etiological processes that progress, over time, to
pathological behaviors such as drug abuse or addiction. Rigorous testing of these hypotheses
requires developmentally informed sampling and measurement, likely not new ideas to
readers of this journal. More novel, perhaps, is the utility of genetically-informative designs,
even in cases where one is not explicitly interested in the role of genetic factors. For
example, Irons, McGue, Iacono, & Oetting, (2007) used a genetic design called Mendelian
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Randomization (Smith, 2011) to test key predictions of the gateway model. Nearly 50% of
individuals of East Asian ancestry inherit a variant in the ALDH2 gene that diminishes their
ability to metabolize alcohol (Luczak, Glatt, & Wall, 2006). Those who inherit the gene
variant are likely to experience various signs of dysphoria following ingestion of even a
small amount of alcohol and consequently curb their drinking. Inheriting the ALDH2 variant
is essentially random, at least among East Asians, and thus provides a natural analog to
experimental randomization. The question of relevance here is whether individuals who
inherit the ALDH2 variant show, in addition to reduced drinking, diminished rates of the
behaviors the gateway model posits to be a consequence of use of gateway substances such
as alcohol. (Irons, et al., 2007) found no evidence in support of the gateway model in that
rates of non-alcohol substance use and disinhibited behavior did not vary as a function of
ALDH2 status among individuals of East Asian ancestry. Nonetheless, one limitation of the
(Irons, et al., 2007) study is especially relevant in the current context: participants were still
in late adolescence (average age of 18.3 years) and gateway effects may not emerge until
later in development. That is, there may be a gene by development interaction between
ALDH2 and non-alcohol substance use. Continued follow-up of the sample is warranted.

Other research using a variety of designs, summarized by (Iacono, et al., 2008), has taken a
more explicitly developmental perspective to establish that a broad risk for abusing multiple
drugs is disinhibitory, at least in adolescence. Relative to adults, adolescents are more
disinhibited (Steinberg, 2007), and one expects that correlations between alcohol, nicotine,
and marijuana dependence to be highest at younger ages, when individual's behavior is more
driven by impulsivity and sensation-seeking, and then decline over time as the youths age
and become more responsible. Vrieze, Hicks, McGue, & Iacono (in press) used a large
prospective longitudinal study of twins with measures of substance dependence taken at
ages 11, 14, 17, 20, 24, and 29. While overall rates increased until age 20-24 and declined
thereafter, the correlations among alcohol, nicotine, and marijuana dependence strictly
declined from adolescence into young adulthood. In addition, by using the twins we noted a
gene by environment by development interaction (GxExD). At younger ages the correlations
among nicotine, alcohol, and marijuana were due largely to genetic influences. At older ages
the correlations were more strongly due to non-shared environment. That is, as the
individuals aged their individual life experiences increasingly influenced their propensity to
use multiple drugs simultaneously.

Clearly, the same measure of a phenotype, such as symptom counts of alcohol dependence,
can be the product of drastically different etiology depending on developmental stage and
environmental considerations that exist when the measurement is taken. This can pose
serious problems for genetic studies in samples where the genetic etiology of a phenotype is
heterogeneous. An excellent example comes from recent research on obesity, where Lasky-
Su, et al. (2008) found a SNP in ROBO1 was significantly associated with obesity in
pediatric samples, but only marginally significant in adult samples, a GxD interaction. In
work on skin cancer, Duffy, et al. (2010) identified a SNP in the IRF4 gene where the T
allele was associated with high freckling in adolescents and adults, but was only associated
with high nevus counts in the adolescents. High nevus counts increase risk of melanoma.
The authors suggest this is likely a GxE interaction: adolescents in this cross-sectional
sample sun bathe more frequently for longer periods than the adults had. The adults and the
adolescents had the risk gene, but sun exposure is required to potentiate its effects.

Obvious analogues exist for substance use phenotypes. There are a host of genes that
theoretically impact upon propensity for addiction, but are irrelevant unless one is exposed
to the substance. This appears to be true for the nicotinic receptor gene CHRNA3, which
was very strongly associated with number of cigarettes smoked per day in a sample of
74,000 current smokers (p < 2.8×10-73) but was not associated with smoking initiation in a
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combined sample of ~74,000 smokers and ~70,000 non-smokers (Furberg, et al., 2010). The
effect of CHRNA3 is lost on those who have never smoked. Alcohol metabolism and
ALDH2, the gene discussed above and responsible for flushing in many individuals of East
Asian descent, also is likely not protective for alcoholism until someone starts drinking, and
thereby feels the effect of that genotype.

The hypothesized existence of heterogeneity in genetic etiology, that different genes are
relevant under different environmental or developmental circumstances, is in tension with
the most popular current approach to evaluating common variants: combining as many
samples as possible through meta-analysis. In the presence of between-sample heterogeneity
of genetic associations meta-analysis can fail (DerSimonian & Kacker, 2007; Han & Eskin,
2012; Tang, 2006), at least for those SNPs that are sample-specific, e.g., due to
developmental differences between some of the samples in the study. While this certainly is
a problem, it is currently prohibitively difficult to amass phenotypically, developmentally,
and environmentally homogenous samples powerful enough to identify common SNP
interaction effects. While meta-analysis is not perfect, if used well it can identify at least
those SNPs that transcend whatever heterogeneity exists, and new methods are being
developed that determine which individual studies in the meta-analysis contain the SNP
effect, which likely do not, and which studies are ambiguous (Han & Eskin, 2012). Such
tests can provide insight into the source of genetic heterogeneity to guide future efforts. The
existence of etiological heterogeneity between diverse samples is important to consider, but
should not impede efforts at consortia-building and GWAS meta-analysis.

Other genotypes, such as those associated with behavioral disinhibition or impulsivity, are
theoretically relevant both for initiation and maintenance of use (Zucker, Heitzeg, & Nigg,
2011). Measurements of these traits may show heterotypic continuity (Costello, Mustillo,
Erkanli, Keeler, & Angold, 2003), in that the same etiological process manifests differently
at different stages of development and/or in different environments. For example, problem
behavior before age 15 such as tobacco use, alcohol use, trouble with police, and early
sexual intercourse are predictive of age-20 psychiatric disorders like nicotine dependence,
alcohol dependence, drug dependence, and antisocial personality disorder (McGue &
Iacono, 2005). Studies of familial transmission also suggest a role of heterotypic continuity.
Parental substance use or antisocial diagnosis is associated with increased risk for child
conduct disorder, attention-deficit hyperactivity disorder, and oppositional defiant disorder
(Bornovalova, Hicks, Iacono, & McGue, 2010). These studies suggest that part of the
genetic predisposition to early childhood problem behavior and disorder is also relevant for
adult disorders, even though the phenotypic measures can be quite different.

