
Vol. 28 no. 21 2012, pages 2824–2833
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts509

Data and text mining Advance Access publication September 6, 2012

Performance reproducibility index for classification
Mohammadmahdi R. Yousefi1 and Edward R. Dougherty1,2,*
1Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843 and
2Computational Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA

Associate Editor: Martin Bishop

ABSTRACT

Motivation: A common practice in biomarker discovery is to decide

whether a large laboratory experiment should be carried out based on

the results of a preliminary study on a small set of specimens.

Consideration of the efficacy of this approach motivates the introduc-

tion of a probabilistic measure, for whether a classifier showing pro-

mising results in a small-sample preliminary study will perform similarly

on a large independent sample. Given the error estimate from the

preliminary study, if the probability of reproducible error is low, then

there is really no purpose in substantially allocating more resources to

a large follow-on study. Indeed, if the probability of the preliminary

study providing likely reproducible results is small, then why even per-

form the preliminary study?

Results: This article introduces a reproducibility index for classifica-

tion, measuring the probability that a sufficiently small error estimate

on a small sample will motivate a large follow-on study. We provide a

simulation study based on synthetic distribution models that possess

known intrinsic classification difficulties and emulate real-world scen-

arios. We also set up similar simulations on four real datasets to show

the consistency of results. The reproducibility indices for different dis-

tributional models, real datasets and classification schemes are em-

pirically calculated. The effects of reporting and multiple-rule biases on

the reproducibility index are also analyzed.

Availability: We have implemented in C code the synthetic data dis-

tribution model, classification rules, feature selection routine and error

estimation methods. The source code is available at http://gsp.tamu

.edu/Publications/supplementary/yousefi12a/. Supplementary simula-

tion results are also included.
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Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Perhaps no problem in translational genomics has received more

attention than the discovery of biomarkers for phenotypic dis-

crimination. To date, there has been little success in developing

clinically useful biomarkers and much has been said concerning

the lack of reproducibility in biomarker discovery (Boulesteix

and Slawski, 2009; Ioannidis, 2005; Sabel et al., 2011; Zhang

et al., 2008). In particular, recently a report concerning

comments made by US Food and Drug Administration (FDA)

drug division head Janet Woodcock stated:

Janet Woodcock, drug division head at the FDA, this week

expressed cautious optimism for the future of personalized

drug development, noting that ‘we may be out of the general

skepticism phase, but we’re in the long slog phase. . .’. The

‘major barrier’ to personalized medicine, as Woodcock sees

it is ‘coming up with the right diagnostics’. The reason for

this problem is the dearth of valid biomarkers linked to

disease prognosis and drug response. Based on conversa-

tions Woodcock has had with genomics researchers, she

estimated that as much as 75% of published biomarker as-

sociations are not replicable. ‘This poses a huge challenge

for industry in biomarker identification and diagnostics de-

velopment’, she said (Ray, 2011).

Evaluating the consistency of biomarker discoveries across

different platforms, experiments and datasets has attracted the

attention of researchers. The studies addressing this issue mainly

revolve around the reproducibility of signals (for example, lists of

differentially expressed genes), their significance scores and rank-

ings in a prepared list. They try to answer the following question:

Do the same genes appear differentially expressed when the ex-

periment is re-run? Boulesteix and Slawski (2009), Li et al.

(2011), Zhang et al. (2009) and the references therein suggest

several solutions to this and related questions. Our interest is

different.
A prototypical reproducibility paradigm arises when a classi-

fier is designed on a preliminary study based on a small sample,

and, based on promising reported results, a follow-on study is

performed using a large independent data sample to check

whether the classifier performs well as reported in the prelimin-

ary study. Many issues affect reproducibility, including the meas-

urement platform, specimen handling, data normalization and

sample compatibility between the original and subsequent stu-

dies. These may be categorized as laboratory issues; note that

here we are not talking about the issue of providing access to

data and software for follow-up studies on published results

(Hothorn and Leisch, 2011). One can conjecture mitigation of

these issues as laboratory technique improves; however, there is a

more fundamental methodological issue, namely, error estima-

tion. In particular, inaccurate error estimation can lead to ‘over-

optimism’ in reported results (Boulesteix, 2010; Castaldi et al.,

2011).
Consider a protocol in which the expressions of 30 000 genes

are measured from 50 patients, each suffering from a different

stage of breast cancer—30,000 features and a sample size of 50.*To whom correspondence should be addressed.
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The typical analysis proceeds in the following fashion: (i) based
on the data, a feature set is chosen from the 30 000; (ii) a classifier
is designed, with feature selection perhaps being performed in

conjunction with classifier design and (iii) the classification
error is measured by some procedure using the same sample
data upon which feature selection and classifier design have

been performed. Given no lack of reproducibility owing to la-
boratory issues, if the error estimate is sufficiently deemed small
and a follow-on study with 1000 independent data specimens is

carried out, can we expect the preliminary error estimate on a
sample of 50 to be reproduced on a test sample of size 1000?
Since the root-mean-square (RMS) error between the true and

estimated errors for independent-test-data error estimation is
bounded by ð2

ffiffiffiffi
m
p
Þ
�1, where m is the size of the test sample

(Devroye et al., 1996), a test sample of 1000 insures
RMS � 0:016, so that the test-sample estimate can be taken as
the true error.

