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ABSTRACT

Summary: The FSelector package contains a comprehensive list of

feature selection algorithms for supporting bioinformatics and machine

learning research. FSelector primarily collects and implements the

filter type of feature selection techniques, which are computationally

efficient for mining large datasets. In particular, FSelector allows

ensemble feature selection that takes advantage of multiple feature

selection algorithms to yield more robust results. FSelector also pro-

vides many useful auxiliary tools, including normalization, discret-

ization and missing data imputation.

Availability: FSelector, written in the Ruby programming language, is

free and open-source software that runs on all Ruby supporting

platforms, including Windows, Linux and Mac OS X. FSelector is avail-

able from https://rubygems.org/gems/fselector and can be installed

like a breeze via the command gem install fselector. The source

code is available (https://github.com/need47/fselector) and is fully

documented (http://rubydoc.info/gems/fselector/frames).
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Bioinformatics online.
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1 INTRODUCTION

Feature selection is of great importance for building statistical

models when mining large datasets of high dimension, such as
those generated from microarray and mass spectra analysis

(Saeys et al., 2007). It proves to be effective in the data mining
and bioinformatics fields for reducing dimensionality, selecting

relevant and removing redundant features, increasing predictive
accuracy and improving model interpretability (Guyon and

Elisseeff, 2003).
Depending on how they interact with the learning method,

various feature selection techniques roughly fall into three cate-
gories: filters, wrappers and embedded methods (Guyon, 2006).

Filters investigate only the intrinsic characteristics of a given

dataset and have the advantage of being fast as well as being
independent of learning method. Basically, there are two types of

filters: filter-by-feature-weighting and filter-by-feature-searching.
The former measures independently the relevance of each feature

to the target problem according to a certain evaluation criterion.
It provides a weight or ranking list as output, and features are

usually selected based on a given threshold. The latter also takes

inter-feature correlation into account and generates a subset of

the original feature set that tends to be both relevant and

non-redundant. Wrappers wrap around a specific learning

method and conduct a search in the space of feature subset for

optimal model performance. They often report superior results

than filters, but coupled with increased computational load (Inza

et al., 2004). Embedded methods seek a trade-off between per-

formance and computational cost, by use of the internal infor-

mation of a learning method. In many applications, specifically

in bioinformatics, the datasets are often huge with numerous

samples and/or very high-dimension features. It is thus more

practical to apply filters for feature selection because of their

computational efficiency. To this end, we primarily implemented

filters in FSelector.

A wide variety of feature selection algorithms have been

proposed in the past decades (Guyon, 2006); however, most of

them are scattered in literature and not readily available to

researchers. Feature selection algorithms that come in a collec-

tion can be found in several machine learning software such as

PyML (http://pyml.sourceforge.net/), written in Python and

Weka (http://www.cs.waikato.ac.nz/ml/weka), written in Java,

or serve as additional libraries for statistical platform including

R (http://cran.r-project.org/web/packages/FSelector/index.html)

and Matlab (http://featureselection.asu.edu/software.php).

Ruby is a high-level dynamic scripting language with a focus

on simplicity and productivity, which has become increasingly

popular in bioinformatics and other scientific research fields

(Aerts and Law, 2009; Dahl and Crawford, 2008; Goto et al.,

2010). To our best knowledge, the only Ruby package related to

feature selection is the feature_selection gem that implements

only three algorithms (https://rubygems.org/gems/feature_selec-

tion). In this work, we presented FSelector, providing a substan-

tially larger collection of filters with 40þ feature selection

algorithms implemented in Ruby.

2 FEATURES OF FSELECTOR

FSelector works at the intermediate layer between data and ma-

chine learning approaches, such as random forest and support

vector machines. It simply takes a local or remote dataset in

CSV, ARFF or LibSVM file format as input and generates a

reduced dataset with only selected features. The output dataset is

interchangeable among different file formats and is compatible

with several popular machine learning software, including Weka

and LibSVM (http://www.csie.ntu.edu.tw/�cjlin/libsvm/).

FSelector gathers and implements a rich list of feature selec-

tion algorithms (Supplementary Table S1) that have been put

into practice by researchers for a wide variety of applications.*To whom correspondence should be addressed.
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It is very straightforward to get started with FSelector using a
single algorithm: choose a desired algorithm, read in a data file
and perform feature selection. For different algorithms,

FSelector maintains a consistent interface for feature selection,
depending on the algorithm type (i.e. filter-by-feature-weighting
or filter-by-feature-searching). As an example, Fig. 1 shows the
codes that use information gain as criterion to select the top three

informative features.
FSelector supports ensemble feature selection that takes ad-

vantage of multiple feature selection algorithms to yield more

robust results (Saeys et al., 2008). It follows the same procedure
as using a single algorithm and shares the same feature selection
interface as well. Components in ensemble can be different algo-

rithms of the same type (Supplementary Fig. S1A) or same
algorithms with sampled data created by instance perturbation
(Supplementary Fig. S1B). Depending on the type of component

algorithm, results from individual algorithms are combined using
various strategies (Supplementary Fig. S1).
FSelector also offers several data pre-processing techniques

related to feature selection, such as normalization, discretization

and missing data imputation. Normalization techniques may be
useful to clean and standardize raw data. Real datasets often
consist of continuous features, while many feature selection

algorithms expect feature to be discrete. Discretization tech-
niques are thus necessary prior to the use of such algorithms.
Likewise, for feature selection algorithms that work on complete

datasets, missing data imputation techniques are helpful to
replace missing values with desired ones.
FSelector has on-line tutorials and code examples for each

feature selection algorithm and for auxiliary normalization, dis-
cretization and missing data imputation techniques as well.
FSelector is hosted at the largest and most popular Ruby gem
repository (http://rubygems.org/), with source code available

under the Git version control. FSelector is 100% documented
including summaries and references, with intuitive layout gener-
ated by using the YARD tool (http://yardoc.org/). This support

can lower the barrier for end users to write their own feature
selection algorithms based on FSelector.
New features and updates will be added to FSelector in future.

We hope the release of source code of FSelector into the public

domain will encourage the community to contribute to the de-

velopment and help to improve FSelector.

3 CONCLUSION

FSelector is a valuable Ruby gem that offers easy and public

access to 40þ prevalent feature selection algorithms through a

consistent interface. We hope the rich collection of algorithms

together with other utilities (including various file formats sup-

port, auxiliary data pre-processing techniques and comprehen-

sive help documentation) will make FSelector a useful tool for

supporting various bioinformatics research, such as text mining,

microarray analysis and mass spectra analysis.
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Fig. 1. Example of feature selection by using information gain as the feature selection algorithm. Note that line contents following ‘#’ are comments in

the Ruby programming language
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