One can begin to see the importance of phenotypic measurement and developmental
etiological theory in understanding a phenotype. Some aspects of the etiology and
measurement structure of substance use phenotypes change from adolescence to young
adulthood (Vrieze, et al., in press) and other aspects appear reliable over time (Bornovalova,
et al., 2010; McGue & Iacono, 2005). Genes found to be associated with substance use, at
whatever age, will require developmental elaboration of this kind in order to inform
etiology, intervention, and measurement. The overriding goal of behavioral genetics is not to
engage in statistical self-indulgence to explain variance in our pet phenotypes, but rather to
test etiological developmental theories of behavior. With the ever-increasing availability of
measured human genomes we expect an exciting scientific future—genetic findings will
force us to discard, amend, and refine theories, leading to improved empirical measures of
phenotypes and environments designed to test the refined theory, resulting in ever more
genetic, biological, and environmental findings.
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We expect a product of this cycle to be a pursuit of phenotypic and endophenotypic
refinement. A problem facing those exploring the genetic underpinnings of DSM categories,
or most other standard clinical or questionnaire measures, is that whatever utility they have
in guiding research and treatment, they are not grounded in biology. This leaves open the
question of how useful they can be as target phenotypes in genetic association studies. As
discussed, one explanation for the problems encountered identifying replicable genetic
associations with psychiatric disorders lies in the possibility that the disorders are too
etiologically heterogeneous and complex to facilitate gene finding. An additional
complication is that these behavioral phenotypes are far removed from the action of genes at
the level of the brain. These brain processes interact with environmental context to influence
various observed pathological behaviors, some constellation of which defines a DSM
disorder or trait measurement thereof. An endophenotype approach that targets more directly
the genetic architecture of the underlying brain processes may provide a useful complement
to investigations focused on DSM categories, symptom counts, and related trait dimensions.

An endophenotype is a heritable, biologically-based, objectively quantifiable measure that is
associated with a psychiatric phenotype because both share a common genetic influence.
Endophenotypes hold promise for gene finding because they are believed to: a) be more
proximal to the effects of genes, b) tap one of many facets of a disorder and thus be more
etiologically homogeneous than the associated disorder, and c) be more highly heritable than
the disorder, thus likely to produce larger effect sizes and boost GWAS power or, because
the endophenotype deals with an etiologically homogenous facet of the disorder, d) be
associated with fewer genes each of which may be expected to have larger individual effect
sizes. To the extent that an endophenotype taps a biological mechanism associated with the
development of a disorder, identifying its genetic underpinnings could provide clues
regarding how the relevant gene or genes affect brain processes that underpin a disorder. It
is unlikely that there are many DSM disorders with a specific neurological etiology, and
likely that there are different disorders that share underlying neural processes. To the extent
that a brain process (e.g., dysfunctional presynaptic prefrontal cortex) heightens risk for the
development of more than one disorder (e.g., substance dependence and mood disorders;
Goto, Yang, & Otani, 2010), an endophenotype has potential to provide leads to genes that
affect disparate disorders as well as genes that help explain why certain disorder
comorbidity combinations occur. Animal models derived from endophenotypes may be
potentially useful for identifying genes, their role in neurodevelopment, and their effects on
brain circuitry (Kaffman & Krystal, 2012). Many papers have been written regarding the
ideal properties of an endophenotype, with a recent review paper by Iacono and Malone
(2011) detailing these characteristics from a developmentally informed perspective.

Endophenotypes are by their nature developmental. Their utility for gene finding derives in
part from their ability to identify genetic risk in the absence of manifest psychopathology,
and a valid endophenotype should predict the subsequent development of disorder in
individuals and their first-degree relatives. The ideal endophenotype would change little
with development after a certain age, or change in a predictable manner. In addition, it
should be relatively stable over time and affected little by changes in state, including
changes associated with acute illness and remission of disorder. In their review, Iacono and
Malone (2011) showed how reduced amplitude of the P300 event-related potential obtained
from an oddball task (e.g., Begleiter, Porjesz, Bihari, & Kissin, 1984) shows promise as a
developmental endophenotype indexing genetic risk for substance abuse and related
disorders. This endophenotype is present in the pre-adolescent offspring of alcoholic fathers,
is evident early in life for those who go on to develop substance use disorders, changes with
development in predictable fashion (with the developmental trajectory of change itself being
genetically influenced), is stable over several year intervals, and is associated with substance
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use disorders because of likely shared genetic influences. Molecular genetic investigations
of P300 amplitude, including GWAS, are now underway.

Despite the promise of endophenotypes, skepticism has surfaced regarding the possibly
idealized assumptions on which they are based and the likelihood that they will indeed
facilitate gene finding (Flint & Munafo, 2007). However, it seems clear that the
endophenotype strategy has yet to be fully exploited. Multivariate methods targeting the
molecular genetic basis of the covariance between the endophenotype and its associated
disorder have yet to be fully tested, and using endophenotypes in combination may prove
fruitful. Iacono, Carlson, and Malone (2000) showed that using two endophenotypes in
combination was associated with greatly increased risk for developing substance use
disorders when compared to either endophenotype alone; that is, the endophenotypes each
added incrementally to the prediction of who would develop a substance use disorder.
Greenwood, Light, Swerdlow, Radant, and Braff (2012), obtained promising multivariate
results using a novel bootstrapping approach designed to counter problems associated with
multiple testing. In Greenwood, et al., (2011), they simultaneously examined the association
among 12 heritable schizophrenia endophenotypes and 1536 SNPs covering 94 biologically
relevant genes. They found evidence supporting the involvement of 46 genes, including
those involved in neurodevelopment, and reported that eight genes affected four or more
endophenotypes, suggesting pleiotropy. These studies and others (Iacono, McGue, &
Krueger, 2006; Luck, et al., 2011) demonstrate that it is currently feasible to obtain
endophenotype measures on samples numbering in the thousands. Although these Ns are not
large by current GWAS standards, with improved statistical methods, pooling across sites,
and reliance on putative endophenotypes that show strong construct validity, there is ample
reason to be optimistic about the payoff from an optimally applied endophenotype study.
Finally, even if endophenotypes do not help in gene identification, once disorder/trait-
relevant genes are found, the association of these genes with endophenotypes may help
identify relevant brain mechanisms (de Geus, 2010). This in turn would not only assist our
understanding the neurobiological effects of specific genetic polymorphisms, but also enrich
theoretical understanding of the etiological mechanisms contributing to the development of
psychopathology.

Measuring, Selecting, and Aggregating Environments
To disentangle genetic and environmental influences on behavior and disease behavioral
geneticists have traditionally used twins or adoptees and their families, which are well-suited
to this task. In one test of the disinhibitory hypothesis, Keyes, Legrand, Iacono, and McGue
(2008) evaluated the environmental impact of parental smoking on child tobacco, alcohol,
and drug use. In biological children parental smoking was associated with increased risk for
use of all drugs. In adoptive children it was only associated with a mild increase in smoking,
and had no association with alcohol or other drug use. A typical family study (of biological
parents and children) would have concluded that parental smoking is a risk factor for drug
use, without elaboration. Having a genetically-informative design, however, elucidated the
etiology. That is, parental smoking conveys risk both through an environmentally mediated
pathway that appears to be specific to offspring smoking and a genetically mediated
pathway that is general to offspring substance use.