There are two fundamental related questions (Dougherty,
2012): (i) Given the reported estimate from the preliminary
study, is it prudent to commit large resources to the follow-on

study in the hope that a new biomarker diagnostic will result? (ii)
Prior to that, is it possible that the preliminary study can obtain
an error estimate that would warrant a decision to perform a

follow-on study? A large follow-on study requires substantially
more resources than those required for a preliminary study. If the
preliminary study has a very low probability of producing repro-

ducible results, then there is really no purpose in doing it. We
propose a reproducibility index that simultaneously addresses
both questions posed earlier. Our focal point is not that inde-

pendent validation data should be used—this has been well
argued, for instance, in the context of bioinformatics to avoid

overoptimism (Jelizarow et al., 2010); rather, the issue addressed
by the reproducibility index is the efficacy of small-sample pre-
liminary studies to determine whether a large validating study

should be performed. We set up a simulation study on synthetic
models that emulate real-world scenarios and on some real data-
sets. We calculate the reproducibility index for different distribu-

tional models (and real datasets) and classification schemes.
We consider two other scenarios: (i) multiple independent pre-

liminary studies with small samples are carried out and only the

best results (minimum errors) reported and (ii) multiple classifi-
cation schemes are applied to the preliminary study with small
samples and only the results (minimum errors) of the best class-

fier are reported. A decision is made for a large follow-on study
because the reported errors show very good performance.
Yousefi et al. (2010, 2011) show that there is a poor statistical

relationship between the reported results and true classifier per-
formance in these scenarios, namely, there is a potential for sig-
nificant optimistic ‘reporting bias’ or ‘multiple-rule bias’. These

two biases can substantially impact the reproducibility index.

2 SYSTEMS AND METHODS

We define a classifier rule model as a pair ð�,�Þ, where � is a
classification rule, possibly including feature selection, and � is a

training-data error estimation rule on a feature-label distribution
F. Given a random sample Sn of size n drawn from F, the de-
signed classifier is  n ¼ �ðSnÞ: The true error of  n is given by

"n ¼ Pð nðXÞ 6¼ YÞ, where ðX,YÞ is a feature-label pair. The

error estimation rule � provides an error estimate, "̂n ¼ �ðSnÞ,
for  n: To characterize reproducibility, we postulate a prelimin-

ary study in which a classifier,  n, is designed from a sample of
size n and its error is estimated. We say that the original study is

reproducible with accuracy � � 0 if "n � "̂n þ �: One could re-
quire that the true error lies in an interval about the estimated

error, but our interest is in whether the proposed classifier is as
good as claimed in the original study, which means that we only

care whether its true performance is below some tolerable bound
of the small-sample estimated error.
Given a preliminary study, not any error estimate will lead to a

follow-on study: the estimate has to be sufficiently small to mo-
tivate the follow-on. This means there is a threshold, �, such that

the second study occurs if and only if "̂n � �: We define the
reproducibility index by

Rnð�, �Þ ¼ Pð"n � "̂n þ �j"̂n � �Þ:

Rnð�, �Þ depends on the classification rule, �, the error estima-
tion rule, �, and the feature-label distribution F. Clearly,

�1 � �2 implies Rnð�1, �Þ � Rnð�2, �Þ: If jj"n � "̂njj � � almost
surely, meaning Pðjj"n � "̂njj � �Þ ¼ 1, then Rnð�, �Þ ¼ 1 for all

�: This means that, if the true and estimated errors are suffi-
ciently close, then, no matter the decision threshold, the repro-

ducibility index is 1. In practice, this ideal situation does not
occur. Often, the true error greatly exceeds the estimated

error when the latter is small, thereby driving down Rnð�, �Þ
for small �:
We are interested in the relationship between reproducibility

and classification difficulty. Fixing � and � makes Rnð�, �Þ de-
pendent on F. If we parameterize F, and call it Fð�Þ, then we can

write the reproducibility index as Rnð�, �; �Þ: If we select � so
there is a 1-1 monotonic relation between � and the Bayes

error, "bay, then there is a direct relationship between reprodu-
cibility and intrinsic classification difficulty, Rnð�, �; "bayÞ:
If we know the joint distribution between the true and esti-

mated errors, then the entire analysis can be done analytically,

for instance, in the case of the 1D Gaussian model with linear
discriminant analysis (LDA) classification and leave-one-out

(LOO) error estimation (Zollanvari et al., 2010). Fixing the vari-
ances and letting the means be zero and � gives the desired scen-

ario. We can now analytically derive the reproducibility index
Rnð�, �; �Þ: Unfortunately, there are very few distributions for

which the joint distribution between the true and estimated
errors is known. If not, then we use simulation to compute

Rnð�, �; �Þ:

2.1 Analysis

To analyze the reproducibility index as a function of � and tie
this to the joint distribution of the true and estimated errors, we

expand Rnð�, �Þ to obtain

Rnð�, �Þ �
1

1þ Pð"̂n5"n����Þ
Pð"n���"̂n��Þ

:

Consider the special case in which � ¼ 0, and let rð�Þ denote
the probability fraction in the denominator. Then we have the

upper bound Rnð0, �Þ �
1

1þrð�Þ : To gain insight into this bound,
we postulate a geometrically simple model whose assumptions

are not unrealistic. First, we assume that the linear regression of
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"n on "̂n is a horizontal line, which has been observed approxi-

mately in many situations (Hanczar et al., 2007, 2010). This

means that "n and "̂n are uncorrelated, which have also been

observed for many cases. Then, let us approximate the resulting

joint distribution by a Gaussian distribution with common mean

� (unbiased estimation) and � ¼ 0 (according to our assump-

tions). Finally, let us assume that the standard deviation of "n
is less than the standard deviation of "̂n, as is typically the case

for cross-validation. Letting fð"n, "̂nÞ denote the joint Gaussian

density,

rð�Þ ¼

R �
0

R "n
0 fð"n, "̂nÞd"̂nd"nR �

0

R "̂n
0 fð"n, "̂nÞd"nd"̂n

:

Figure 1 shows a pictorial of a single-level cut of the joint

distribution, along with the horizontal regression line and the

"n ¼ "̂n axis. Relative to the level cut, the dark gray and light

gray regions correspond to the regions of integration for the

numerator and denominator, respectively, of rð�Þ: It is clear

that for small �, rð�Þ becomes large, thereby making Rnð0, �Þ
small.