Measuring and defining environments has received much less attention in clinical
psychology and psychiatry than phenotypic measurement. This trend is changing, and
current efforts such as the PhenX Toolkit (Hamilton, et al., 2011), devote entire
measurement domains to psychosocial history and social environment, providing a total of
30 assessment protocols ranging from child maltreatment to job strain. The Toolkit is a
multidisciplinary effort to standardize assessment for the genetic study of complex disease.
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Studies of GxE interaction often select candidate environments on the basis of a priori
hypothesis. This is more than reasonable when there exists strong a priori evidence that
some environment is likely to affect the phenotype differently depending on genotype.
However, measures of the environment often correlate, sometimes strongly. A standard
measurement approach would model those correlations under the usual assumption that
different environmental measures are imperfect measures of the same construct (Cronbach
& Meehl, 1955), but this is infrequently explicitly done. For example, in the evaluation of
GxE effects of externalizing behaviors, Hicks, South, DiRago, Iacono, and McGue (2009)
report an average correlation of .31 among adolescent environmental adversity measures,
indicating etiological overlap and the potential utility of combining environments through a
factor analytic measurement model.

Evaluating defensible aggregate measures of environmental risk might be a preferable
starting point for GxE studies. While such a procedure ignores the possibility of interactions
at finer levels of environmental detail, the multiple testing burden of possible environmental
measures times possible SNPs becomes too high too quickly for available sample sizes.
Perhaps more to the point, this approach to measuring the environment directly
acknowledges that environmental risk exposures seldom occur in isolation. For example,
adolescents who use substances tend to have problematic relationships with their parents, to
have difficulty performing at school, and to socialize with deviant peers. Rather than
focusing on specific environmental risk factors, aggregating environmental measures
emphasizes the accumulation of risk across domains in the etiology of problem behavior.
Work from our group has demonstrated that individual risk factors can be profitably
combined into broader omnibus indicators, providing valuable summaries of environmental
risk (Johnson, McGue, & Iacono, 2006; Keyes, Iacono, & McGue, 2007; Legrand, McGue,
& Iacono, 1999).

Gene-environment correlational processes, whereby measures of environmental risk come to
be heritable, complicate interpretations of associations of the environment with outcome
(Scarr & McCartney, 1983). For example, peer-group characteristics are substantially
correlated with adolescent substance use (Hicks, et al., 2009). But rather than being simply
causal, these associations may reflect that the underlying genetic liability for disinhibition
can manifest in both choice of peers and decision to experiment with substances (Harden,
Hill, Turkheimer, & Emery, 2008). A recent meta-analysis documented that gene-
environment correlation is pervasive, with the average heritability of measures of
psychosocial risk being 27% (Kendler & Baker, 2007). Nonetheless, it is important to
recognize that genetically-influenced factors can still exert environmentally mediated effects
on outcome (T.G. O'Connor, Deater-Deckard, Fulker, Rutter, & Plomin, 1998; Rutter,
Pickles, Murray, & Eaves, 2001). That is, exposure to deviant peers may both be a
manifestation of a heritable disposition and also result in increased substance misuse
through the mechanisms of peer facilitation and encouragement.

A second process that is also fundamental to understanding the joint influence of genetic and
environmental factors is gene-environment interaction (Thapar, Harold, Rice, Langley, &
O'Donovan, 2007). Rather than being uniform across individuals, genetic influences are in
many cases likely to depend on environmental context. For example, there is a growing
research literature indicating that genetic influences on cognitive ability are diminished in
environments that do not provide adequate opportunity for intellectual stimulation (Taylor,
Roehrig, Hensler, Connor, & Schatschneider, 2010; Turkheimer, Haley, Waldron,
D'Onofrio, & Gottesman, 2003). Alternatively, other research has shown that genetic
influences on adolescent misbehavior are amplified in the presence of peer deviance,
substance availability, and adverse family environments (Agrawal, et al., 2010; Button, Lau,
Maughan, & Eley, 2008; Feinberg, Button, Neiderhiser, Reiss, & Hetherington, 2007; T. G.
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O'Connor, Caspi, Defries, & Plomin, 2003) and diminished in positive contexts such as
being academically or prosocially engaged (Hicks, et al., 2009; Johnson, et al., 2010).

Characterizing the Nature of Environmental Influence
The goal of GxE research is, of course, to determine whether and how environmental factors
modulate genetic influences. The existence of G-E correlation, however, raises the
possibility that what may look like GxE may in fact be GxG (Jaffee & Price, 2007).
Advancing GxE research will require not only better phenotypic or endophenotypic
measurement and identification of the relevant genetic variants, it will also require proper
characterization of environmental effects. Behavioral genetic methodology has a major role
to play in this effort (Rutter, 2007b). We have already provided two examples where
behavior genetic methodology was instrumental in resolving an ambiguous association
between a putative environmental risk factor and behavioral outcome. In the first, the
method of Mendelian Randomization (MR) was used to determine that adolescent alcohol
use may not be a gateway to other substance abuse in adolescence (Irons, et al., 2007). But
MR depends on the existence of well-characterized causal genetic variants that mimic
environmental exposure (Smith & Ebrahim, 2003). Given the yield to date from large-scale
GWAS, it is reasonable to expect that MR will see limited application in psychology, at least
in the near-term. Nonetheless, it could be used more than it is now. For example, there are
enough obesity-related genetic variants identified for MR to be used to effectively explore
the psychological consequences of obesity (Timpson, et al., 2009).

Our second example involved the use of an adoptive-family design to determine that the
environmental consequences of parent smoking were specific to adolescent smoking.
Adoption studies are one of the most powerful methods for identifying familial
environmental influences, although they have been rarely utilized within developmental
psychology. This is perhaps, in part, a consequence of the logistical challenges associated
with undertaking an adoption study. It is also likely a result of the belief that fundamental
differences between adoptive and non-adoptive families severely limit the generalizability of
adoption research (Rutter, et al., 2001). While there are certainly differences between
adoptive and non-adoptive families, in general these differences are small (Rueter, Keyes,
Iacono, & McGue, 2009) and when they are not can be accounted for by proper research
design (McGue, et al., 2007). Adoption studies, as well as variants based on assisted
reproductive technologies, are underutilized within psychology.

A cotwin control study represents a third behavioral genetic design for characterizing the
nature of environmental influence. Unlike the previous two, the cotwin control design is
widely used, at least by behavioral geneticists. The logic of the design derives from the
counterfactual model of causality (McGue, Osler, & Christensen, 2010). Briefly, MZ twins
who are discordant on exposure to some putative environmental agent represent an
approximation to the ideal counterfactual design that is arguably second only to that of a
randomized experiment. This is because MZ twins share a genotype and a rearing
environment. So, for example, if early age of alcohol initiation is a risk factor for alcoholism
in adulthood, then within MZ twin pairs discordant for early alcohol use we should observe
greater alcoholism risk among the twins who are early users than those who are not (McGue,
Iacono, Legrand, & Elkins, 2001; Prescott & Kendler, 1999).

An early application of the cotwin control design involved female twins discordant for
childhood sexual abuse. Within discordant pairs, the abused twin was significantly more
likely to develop an alcohol use disorder than the non-abused twin (Kendler, et al., 2000),
indicating that the association between childhood sexual abuse and adult alcohol use
disorder could not be attributed to confounding with family environment or genetic factors.
Subsequently, the cotwin control design has been used to explore a broad range of putative
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environmental agents, including for example the impact of early cannabis abuse on drug use
escalation (Grant, et al., 2010; Lynskey, et al., 2003), the impact of college attendance on
drinking (Slutske, et al., 2004), and early adolescent sexual behavior on risky adult sexual
behavior (Huibregtse, Bornovalova, Hicks, McGue, & Iacono, 2011).

Testing for Genetic Interactions at the Level of the Genome
GxE interactions in association studies have been even more difficult to identify than main
effects, despite early promising leads (Duncan & Keller, 2011). The classic example of GxE
in psychology involves the 5-HTTLPR (serotonin-transporter-linked polymorphic region) in
the promoter region of SLC6A4, the serotonin transporter gene. 5-HTTLPR was found in a
seminal GxE study to interact with a measure of stressful life events to predict adult
depression (Caspi, et al., 2003). This result is perhaps the most well-studied and well-
characterized interaction in psychiatric genetics. Yet, a decade since the 2003 study, the
existence and extent of the interaction remains unclear with disagreement among experts, as
well as dueling meta-analyses provided in support of very different conclusions (Caspi,
Hariri, Holmes, Uher, & Moffitt, 2010; Karg, Burmeister, Shedden, & Sen, 2011; N. Risch,
et al., 2009). Regardless of whether this interaction is real, the limitations of existing GxE
research to clearly resolve the issue should motivate psychologists to critically evaluate
existing GxE methodology.

The Caspi, et al. (2003) GxE model has provided a popular blue-print followed by
investigators world-wide in testing for GxE effects. The approach is to select environments
and candidate genes—usually measured by a handful of common SNPs—based on a priori
hypothesis about functional importance. It has been called for this reason a candidate GxE
(cGxE) approach. While theory-guided approaches are without doubt reasonable in some
cases, they have yet to deliver in behavior genetics research. Indeed, much has been learned
about genomic function since the Caspi study was published, including our knowledge (from
GWAS) of the vanishingly small main effects for individual SNPs. It takes considerably
more power to detect interaction effects compared to main effects (e.g., a common rule of
thumb is four times as many subjects; Thomas, 2010a), owing in large part to the
multiplicity of alternative hypotheses tested. Most candidate gene studies, including the
original Caspi study, are undertaken on very small samples (the majority with N < 500),
such that power to detect an effect is miniscule and Type-I errors common (Duncan &
Keller, 2011). To place this in context, the average main effect for SNPs known to be
associated with height account for 0.06% of the variance. To have 80% power to detect a
GxE interaction of similar magnitude at alpha of .05 would require more than 10,000
unrelated participants.

From a genome-wide perspective, 80% power to detect the same effect at p < 5×10-8 would
require a sample size of ~53,000 participants. Clearly, gene by environment-wide interaction
studies (GEWIS) can be even more problematic than candidate GxE (Thomas, 2010a,
2010b; Thomas, Lewinger, Murcray, & Gauderman, 2011), as the many tests required in a
GEWIS severely compounds the already low statistical power to detect an effect. Given the
infrequency with which phenotypes and environments are consistently collected across
studies, it appears infeasible to amass the sample sizes necessary to detect a GxE effect at
genome-wide significant levels.

GEWIS is not feasible and, for whatever reason, the a priori selection of candidate genes
based, e.g., on findings in model organisms (Caspi, et al., 2010), is not currently working.
We argue that there are several ways forward.

1. Current atheoretical GWAS approaches can be tweaked to optimize analysis for
identifying GxE interactions. These methods include A) filtering the set of common
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SNPs to retain only those that have promise for interaction, which we explore in the
next section; and B) combining SNPs into polygenetic scores, and testing the score
for interaction with the environment.

2. GWAS, GxE, but most importantly psychological theory, will benefit from a
developmental perspective.

3. The standard candidate gene approach has been far from optimal, but is due to
make a re-appearance new and improved. Improved phenotypic and environmental
measures, along with vastly improved genomic knowledge, can revive candidate
gene approaches.

Emerging Approaches to Genetic Interactions
Filtering Variants to Enrich for Interaction

The genomically atheoretical approach of GWAS will not work for GxE because the testing
burden is simply too heavy. However, we can use our general knowledge about statistical
interactions to devise procedures to filter the vast number of common SNPs, resulting in a
much smaller subset probabilistically enriched to show interactions (Thomas, 2010a). We
briefly discuss three ways to do this. First, filter out any SNP that does not show a main
effect for the phenotype. SNPs in the subset of variants with main effects are known to
affect the phenotype in the first place, and are more likely to be differentially relevant
depending on the environment. We can see this in Figure 3. The figure portrays a series of
possible interactions between genotype, environment, and phenotype. The genotype is a
single SNP with alleles A and B. On the left-hand side of the figure is a sampling of the
many possible interaction effects. For each interaction we also give the corresponding main
effect that would arise under that interaction. The main effects are given on the right-hand
side of the figure. Notice that some interactions imply a main effect (Figure 3a & 3c), while
some do not (Figure 3b and 3d). Since we generally have more power to detect main effects
than interaction effects of similar size, we can use the relationship between main effects and
interactions to our advantage. If we restrict tests of interaction only for those SNPs with
demonstrated main effect, for example, we can greatly reduce the genome-wide testing
burden by rightfully ignoring the massive number of SNPs that lack a main effect.
Additionally, we expect the subset of SNPs with a main effect to be enriched for GxE
interactions (Marchini, Donnelly, & Cardon, 2005; Thomas, 2010a).

There are many ways to filter the vast number of SNPs by main effect. Perhaps the best
method is to use variants identified in the literature, preferably in large meta-samples.
However, using only those variants identified as genome-wide significant (p < 5×10-8) may
be too restrictive. A more exploratory GxE test might consider, perhaps, the top 100 or
1,000 SNPs with the largest estimated main effects, regardless of whether they are
significant at p < 5×10-8. The multiple testing burden for 100 SNPs is p < .0005, or 5×10-4,
far better than 5×10-8 incurred for testing all common SNPs. The actual number of candidate
SNPs to include in such an exploratory study could easily be informed by power
calculations.