2.2 Synthetic model

A model is adopted for generating synthetic data, which is built

upon parameterized multivariate distributions, each representing

a class of observations (phenotype, prognosis condition, etc.).

The model is designed to reflect a scenario in which there are

subnetworks (pathways) for which genes within a given subnet-

work are correlated but there is no (negligible) correlation be-

tween genes in different subnetworks. The situation is modeled

by assuming a block covariance matrix (Hanczar et al., 2010;

Hua et al., 2005; Yousefi et al., 2010, 2011).
Sample points are generated from two equally likely classes,

Y¼ 0 and Y¼ 1 with d features. Therefore, each sample point

is specified by a feature vector X 2 Rd and a label Y 2 f0, 1g:
The class conditional densities are multivariate Gaussian

with fðxjY ¼ yÞ � Ndð�y, �
2�yÞ, for y¼ 0, 1, where

�0 ¼ ½0, 0, 0, . . . , 0�T and �1 ¼ ½0, 0, 0, . . . , ��T are d� 1

column vectors (for d¼ 1, we have �0 ¼ 0 and �1 ¼ �), and

�y is a d� d block matrix with off-diagonal block matrices

equal to 0 and l� l on-diagonal block matrices ��y being 1 on
the diagonal and �y off the diagonal.

Three classes of Bayes optimal classifiers can be defined de-
pending on �0 and �1: If the features are uncorrelated, i.e.

�0 ¼ �1 ¼ 0, the Bayes classifier takes its simplest form: a
future point is assigned to the class to which it has the closest
Euclidian distance. When �0 ¼ �1 6¼ 0, the Bayes classifier is a

hyperplane in Rd, which must pass through the midpoint be-
tween the means of two classes. If �0 6¼ �1, the Bayes classifier

takes a quadratic form, and decision surfaces are hyperquadrics.

2.3 Real data

We consider four microarray real datasets, each having more
than 150 arrays: pediatric acute lymphoblastic leukemia (ALL)

(Yeoh et al., 2002), multiple myeloma (Zhan et al., 2006), hepa-
tocellular carcinoma (HCC) (Chen et al., 2004), and a dataset for
drugs and toxicant response on rats (Natsoulis et al., 2005). We

follow the data preparation instructions reported in the cited
articles. Table 1 provides a summary of the four real datasets.

A detailed description can be found in the Supplementary
Materials.

2.4 Classifier rule models

Three classification rules, two linear and one non-linear, are con-

sidered: LDA, linear support vector machine (L-SVM) and
radial basis function SVM (RBF-SVM). Three error estimation

methods are considered: 0.632 bootstrap, LOO and 5-fold
cross-validation (5F-CV). In total, we have nine classifier rule
models.

LDA is a plug-in rule for the optimal classifier in a Gaussian
model with common covariance matrix. The sample means and

pooled sample covariance matrix obtained from the data are
plugged into the discriminant. Assuming equally likely classes,

LDA assigns a sample point x to class 1 if and only if
ðx� �̂1Þ

T�̂�1ðx� �̂1Þ � ðx� �̂0Þ
T�̂�1ðx� �̂0Þ, where �̂y is

the sample mean for class y 2 f0, 1g, and �̂ is the pooled

sample covariance matrix. LDA usually provides good results
even when the assumptions of Gaussianity with common covari-

ances are mildly violated.
Given a set of training sample points, the goal of support

vector machine classifier is to find a maximal margin hyperplane.

When the data are not linearly separable, one can introduce
some slack variables in the optimization procedure allowing for

mislabeled sample points and solve the dual problem. This clas-
sifier is called L-SVM, which is essentially a hyperplane in the

feature space. Alternatively, using a transformation the data can

Fig. 1. A single-level cut of the joint distribution and corresponding

probabilities

Table 1. Four microarray real datasets used in this study

Dataset Dataset type Feature—sample size

Yeoh et al. (2002) Pediatric ALL 5077—149/99

Zhan et al. (2006) Multiple myeloma 54613—156/78

Chen et al. (2004) HCC 10237—75/82

Natsoulis et al. (2005) Drugs response on rats 8491—120/61
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be projected into a higher-dimensional space, where it becomes

linearly separable. One can avoid using the transformation and

work with a kernel function that is expressible as an inner prod-

uct in a feature space. The equivalent classifier back in the ori-

ginal feature space will generally be non-linear (Boser et al., 1992;

Cortes and Vapnik, 1995). When the kernel function is a

Gaussian radial basis function, the corresponding classifier is

referred to as RBF-SVM.

In general, the 0.632 bootstrap error estimator can be

written as,

"̂boot ¼ 0:368"̂resub þ 0:632"̂zero,

where "̂resub and "̂zero are the resubstitution and bootstrap zero

estimators. The resubstitution uses the empirical distribution by

putting mass 1/n on each of the n sample points in the original

data. A bootstrap sample is made by drawing n equally likely

points with replacement from the original data. A classifier is

designed on the bootstrap sample, and its error is calculated by

counting the misclassified original sample points not in the boot-

strap sample. The basic bootstrap zero estimator is the expect-

ation of this error with respect to the bootstrap sampling

distribution. This expectation is usually approximated by a

Monte-Carlo estimate based on a number of independent boot-

strap samples (between 25 and 200 is typical, we use 100).
In 5F-CV, the sample Sn is randomly partitioned into five

folds SðiÞn , for i¼ 1, 2,. . ., 5. Each fold is held out of the classifier

design process in turn as the test set, a (surrogate) classifier  ðiÞn is

designed on the remaining sets Sn n S
ðiÞ
n , and the error of  ðiÞn is

estimated by counting the misclassified sample points in SðiÞn : The
5F-CV estimate is the average error counted on all folds. Beside

the variance arising from the sampling process, there is ‘internal

variance’ resulting from the random selection of the partitions.