Notice that filtering by main effect only works for a subset of possible interactions, as can
also be seen in Figure 3. Only Figure 3a and 3c 3 show a main effect in addition to
interactions. Filtering SNPs by main effect will also remove all SNPs that demonstrate
interactions in the absence of main effect (Figure 3b and 3d). There are other ways to filter
SNPs to enrich for interactions in the absence of main effects. For example, one might do a
test of equality of variances across genotypes (Pare, Cook, Ridker, & Chasman, 2010). As
can be seen in Figure 3b, for example, one would expect the variances to differ as a function
of genotype. Collapsing across environment, the variance of the AA allele would be larger

Vrieze et al. Page 14

Dev Psychopathol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



than the BB allele, because of the mean differences due to environment for the AA and BB
genotypes that is not present for the AB genotype. In fact, every example in Figure 3 would
fail a test of equality of variance (assuming sufficient statistical power) except for Figure 3d,
which is a theoretically possible interaction that shows neither a main effect nor inequality
of variance across alleles. Genotypes that fail a test of equality of variances would be
statistically enriched for interactions and prioritized in subsequent direct tests of GxE
interaction. Note however, that even Figures 3d and 3b (i.e., “cross-over” interactions)
would demonstrate main effects if genotypes and environments are unequally balanced.

Combining SNPs into polygenetic SNP scores
While the individual effect of a SNP is expected to be small, rendering the expected
environmental interaction effect small, the aggregate effects of SNPs can be quite large. In
the meta-analytic literature on genetic main effects it has become common to sum SNPs by
their univariate regression weight, resulting in a single polygenetic score for each individual
(e.g., see Purcell, et al., 2009; Vrieze, McGue, et al., 2011). The resulting score can have a
measureable effect on the phenotype, even in samples sizes in the thousands, allowing
individual investigators to independently test interactions without need for combining
studies meta-analytically.

Polygenetic scores are not as biologically informative as individual SNP (or gene) effects,
but can help inform the genetic and environmental architecture of diseases and traits. For
example, our group has recently conducted work on a polygenetic GxD test for cigarettes
smoked per day (Vrieze, McGue, & Iacono, 2012). The score consisted of a sum of the top
91 SNPs reported in a recent GWAS meta-analysis of cigarettes smoked per day in ~75,000
smokers (Furberg, et al., 2010). In a sample of ~3,000 twins we found that the SNP score
was irrelevant at ages 14 and 17, but was significantly associated with number of cigarettes
smoked per day at ages 20 and 24, indicating a GxD interaction. We speculate that
development here is a proxy for the environmental changes that occur between age 17 and
20, and serve to activate genetic influences on smoking. Most individuals at ages 14 and 17
have difficulty finding the opportunity to smoke more than a handful of cigarettes per day, if
they smoke at all. Smoking is illegal in the U.S. at these ages, and the vast majority of
youths are under teacher and/or parent supervision for most of their waking hours, limiting
but by no means eliminating their opportunity to smoke. This environmental restriction on
smoking is expected to temper the effect of a risky genotype. At ages 20 and 24, however,
smoking is legal, and young adults often live and work independently, removing the
environmental restriction on their genotypic propensity to smoke more.

Unfortunately, there does not exist for every phenotype a meta-analytic GWAS of 100,000
individuals from which to select SNPs with demonstrated main effects. Even so, several
options remain. One brute force method is to obtain polygenetic scores without meta-
analytic guidance, often by summing across tens of thousands of SNPs (Simonson, Wills,
Keller, & McQueen, 2011). The method often involves obtaining the univariate effect of
each SNP, culling SNPs in high linkage disequilibrium (LD) with more significant SNPs,
then adding the remaining SNPs according to their univariate regression weight. Removing
weaker SNPs in high LD with stronger SNPs removes likely LD-induced artifacts.
Depending on the LD threshold, this method results in thousands to hundreds of thousands
of SNPs comprising the resulting score. The method has proven useful with the usual
anthropometric traits like height (Allen, et al., 2010) and BMI (Speliotes, et al., 2010), and
also in schizophrenia and bipolar disorder (Purcell, et al., 2009). The score can then be
incorporated in tests of environmental and developmental moderation.

Another viable method to evaluate aggregated SNP interactions is Genome-wide Complex
Trait Analysis (GCTA; Yang, Lee, et al., 2011), described in the introduction. GCTA is a
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method by which one can estimate the variance in the phenotype accounted for by measured
SNPs. The method uses the estimated genetic relatedness between individuals in the sample
and models all SNPs as a random effect in a mixed effects model. Mixed effects models can
include interaction terms between random and fixed effects (Pinheiro & Bates, 2000), and
GCTA has a built-in facility for evaluating GxE interaction, where the G is the random
effect of all measured SNPs and E is the fixed environmental measurement. At present, the
software is restricted to discretely measured environments (e.g., was exposed to disease
pathogen, yes/no), but quantitative measures of the environment are planned for future
updates to the algorithm (Jian Yang, personal communication, February 13, 2012). It stands
to reason that longitudinal repeated measures could also be implemented in a GCTA
framework, allowing tests of aggregate SNP effects on developmental trajectories. There is
great promise to extending GCTA to environmental and developmental interaction, as any
study with genome-wide SNP data becomes immediately genetically informative, much like
a twin study. Twin studies are difficult or impossible to ascertain for rare phenotype/
environment combinations, and GCTA could provide a workaround in evaluating the
environmental moderation of genetic effects in these situations. In the context of a rare
natural event (often called a “natural experiment” (Rutter, 2007a)), such as a war or natural
disaster, one could imagine genotyping survivors and comparing them to matched controls,
conducting a test of GxE using GCTA to determine GxE interaction for phenotypes such as
post-traumatic stress disorder. This sort of research, without using GCTA however, has been
done with hurricane victims and 5-HTTLPR (Kilpatrick, et al., 2007).

Genome-wide polygenetic scores and GCTA have provided insight about the genetic
architecture of disease, but they otherwise lack direct biological interpretability due to the
fact that GCTA considers the genome-wide aggregate effect of hundreds of thousands of
SNPs simultaneously. Such scores need not be genome-wide, however, and application of a
scoring approach to a genomic region can provide improved biological relevance. Using
GCTA in a sample of 12,000, Yang, Manolio, et al. (2011) found that SNPs in genes
explained 38% of the variance in height, whereas SNPs in intergenic regions explained only
8%, even though the intergenic regions made up roughly half of the genome. Taking this
approach one step further, Lee, et al., (2012) found that genes involved in central nervous
system function accounted for ~30% of the diagnostic variance in schizophrenia, whereas
they physically comprise only 20% of the genome. Other genes also accounted for ~30% of
the variance, but physically comprise ~40% of the genome. As sample sizes grow, more
refined subsets of genes can be evaluated. For alcoholism, for example, one might
investigate the proportion of variance accounted for by SNPs in genes known to be involved
in alcohol metabolism, or candidate neurotransmitter systems such as GABA, dopamine, or
serotonin.

Role of GxD in evaluating GxE
GxE studies to date largely have not considered the role of development. Development can
inform genetic studies in at least two ways. 1) It can serve to modify the GxE interaction,
resulting in a GxExD interaction. 2) It can serve as a proxy for the environment in GxE.
That is, changes in the environment can correlate strongly with changes in age or
developmental stage, as illustrated in our work on cigarette smoking where the protective
(or, at least, interfering) childhood environment becomes less influential as adolescents age.
On a much more basic level, genomic regions have been linked to embryonic development
(Woolfe, et al., 2005). These regions are often involved in regulating protein transcription
from genes involved in development and cell integrity, are critical in organisms from
humans to dogs to fish, and have been highly conserved across animal species (Lindblad-
Toh, et al., 2005; Pennacchio, et al., 2006).
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Like cGxE, candidate GxD (cGxD) studies involve the selection of a promising genomic
region, such as a gene, and observation of how variants in that region are associated with a
phenotype at different ages or developmental stages. An excellent example of a cGxD study
involves a SNP in the gene FTO known to affect BMI in adults (Speliotes, et al., 2010) by
affecting one's perception of satiation after eating. In a longitudinal meta-analysis of 8
studies Sovio, et al. (2011) demonstrated divergent developmental trajectories for different
alleles of SNP rs9939609. They found that carriers of the at-risk minor allele of rs9939609
in FTO was significantly associated with a lower BMI in toddlerhood, an earlier adiposity
rebound around age 5, and higher BMI in early adolescence. The study demonstrates well
the potential complex interplay between genes and development that can be assessed with
relatively small sample sizes – the Sovio, et al. (2011) study had, on average, ~9,500
participants at any given age of assessment. By the same token, it stresses the need for
individual investigators to share existing data and collaborate on meta-analytic endeavors.

Our group at Minnesota took the cGxD paradigm in a slightly different direction (Vrieze,
McGue, et al., 2011). Our goal was to understand how the Allen, et al. (2010) meta-analytic
SNP findings for height play out developmentally during the pubertal growth spurt. We
tested for association of 176 of those SNPs with both pre-pubertal height and the pubertal
growth spurt in a sample of 3,187 twins of Caucasian ancestry from the Minnesota Center
for Twin and Family Research (see Miller, et al., submitted), for a description of the study).
No individual SNP was associated with pre-pubertal height, or the pubertal growth spurt, at
genome-wide significance. Aggregating the SNPs into a polygenetic score—summing them
together by their meta-analytic weights to form a single SNP score—resulted in a much
stronger association with pre-pubertal height (p=1×10-13, r2 = 4.5%) than with the pubertal
growth spurt (p=.004). The results indicated that the SNPs identified by the meta-analysis
were more relevant for growth in stature between conception and 10 years of age, and
largely did not explain variation in the rate at which individuals grew after the onset of
puberty.

cGxD approaches based on a priori hypotheses about gene function have also proven useful
in some instances. The Irons et al. (2007) study, involving the gene ALDH2 and described
in detail earlier was expanded in Irons, Iacono, Oetting, and McGue (2012), where the
authors tested the extent to which the protective effect of ALDH2 changed during
adolescence. Recall that nearly 50% of individuals of East Asian ancestry inherit a variant in
the ALDH2 gene that diminishes their ability to metabolize alcohol, and that those who
inherit the deficient gene variant are likely to experience various signs of dysphoria
following ingestion of even a small amount of alcohol. The deficient variant of ALDH2 was
found to be protective against drinking during early adolescence (14-17) and grew
increasingly protective as the individuals aged. The general results are consistent with the
Vrieze, et al. (2012) findings for cigarette smoking. That is, in adolescence the genotype
effect existed but was muted, likely mitigated by protective childhood environmental
circumstances. As the individuals aged, their genotype increasingly exerted influence on
behavior.

The Irons et al. (2012) finding is an excellent example of GxD effects for a psychiatric
condition, and demonstrates how a genotype expresses differentially dependent on
developmental stage or, perhaps just as likely, environmental context. As the youths
develop, their environment systematically changes, often in ways that can inform knowledge
of the interface between genes and environment.

Complementing GWAS: Rare and Structural Variants
Common SNPs used in GWAS studies represent a small fraction of the entirety of genetic
individual differences. GWAS disregards entirely rare SNPs and structural variation. Recall

Vrieze et al. Page 17

Dev Psychopathol. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the GCTA findings described in the introduction above. At best, common SNPs account for
less than half of the total additive genetic variance to be explained. For the only psychiatric
disease to be rigorously evaluated thusfar (schizophrenia), they account for a quarter. While
nothing to sneeze at, this leaves a large proportion of the heritability of schizophrenia
unexplained by common SNPs. There are many explanations for the missing heritability
(Eichler, et al., 2010; Zuk, Hechter, Sunyaev, & Lander, 2012), including the existence of
gene by environment interactions (Manolio, et al., 2009; Thomas, 2010a), but we focus on
one: the fact that genetic variants in humans are not limited to common SNPs. Other types of
variants are displayed in Figure 1, where we notice insertions, deletions, substitutions,
inversions, and variable tandem number repeats, and copy number variants. Forms of
genetic variation other than common SNPs are no doubt relevant for disease, and are just as
likely to be environmentally and developmentally moderated as common SNPs.

Rare and structural variation is obtained by sequencing, which has not until recently become
technologically or financially feasible. In current genome sequencing (called “shotgun
sequencing”) the approach is to obtain several reads (or measurements) of each base pair.
Because each read is relatively error-prone, it is desirable to obtain many reads (e.g., > 30×)
for each base pair to correctly identify the actual nucleotide. The average number of reads
for each base pair is termed the “depth” of sequencing; the deeper the coverage the higher
the average number of reads and the more precise the genotype calls. Ideally, many
individuals would be sequenced at high depth, which would provide accurate genotyping as
well as large samples sizes (and power) for tests of phenotype-genotype associations.
However, each read costs money, and there is thus a tradeoff between the number of
individuals sequenced and the depth of sequencing. An optimal tradeoff can be selected, but
depends on the research question (Li, Sidore, Kang, Boehnke, & Abecasis, 2011).

Let us first provide some context and motivation for whole genome sequences. The
immediate goal of GWAS was to identify SNP associations with the phenotype. Because
significant SNPs in GWAS are unlikely themselves to be functional (i.e., causal), but rather
to be in linkage disequilibrium (LD) with functional variants, the region around a significant
SNP would be subjected to further genotyping and/or sequencing to determine how that
region, which the SNP has “tagged,” is causally related to the phenotype. The common
SNPs thus would provide a foothold into biological investigations of etiology. There have
been dramatic examples of this logical progression from GWAS hits to regional targeted
sequencing and ultimate elucidation of functional variants. We discuss these to shift our
attention from SNPs, which represent very minor perturbations of the genome, to genes,
which are massive genomic regions integral to human biology and existence.

In a meta-analysis of GWAS on lipids, Teslovich, et al. (2010) found 95 SNPs genome-wide
significant for lipid traits, such as plasma concentrations of cholesterol measures. As usual,
each SNP in the GWAS had only very small effect. However, the investigators then
developed mouse models to validate three genes that contained SNPs identified in the meta-
analysis. In the mouse models the investigators did not simply perturb the GWAS significant
SNPs; rather, they knocked out or overexpressed the entire gene, with dramatic results. The
experimental mice showed marked differences in HDL cholesterol compared to controls.
The results highlight the fact that SNPs identified by GWAS are “tag” SNPs, are unlikely to
be functional themselves, but which can point to a gene or larger genomic region that, after
further study, turns out to be phenotypically critical.