To reduce this variance, we consider 5F-CV with 10 repetitions,

meaning that we also average the cross-validation estimates of

10 randomly generated partitions over Sn: LOO error estimation

is a special case of cross-validation with n folds, where each fold

consists of a single point. Therefore, LOO has no internal vari-

ance since there is only a single way to partition the data into n

folds. With small samples, cross-validation tends to be inaccurate

owing to high overall variance (Braga-Neto and Dougherty,

2004) and poor correlation with the true error (Hanczar et al.,

2007).

2.5 Simulation design

For the synthetic data, we assume that the features have multi-

variate Gaussian distributions as described in Section 2.2. We

choose d 2 f1, 2, 5, 10, 15g, l¼ d if d55 and l¼ 5 if d � 5: We

also assume that � ¼ 0:6 and the pair f�0, �1g takes three differ-
ent values: {0, 0}, {0.8, 0.8} and {0.4, 0.8}. For fixed �, f�0, �1g
and d, we choose � so that the Bayes error equals some desired

values; specifically, from 0.025 to 0.4 (or the maximum possible

value depending on f�0, �1g) with increments of 0.025. This will

define a large class of different distribution models in our simu-

lation. From each distribution model, we also generate random

samples of size 30, 60 and 120 (half from each class) to emulate

real-world problems, where only a small number of sample

points are available. Due to the large number of simulations in

this study, we have limited the dimension of the cases studied;

however, the reproducibility index is not limited by dimension

and, owing to the increased estimation variance, one can expect

that, with larger dimensions, reproducibility can be expected to

be even more problematic in such circumstances.
For each model, we generate 10 000 random samples. For

each sample, the true and estimated error pairs of all classifier

rule models are calculated. The true errors of the designed

classifiers are found exactly if analytical expressions are avail-

able. Otherwise, they are calculated via a very large inde-

pendent sample (10 000 points) generated from the same

distribution model. For each � 2 f0:0005, 0:01, 0:05, 0:1g,
� 2 f0, 1=60, 2=60, . . . , 0:5g and classifier rule model, we empir-

ically calculateRnð�, �; "bayÞ from 10000 true and estimated error

pairs.

The real-data simulation is essentially the same as for the syn-

thetic data, except that each real dataset now serves as a

high-dimensional distribution model. Thus, there is a need for

feature selection, which is part of the classification rule. Another

difference is in calculating the true error: at each iteration, n¼ 60

sample points are randomly picked for training, and a

feature-selection step is carried out where d¼ 5 features with

highest t-scores are selected. Then a classifier is designed and

its error estimated. The remaining held-out sample points are

used to calculate the true error.

3 RESULTS AND DISCUSSION

The complete set of simulation results can be found in the com-

panion website of this article, including graphs for the joint dis-

tributions and reproducibility indices for different distribution

models, real datasets and classifier rule models. Here, we provide

some results that represent the general trends observed in the

simulations.

3.1 Joint distribution

The joint distributions between "̂n and "n are estimated with a

density estimation method that uses bivariate Gaussian kernels.

Here we present the results for only two synthetic distribution

models with d¼ 5 features and different sample sizes. For the

first model, the class-conditional covariance matrices are equal

and the features are uncorrelated. The target Bayes error is set to

0.2, being equivalent to � ¼ 1:0. The results are shown for LDA

and 5F-CV in Figure 2(a–c). For the second model, the

class-conditional covariance matrices are assumed to be unequal

and the features are correlated (f�0, �1g ¼ f0:4, 0:8g). The target

Bayes error is 0.1, which results in � ¼ 0:82. Figure 2(d–f) shows
the corresponding graphs when RBF-SVM and LOO are used.

Each plot also includes the regression line (dotted) and a small

circle, indicating the sample mean of the joint distribution. Lack

of regression and correlation, slightly high-bias and very

high-variance for the estimated error are evident for small

sample sizes. These graphs, which are consistent with ones in

previous studies (Dougherty et al., 2010; Hanczar et al., 2007),

show a resemblance to Figure 1, indicating that our analysis in

Section 2.1 is suitable for the synthetic model.

The expected true errors for different classification rules

applied to different real datasets are listed in Table 2. Similar

to the synthetic data, the joint distributions for the real data are
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estimated using a bivariate Gaussian-kernel density estimation

method. Here we only present the joint distribution results for

the multiple myeloma dataset (Zhan et al., 2006) with LDA as

the classification rule in Figure 3(a–c), and for the HCC dataset

(Chen et al., 2004), when RBF-SVM is used, in Figure 3(d–f). In

all cases, correlation between the true and estimated errors is

small in absolute value and negative, the regression line having

negative slope, which means that the conditional expectation of

the true error decreases as the estimate increases. This behavior is

not anomalous (Dougherty et al., 2010); indeed, a negative cor-

relation has been shown analytically for LOO with discrete clas-

sification (Braga-Neto and Dougherty, 2010).

3.2 Reproducibility index

Figure 4 shows the reproducibility index as a function of ð�, "bayÞ
for different sample sizes and �: We assume d¼ 5 uncorrelated

features with equal class-conditional covariance matrices. The

classification rule is LDA and error estimation is 5F-CV. Note

that LDA is a consistent classification rule for this distribution

model. As the Bayes error increases, a higher reproducibility

index is achieved only for larger �; however, for � ¼ 0:0005,
which is close to zero, the upper bound for the reproducibility

index is about 0.5, which is consistent with our analysis in

Section 2.1. It is also notable that the rate of change in the re-

producibility index gets slower for higher Bayes error and smaller

sample size. Even though the rate of change in the reproducibility

index is faster for sample size 120, the maximum is almost iden-

tical to what we have for sample size 60. This phenomenon can

be attributed to the difficulty of classification (for higher Bayes

error), high-variance of the error estimate, flat regression and

lack of correlation between the true and estimated errors due

to the small-sample nature of the problem.
An irony appears in Figure 4 when one tries to be prudent by

only doing a large-scale experiment if the estimated error is small

Fig. 2. Joint distribution of the true and estimated errors for n¼ 30, 60,

120, d¼ 5, two classification rules (LDA and RBF-SVM) and two error

estimation methods (5F-CV and LOO). The covariance matrices are

equal with features uncorrelated for LDA and unequal with features

correlated for RBF-SVM: (a) n¼ 30, LDA, 5F-CV, "bay ¼ 0:2;

(b) n¼ 60, LDA, 5F-CV, "bay ¼ 0:2; (c) n¼ 120, LDA, 5F-CV,

"bay ¼ 0:2; (d) n¼ 30, RBF-SVM, LOO, "bay ¼ 0:1; (e) n¼ 60,

RBF-SVM, LOO, "bay ¼ 0:1; (f) n¼ 120, RBF-SVM, LOO, "bay ¼ 0:1:
The white line shows the "n ¼ "̂n axis, the dotted line shows the regression

line and the circle indicates the sample mean of the joint distribution

Fig. 3. Joint distribution of the true and estimated errors for two real

datasets and different classifier rule models. The training size is 60, and

d¼ 5 features are selected using t-test feature selection method: (a) mul-

tiple myeloma, LDA and 5F-CV; (b) multiple myeloma, LDA and LOO;

(c) multiple myeloma, LDA and 0.632 bootstrap; (d) HCC, RBF-SVM

and 5F-CV; (e) HCC, RBF-SVM and LOO; (f) HCC, RBF-SVM and

0.632 bootstrap. The white line shows the "n ¼ "̂n axis, the dotted line

shows the regression line and the circle indicates the sample mean of the

joint distribution

Fig. 4. Reproducibility index for n¼ 60, 120, LDA classification rule

and 5F-CV error estimation. d¼ 5 and the covariance matrices are

equal with features uncorrelated. (a) n¼ 60, � ¼ 0:0005; (b) n¼ 60,

� ¼ 0:05; (c) n¼ 120, � ¼ 0:0005; (d) n¼ 120, � ¼ 0:05

Table 2. Expected true errors of three classification rules used on the real

datasets

Dataset LDA L-SVM RBF-SVM

Yeoh et al. (2002) 0.080 0.083 0.080

Zhan et al. (2006) 0.186 0.193 0.188

Chen et al. (2004) 0.154 0.151 0.140

Natsoulis et al. (2005) 0.247 0.258 0.301
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in the preliminary study, that is, only proceeding to a follow-on

study if "̂n � � and � is small. From the ridges in the figure, we

see that the reproducibility index drops off once � is chosen

below a certain point. While small � decreases the likelihood of

a follow-on study, it increases the likelihood that the preliminary

results are not reproducible. Seeming prudence is undermined by

poor error estimation. For larger �, reproducibility improves;

however, for "bay ¼ 0:2 and 60 sample points, which is very typ-

ical in real-world classification problems, even for very large �,
say � ¼ 0:3, we have R60ð0:05, 0:3Þ ¼ 0:832:
Figure 5 shows the results for the case of a distribution model

with correlated features, unequal covariance matrices and

� ¼ 0:01: The classification rules are LDA and RBF-SVM.

5F-CV serves as the error estimation rule. LDA is no longer a

consistent rule for this model, and we expect RBF-SVM to pro-

duce classifiers that, on average, perform better. If so, we would

then expect the reproducibility index to be better for RBF-SVM

because lower Bayes error usually means more accurate

cross-validation error estimation, at least for the Gaussian

model (Dougherty et al., 2011). The graphs confirm this: as the

reproducibility index for higher Bayes error is uniformly

(slightly) better for RBF-SVM. The improvement is notable

for RBF-SVM, compared with LDA, for larger sample size:

for "bay ¼ 0:1725, we have R120ð0:01, 0:3Þ ¼ 0:575 for RBF-

SVM while R120ð0:01, 0:3Þ ¼ 0:244 for LDA.
Figure 6 presents the reproducibility index results for the real

data when LDA and RBF-SVM are used, and their errors are

estimated with 5F-CV and LOO. The trends are very similar to

those in the synthetic data. The reproducibility index for 5F-CV

is highly variable among datasets, specifically the datasets with

higher expected true error have lower reproducibility index for

small- to mid-range values of ð�, �Þ: The situation is worse for

LOO due to its high variance.

3.3 Reporting bias effect

Suppose that a study has tested a proposed classification rule on

several datasets and reported only the best results, i.e. the ones

on the datasets with the lowest estimated errors. Yousefi et al.