A developmentally relevant example is in human growth. Widen, et al. (2010) conducted a
GWAS on growth in height during puberty. One SNP, located in LIN28B, was genome-
wide significant for pubertal growth, and had previously been associated with timing of
puberty (Ong, et al., 2009) and later further validated by Vrieze, McGue, et al. (2011).
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Similar to the work on lipids, researchers developed a mouse model where the mouse gene
analog, lin28a, was overexpressed. The transgenic mice showed dramatic change in rate of
growth during puberty, change in pubertal initiation, and vastly different adult height and
size (Zhu, et al., 2010). Again, GWAS SNPs may only weakly point to a gene, even though
the gene as a whole is crucial to phenotypic development.

Genes are the part of the genome that actually encode amino acids and proteins, and are
made up of promoters, enhancers, exons, introns, and other gene units. Promoters and
enhancers determine the rate of transcription of a gene – strong promoters tend to result in
higher rates of transcription, and thus more of the protein(s) encoded by the gene. Weak
promoters result in less gene production. The exonic regions of a gene are those regions that
actually encode amino acids and proteins. Even a single mistake in the exon can completely
change the protein encoded by the gene. In some cases a non-functional protein is produced,
in others a chemically different but functional protein is produced. For example, a nonsense
mutation can break a gene entirely, resulting in complete loss of function, similar to that
discussed above for the mouse models. A good example of exomic mutations with
phenotypic impact is in cystic fibrosis, where 1404 different exomic mutations have been
catalogued for the CFTR gene (http://www.genet.sickkids.on.ca/cftr/Home.html). Because
only a single functional copy of CFTR is required for normal function, a child inherits cystic
fibrosis if both the maternal and paternal genes carries at least one non-functional mutation.
In another, more sensational example, researchers used exome sequencing to make a novel
diagnosis of congenital chloride diarrhea for a patient who was referred for genetic testing
for diagnostic clarification (Choi, et al., 2009). The study demonstrated the potential clinical
utility of genome sequences for phenotypically extreme cases that are not easily
diagnostically classified.

Our knowledge of gene structure and function can be leveraged in analysis of genotype-
phenotype associations. Major efforts have been conducted at characterizing variation within
the exome, a term used to describe the collection of all exonic coding regions contained
within the genome. The 1000 Genomes consortium sequenced 697 individuals at an average
depth of 56× (very deep), identifying 12,758 SNPs with minor allele frequency > 0.1%
(Altshuler, et al., 2010). Thanks to these efforts, all these exomic SNPs can now be
genotyped with a relatively inexpensive exome SNP chip now commercially available.

One problem with exomic association tests is that loss-of-function mutations are likely to
very rare, due to strong evolutionary selection against these variants. Since power is
extremely low for rare variants (de Bakker, et al., 2005), different analytic strategies are
used/devised to handle them (Bansal, et al., 2010). One attractive method is to determine the
functionality of each SNP within some region, such as a gene, and then predict the extent to
which that region is impaired (Cooper & Shendure, 2011; Torkamani, Scott-Van Zeeland,
Topol, & Schork, 2011). For example, if an individual carries even one nonsense exonic
mutation within a gene then the gene for that person would be predicted to be non-
functional. This is precisely the etiology of cystic fibrosis, where there are many potential
nonsense exonic mutations (among other types of mutations), all of which lead to the same
phenotype. Regardless of the phenotype, one can test, for example, whether cases versus
controls are more likely to have non-functional genes. Regression analysis can be used for
quantitative traits, regressing the phenotype onto predicted functionality for each gene.
ENCODE and other extensive databases are continuously updated with reams of genomic
information. To give a few: dbSNP catalogues all identified SNPs in any organism and their
population characteristics (e.g., minor allele frequency, chromosomal position); OMIM
catalogues known disease-causing mutations; and the ENCODE consortium is an attempt to
discover, define, and list the functional elements of the human genome (Myers, et al., 2011).
Software has been developed to automatically leverage the immensity of information in
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these databases and apply them to individual genotypes in our studies. A list of such
software is given in Cooper and Shendure (2011).

While not yet widely applied to psychiatric phenotypes, exome sequencing has shown
promise in identifying genes relevant to phenotypes ranging from autism (O'Roak, et al.,
2011) and schizophrenia (Xu, et al., 2011) to mental retardation (Vissers, et al., 2010). As
exome sequencing becomes more affordable and the exome SNP chip more commonly used,
we expect exomic studies of psychiatric disease and psychological traits to become
increasingly common.

Structural variation is a substantial source of genetic differences between individuals.
Structural variants include copy number variants (CNVs), insertions/deletions (indels),
substitutions, and inversions, all of which are displayed in Figure 1. The extent of this
variation is immense, and has only recently been well-characterized thanks to the 1000
Genomes Consortium and related projects. Altshuler, et al. (2010) identified that individuals
on average have 361,669 indels, 96 of which occurred in exonic regions. Recall that one
deleterious variant within an exon can disrupt a gene entirely; it is not trivial that individuals
on average have 96 exonic insertions or deletions. The same study found that individuals on
average have 10,000 – 11,000 non-synonymous SNPs, and around 570 in-frame structural
variants (not counting CNVs) that likely have greater functional impact than single SNPs.
“Non-synonomous” means the SNP disrupts the protein coding sequence, while an “in-
frame” variant simply means that the variant significantly overlaps with the parts of the gene
that code a protein. Of these, ~370 of the variants are likely to result in loss-of-function in
the gene, rather than gain-of-function. In total these loss-of-function variants affect ~275
genes per individual in the study. In a follow-up study of copy number variants, Mills, et al.
(2011) identified 28,025 CNVs, 10,995 of which overlap with genes, in many cases
including the exon (1,119). Structural variants represent a significant source of genetic
variation, much of which theoretically has substantial import for the genetic etiology of
disease (Stankiewicz & Lupski, 2010a).

Psychiatric genetics and behavior genetics have begun to evaluate CNVs in disease, with
some notable results for schizophrenia (Levinson, et al., 2011), bipolar disorder (Priebe, et
al., 2011), and autism (Cook & Scherer, 2008). Promising results have also been found for
neurodevelopmental conditions such as ADHD (Elia, et al., 2010; Elia, et al., 2012). Other
forms of structural variation, including shorter CNVs, can now feasibly be measured with
sequencing pipelines and reference genotypes provided by the 1000 Genomes consortium
(Mills, et al., 2011). As more main effects of structural variants are discovered, they must be
leveraged along with rare and common SNPs to assist in elucidation of genetic,
environmental, and developmental etiology of disease. All of the techniques discussed above
for SNPs (except perhaps GCTA) are applicable to structural variation, and we expect
research in this area to begin blossoming in the near future as sequencing becomes routine.