(2010) have shown that, for a very large class of problems, this

practice introduces a major source of (reporting) bias to the

results.
Let fS1n,S

2
n, . . . ,Smn g be a family of m i.i.d. samples of size n,

randomly drawn from a single distribution. Given a fixed clas-

sifier rule model, for each Si
n, a classifier is designed, its error

estimated and the true error of the designed classifier is also

calculated. Assume that instead of reporting all the estimated

errors, only the minimum estimated error is reported:

"̂min
n ¼ minf"̂1n, "̂

2
n, . . . , "̂mn g: Letting S

imin
n denote the sample on

which the minimum error estimate occurs, the corresponding

true error is then "imin
n : In this case, the reported estimated error

is "̂min
n for the dataset Simin

n . Hence, the reproducibility index is

computed for the pair "imin
n and "̂min

n , and the reported study is

reproducible with accuracy � � 0 from the m performed studies if

"imin
n � "̂

min
n þ �: The reproducibility index for m independent

datasets takes the form

Rm
n ð�, �Þ ¼ Pð"imin

n � "̂
min
n þ �j"̂

min
n � �Þ:

Rm
n ð�, �Þ depends on the number of datasets, the classification

rule, the error estimation rule and the feature-label distribution,

Fig. 6. Reproducibility index for the real datasets, two classification rules

(LDA and RBF-SVM) and two error estimation methods (5F-CV and

LOO). The training sample size is 60, and d¼ 5 features are selected using

t-test feature selection method: (a) LDA, 5F-CV; (b) RBF-SVM, 5F-CV;

(c) LDA, LOO; (d) RBF-SVM, LOO

Fig. 5. Reproducibility index for � ¼ 0:01, n¼ 60, 120, two classification

rules (LDA and RBF-SVM) and 5F-CV error estimation. d¼ 5 and the

covariance matrices are unequal with features correlated (�0 ¼ 0:4 and

�1 ¼ 0:8). (a) n¼ 60, LDA; (b) n¼ 120, LDA; (c) n¼ 60, RBF-SVM;

(d) n¼ 120, RBF-SVM
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these being m,�,�, and F, respectively. Quantities such as
Rm

n ð�, �; �Þ and Rm
n ð�, �; "bayÞ are defined before.

To illustrate the effect of reporting bias, for a fixed
m 2 f1, 2, . . . , 5g, we randomly drawm pairs from the previously

generated 10 000 error pairs. The minimum estimated error and

its corresponding true error are found and recorded. This process
is repeated to generate 10 000 new error pairs. Now similar to

Rnð�, �; "bayÞ, we calculate Rm
n ð�, �; "bayÞ for each m, �, � and

classifier rule model. Figures 7 and 8 show the effect of reporting
bias on the reproducibility index for m¼ 2, 5, d¼ 5, LDA and

5F-CV when the covariance matrices are equal and the features

are uncorrelated. Compare Figure 8 with Figure 4. Strikingly,

but not surprisingly, we do not need more than m¼ 5 samples to
observe a rapid drop (almost half) of reproducibility for � ¼ 0:05
as the Bayes error and � increase. Moreover, for � ¼ 0:0005, the
reproducibility index is almost zero independent of the sample
size. As m increases, the reporting bias, ESn ½"

imin
n � "̂

min
n �, also

increases. Pictorially, the wide flat distribution in Figure 1 be-

comes more circular with smaller variance and gets shifted to the
left side of the "n ¼ "̂n axis. Thus, the probability that "imin

n is

smaller than "̂min
n þ � diminishes to 0 even though "̂min

n � � for

all �:

3.4 Multiple-rule bias effect

Suppose r classification rules are considered in the preliminary

study and only the results of the best one are considered. In this
case, a random small sample is drawn from the feature-label

distribution F, and r classifiers are designed. Assuming F is un-

known, the errors of the designed classifiers are estimated from
sample data using s different error estimation methods, and the

classification rule leading to the classifier with minimum esti-

mated error is chosen as ‘best’. This practice has been shown

to introduce substantial optimistic bias (Yousefi et al., 2011).
Denote r classification rules by �1,�2, . . . ,�r, and s error

estimation rules by �1,�2, . . . ,�s: In total, there are m¼ rs
classifier rule models: ð�1,�1Þ, ð�1,�2Þ, . . . , ð�1,�sÞ,

ð�2,�1Þ, ð�2,�2Þ, . . . , ð�r,�sÞ: Given a random sample Sn
drawn from F, the classification rules yield r designed classifiers:
 i ¼ �iðSnÞ for i¼ 1, 2,. . ., r. The true error of  i is denoted by

"in: Let "̂
i, j
n denote the jth estimated error for  i, where j¼ 1,

2,. . ., s. The minimum estimated error is

"̂min
n ¼ minf"̂1, 1n , "̂1, 2n , . . . , "̂1, sn , "̂2, 1n , . . . , "̂r, sn g:

Letting imin and jmin denote the classifier number and error esti-

mator number, respectively, for which the error estimate is min-
imum, we have "̂min

n ¼ "̂imin, jmin
n : The corresponding true error is

then "imin
n :

The reproducibility index is now computed for the pair "imin
n

and "̂min
n and the reported study is reproducible with accuracy

� � 0 from the m performed studies if "imin
n � "̂

min
n þ �: The re-

producibility index for m classifier rule models is defined by

Rm
n ð�, �Þ ¼ Pð"imin

n � "̂
min
n þ �j"̂

min
n � �Þ:

Quantities such as Rm
n ð�, �; �Þ and Rm

n ð�, �; "bayÞ are defined as

before.
We use the original true and estimated error pairs described in

Section 2.5 and consider three classification rules (LDA, L-SVM

and RBF-SVM) and three error estimation methods (0.632

bootstrap, LOO and 5F-CV). Therefore, we can have r¼ 1, 2,

3. We generate all 3
r

� �
possible collections of classification rules of

size r, each associated with three error estimation rules, resulting

in 3
r

� �
collections of classifier rule models of size m¼ 3r. For each

collection of size m, we find the true and estimated error pairs

from the original error pairs and record the minimum estimated

error and its corresponding true error. We repeat this process

10 000 times. Now, similar to Rnð�, �; "bayÞ, we calculate

Rm
n ð�, �; "bayÞ for each m, � and �: Figure 9 shows the effect of

multiple-rule bias on the reproducibility index for m¼ 3, d¼ 5,

LDA and 5F-CV when the covariance matrices are equal and the

features are uncorrelated. The cases for m¼ 6, 9 are given on the

companion website. Similar observations to those of reporting

bias can be made here. The reproducibility index decreases for

increasing m.