The Return of the Candidate Gene Study
In the world after the Human Genome Project, psychiatric and behavior genetics has swung
from a field dominated by the candidate gene approach, and its a priori hypotheses, to one
relying on the brute force of atheoretical GWAS. With the advent of affordable whole
genome sequencing and functional annotation we expect the pendulum to begin swinging
back. Science has, and will, benefit from data-driven approaches like GWAS, but scientific
psychology requires theory to integrate findings and focus our experimental tests (Caspi, et
al., 2010). A major stumbling block of the candidate gene and cGxE approach has been the
lack of theory and understanding about genomics and genetic etiology—unknown at the
time, the candidates were not so good and expected effect sizes were highly optimistic.
GWAS, while not curing diseases, has been an exciting learning exercise. To exaggerate for
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effect, we now know that testing some genetic theory of behavior using small samples,
genetically un-informed phenotypes, poorly measured environments, no consideration of
developmental circumstance, and a handful of SNPs in a single gene won't do the trick.
GWAS undoubtedly will continue to provide leads (Visscher, et al., 2012), and point the
way to relevant genes. Encouraged by past success, ever more investigators are sharing data
to arrive at the required massive sample sizes. Consortia are even popping up with
developmental and environmental questions—our group is contributing to a consortium
evaluating adolescent cigarette smoking, for example. Identified SNPs will point to genomic
regions that will be subjected to further study. Transgenic mice will be created. Identified
genes will be sequenced, variants annotated and grouped, and tested in new samples.

GWAS will only get us so far. Etiological psychological theories must be proposed, tested,
and amended. While biological reductionism is perhaps not always preferable or possible
(Miller, 2010), theories would do well to propose, derive, and test increasingly refined
(endo)phenotypes. Multidisciplinary biological, neuroscientific, and psychological research
will point to chemical and structural systems relevant to psychological (endo)phenotypes,
such as neurochemical systems. Gene(s) known to be involved in those systems, if not the
whole genome, will be cheaply sequenced. Leveraging knowledge of gene function, the
entirety of genetic variation within the gene(s) can be tested for association with the
(endo)phenotype. At the same time, psychological research on environmental etiology and
measurement will continue, identifying environments likely to have causal phenotypic
effects. Tests of GxE and GxD can commence once plausible candidate genes have been
identified.

This brief outline of candidate gene research is not prescriptive; the steps by no means must
proceed in that order. Rather, it is an attempt to describe what we see as important
waypoints in the path to understanding genetic and environmental etiology of behavior. In
some fields many of the steps have already been taken. There is a wealth of neuroscience
and biological findings for alcoholism, for example, with excellent animal models providing
a wealth of biological knowledge (Spear, 2000) including metabolic and neurotransmitter
systems implicated in alcohol use and abuse (Hodgkinson, et al., 2008); plausible etiological
theories in psychology (Iacono, et al., 2008); well-validated endophenotypes (Iacono &
Malone, 2011); environmental etiology is continuously elucidated (Irons, et al., 2007;
Keyes, et al., 2008), and several studies already obtaining whole genome sequences on
human samples informative for alcohol/drug use, abuse, and addiction.

Summary
Simply getting off the ground and identifying robust and replicable genetic effects has been
difficult. Nonetheless, the field as a whole has learned a lot about genes, environments, and
behaviors in the process. Twin, adoption, and family studies formed the foundation, and
continue to be indispensible in forming and refining psychological theory. With measured
genetic variation this research can be taken to a more biologically and environmentally
informative level, as behaviorally relevant genetic variants are discovered and their effects
characterized. While common SNPs may account for a significant proportion of heritability,
there remains a very substantial source of genetic structural variation that is only beginning
to be tapped. Environmental and phenotypic definitions and measurements are likely far
from optimal. Better measurements, including endophenotypes, help everyone, psychologist
and geneticist alike, and will only improve the science and simultaneously increase power
for genetic associations. Current directions in quantitative psychiatric disease definition in
DSM-5 (Krueger, et al., 2011), efforts at standardized environmental measures like the
PhenX Toolkit, ever-cheaper sequencing, and improved knowledge of genomic structure
and function will provide investigators with powerful tools to disentangle genomic,
environmental, and developmental etiology in psychological behavior and disease. The
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coming decade will be an exciting one for psychologists interested in understanding the
causes of human behavior.
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Figure 1.
Common Forms of DNA Variation. Humans have two chromosomes, one inherited from
their father (paternal) and one from their mother (maternal). Since the same bases always
pair together in a single chromosomal strand (A with T; C with G), giving both pairs for
each strand is redundant, and DNA sequences are therefore represented by two rows of
bases (the “Simplified Representation” in the figure). The “CA” SNP represents the only
difference between the maternal and paternal autosomal segments. Catalogued in this figure
is the Single Nucleotide Polymorphism (SNP) as well as several common types of structural
variation, including Indels, Block Substitutions, inversions, VNTRs, and CNVs. Note that
these particular variants are illustrative, and that variation is not necessarily within-person.
For example, this individual is heterozygous for the SNP, but other individuals may be
homozygous CC or homozygous AA. The same is true for structural variants. In the Indel
example, this individual has a GAT insertion on the paternal chromosome and no such
insertion on the maternal chromosome. Another individual may have GAT insertions on
both chromosomes; yet another individual may lack the GAT insertion altogether.
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Figure 2.
Sample sizes and number of SNPs required to explain significant proportions of variance in
anthropometric traits. These data are based on visual inspection of graphs provided in
(Allen, et al., 2010) and (Speliotes, et al., 2010); see the original sources for full details.
Note the wide difference in trend for height (estimates based on sample of ~185,000
subjects) and for BMI (estimates based on sample of ~235,000 subjects). Height is much
more promising, in that it will take ~500,000 samples to obtain enough genome-wide
significant SNPs to account for 15% of the variance in height. For BMI, on the other hand, it
is projected that ~700,000 samples are required to account for only 5% of the variance in
height. Cause of the discrepancy in genetic architecture of these traits is unknown. These
values differ slightly from what is described in the text because extrapolating beyond
currently available sample sizes required sample splitting and replication procedures in the
original studies in order to unbiasedly estimate effect sizes.
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Figure 3.
Association between GxE interaction effects and G main effects. Graphs are organized into
rows. The left-hand graph in each row is an example GxE interaction; on the right is the
corresponding main effect (assuming the environmental exposure was 50:50 in this sample).
The GxE effect observed in row (a), similar to that found in (Caspi, et al., 2003), also shows
a main effect when environment is ignored. The effect in row (a) would also show unequal
variances across genotypes due to the increasing mean separation between environments as
we move from the AA genotype to the BB genotype. The effect in row (b) shows an
interaction but no main effect. Row (b) would show unequal variances across genotypes.
Row (c), although similar to row (b) would show an interaction, a main effect, and unequal
variances. Row (d) is unique in that the effect there would show an interaction, but would
demonstrate neither a main effect nor unequal variances.
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