3.5 Application methodology

Application of the reproducibility index in practice requires that

the defining probability be computed, or at least approximated,

Fig. 7. Reporting bias effect on the reproducibility index for m¼ 2,

n¼ 60, 120, LDA classification rule and 5F-CV error estimation. d¼ 5

and the covariance matrices are equal with features uncorrelated:

(a) n¼ 60, � ¼ 0:0005; (b) n¼ 60, � ¼ 0:05; (c) n¼ 120, � ¼ 0:0005;

(d) n¼ 120, � ¼ 0:05

Fig. 8. Reporting bias effect on the reproducibility index for m¼ 5,

n¼ 60, 120, LDA classification rule and 5F-CV error estimation. d¼ 5

and the covariance matrices are equal with features uncorrelated:

(a) n¼ 60, � ¼ 0:0005; (b) n¼ 60, � ¼ 0:05; (c) n¼ 120, � ¼ 0:0005;

(d) n¼ 120, � ¼ 0:05
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beforehand. This requires prior knowledge regarding the

feature-label distribution. If the feature-label distribution was

known and the corresponding theory regarding the joint distri-

bution of the true and estimated errors developed, then

Rnð�, �; �Þ could be directly computed for different values of n,

� and �: For instance, in the case of LDA in the Gaussian model

with known covariance matrix, the joint distribution is known

exactly in the univariate case and can be approximated in the

multivariate case (Zollanvari et al., 2010). Of course, if the

feature-label distribution was known, then there would be no

reason to collect any data; just derive the Bayes classifier from

the model. Thus, when we speak of prior knowledge, we mean

the assumption that the feature-label distribution belongs to an

uncertainty class of feature-label distributions. Considering our

earlier remarks about parameterizing the feature-label distribu-

tion by �, thereby treating it as Fð�Þ, the uncertainty class can be

denoted by �, with each � 2 � determining a possible

feature-label distribution. Furthermore, taking a Bayesian per-

spective, we can put a prior distribution, �ð�Þ, perhaps

non-informative, on �:
Assuming an uncertainty class in the case of reproducibility

is pragmatic because reproducibility concerns error-estimation

accuracy and virtually nothing practical can be said concerning

error-estimation accuracy in the absence of prior knowledge

(Dougherty et al., 2011). For instance, the most common meas-

ure of error-estimation accuracy is the RMS between the true

and estimated errors, and, without distributional assumptions,

the RMS cannot be usefully bounded in the case of training-

data-based error estimators unless the sample size is very large,

well beyond practical biological circumstances and beyond what

is needed to split the data into training and testing data. As noted

by Fisher in 1925, ‘Only by systematically tackling small sample

problems on their merits does it seem possible to apply accurate

tests to practical data’ (Fisher, 1925). Large-sample bounds do

not help. Owing to this limitation, optimal error estimation rela-

tive to a prior distribution on an uncertainty class of feature-label

distributions has been developed (Dalton and Dougherty, 2011a)

and applied in gene-expression classification (Dalton and

Dougherty, 2011b).

Given an uncertainty class and prior distribution, the problem

is to ensure a desired level of reproducibility before experimental

design; that is, determine n, � and � so that the desired level is

achieved. A conservative approach would be to ensure

min�2� Rnð�, �; �Þ4r, where r is the desired level of reproduci-

bility. If we assume that � and � are given, satisfaction of the

inequality would yield a required sample size n. The weakness of

this approach is that the minimization requirement is determined

by worst-case values of �: A less conservative approach, and

the one we take here, is to require that E�½Rnð�, �; �Þ�4r: One

could apply other (more conservative) criteria, such as

E�½Rnð�, �; �Þ� � 2SD�½Rnð�, �; �Þ�4r, where SD� denotes stand-

ard deviation with respect to �. As noted, for demonstration

purposes, we stay with E�½Rnð�, �; �Þ�4r:
Rarely can this inequality be evaluated analytically. We dem-

onstrate a Monte-Carlo approach to find the minimum sample

size yielding a desired reproducibility index for classification rule

� with error estimation rule �: Assume, from our prior know-

ledge, that the feature-label distribution generating the experi-

mental samples, after processing the data, can be approximated

with the synthetic model introduced in Section 2.2, with d¼ 2

features, � ¼ 0:6, f�0, �1g ¼ f0:4, 0:8g and � being normally dis-

tributed with mean 1.167 and variance �2=5d ¼ 0:036 (� � 1:167
corresponding to "bay � 0:1). For given � and �, and for fixed n,

generate random �i � Nð1:167, 0:036Þ, i ¼ 1, . . . , 1000: For each
�i, draw random samples Sjn, j ¼ 1, . . . , 5000, from the distribu-

tion model Fð�iÞ: For each sample Sjn, design a classifier

 j
n ¼ �ðSjnÞ, calculate its true error using an independent large

sample drawn from the same distribution Fð�iÞ and estimate its

error by �ðSjnÞ: Now calculate Rnð�, �; �
iÞ empirically from these

5000 pairs of true and estimated errors and approximate

E�½Rnð�, �; �Þ� by averaging over Rnð�, �; �
iÞ: Repeat the proced-

ure for different n until E�½Rnð�, �; �Þ�4r for a given r. Figure 10

shows the expected reproducibility index for LDA, RBF-SVM

and 0.632 bootstrap error estimation with respect to different

sample size, � and �: If r¼ 0.6, � ¼ 0:01, � ¼ 0:2 and the

Fig. 10. Expected reproducibility index for LDA and RBF-SVM classi-

fication rules, and 0.632 bootstrap error estimation as a function of n:

(a) � ¼ 0:01, LDA; (b) � ¼ 0:01, RBF-SVM; (c) � ¼ 0:05, LDA;

(d) � ¼ 0:05, RBF-SVM

Fig. 9. Multiple-rule bias effect on the reproducibility index for m¼ 3,

n¼ 60, 120, LDA classification rule, and 5F-CV error estimation. d¼ 5

and the covariance matrices are equal with features uncorrelated:

(a) n¼ 60, � ¼ 0:0005; (b) n¼ 60, � ¼ 0:05; (c) n¼ 120, � ¼ 0:0005;

(d) n¼ 120, � ¼ 0:05
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classification rule is LDA, Figure 10a shows that n must exceed

82. As another example, the graph in Figure 10d shows that, for

r¼ 0.8, � ¼ 0:05, � ¼ 0:15 and RBF-SVM, n460:

3.6 Concluding remarks

Performance reproducibility is an epistemological issue: What

knowledge is provided by a study? Ultimately, we are led back

to the core epistemological issue in biomarker prediction, accur-

acy of the error estimate. To the extent that the estimated clas-

sifier error differs from the true error on the feature-label

distribution, there is lack of knowledge at the conclusion of the

first study. If there is virtually no reproducibility, then there is

virtually no knowledge. Thus, there is no justification for a large

study based on the preliminary study. Indeed, why proceed with

the preliminary study if there is no reason to believe that its

results will be reproducible? The issue of reproducibility should

be settled before any study, small or large. The proposed repro-

ducibility index provides the needed determination.
Ultimately, the reproducibility index depends on the accuracy

of the error estimator, and if we judge accuracy by the RMS,

then the deviation variance of the estimator plays a crucial rule

since RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vardev½"̂n� þ Bias2½"̂n�

p
, where the bias and devi-

ation variance are defined by Bias½"̂n� ¼ E½"̂n � "n� and

Vardev½"̂n� ¼ Var½"̂n � "n�, respectively. When the bias is small,

as in the case of LOO,

RMS �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vardev½"̂n�

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½"̂n� þ Var½"n� � 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½"̂n�Var½"n�

pq

where � is the correlation coefficient between the true and esti-

mated errors. As we see in Figures 2 and 3, Var½"̂n� tends to be

large and � tends to be very small or even negative (Braga-Neto

and Dougherty, 2010; Hanczar et al., 2007). This large variance

and lack of positive correlation results in lack of reproducibility

for small samples.
Let us conclude with some remarks concerning validation,

which, in our particular circumstance, means validation of the

classifier error from the original small-sample study. For com-

plex models, such as stochastic dynamical networks, validation

of the full network is typically beyond hope, and one must be

content with validating some characteristic of the network, such

as its steady-state solution, by comparing it to empirical obser-

vations (Dougherty, 2011). As for how close the theoretical and

the corresponding empirical characteristic must be to warrant

acceptance, closeness must be defined by some quantitative cri-

terion understood by all. The intersubjectivity of validation res-

ides in the fact that some group has agreed on the measure of

closeness (and the requisite experimental protocol), although

they might disagree on the degree of closeness required for ac-

ceptance (Dougherty and Bittner, 2011). In the case of classifi-

cation (as noted in the Introduction), when applying a classifier

on an independent test set, the RMS possesses a distribution-free

bound of ð2
ffiffiffiffi
m
p
Þ
�1: Agreeing to using the RMS as the closeness

criterion and using this bound, one can determine a test sample

size to achieve a desired degree of accuracy, thereby validating

(or not validating) the performance claims made in the original

experiment.

The situation is much more subtle when using the RMS on the
training data. In very few cases are any distribution-free bounds

known and, when known, they are useless for small samples. To

obtain useful RMS bounds, one must apply prior distributional
knowledge. There is no option. Given prior (partial) distribu-

tional knowledge, one can determine a sample size to achieve a

desired RMS (Zollanvari et al., 2012). Furthermore, given a prior

distribution on the uncertainty class, one can find an exact ex-
pression for the RMS given the sample, meaning that one can

use a censored sampling approach to sample just long enough to

achieve the desired RMS (Dalton and Dougherty, 2012a). Prior
knowledge can also be used to calibrate ad hoc error estimators

such as resubstitution and LOO to gain improved estimation

accuracy (Dalton and Dougherty, 2012b). One might argue
that assuming prior knowledge carries risk because the know-

ledge could be erroneous. But if one does not bring sufficient

knowledge to an experiment to achieve meaningful results, then

he or she is not ready to do the experiment. Pragmatism requires
prior knowledge. The prior knowledge is uncertain, and our for-

mulation of it must include a measure of that uncertainty. The

more uncertain we are, the less impact the knowledge will have
on our conclusions. In the case of the reproducibility index, we

have introduced a few criteria by which one can decide whether,

in the framework of this uncertainty, a desired level is achieved.

A key point regarding uncertainty in the context of reproduci-
bility is that, should the prior distribution on the uncertainty

class be optimistic, it may result in carrying out a second study

without sufficient justification but it will not lead to an over-
optimistic conclusion because the conclusion will be based on

the independent larger follow-on study in which the prior know-

ledge is not employed. This is far better than basing the decision

to proceed with a large independent study on a meaningless error
estimate.
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