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After hypoxia, a critical adverse outcome is the inability to create new memories. How anterograde amnesia develops or resolves remains
elusive, but a link to brain-based IL-1 is suggested due to the vital role of IL-1 in both learning and brain injury. We examined memory
formation in mice exposed to acute hypoxia. After reoxygenation, memory recall recovered faster than memory formation, impacting
novel object recognition and cued fear conditioning but not spatially cued Y-maze performance. The ability of mice to form new memo-
ries after hypoxia/reoxygenation was accelerated in IL-1 receptor 1 knockout (IL-1R1 KO) mice, in mice receiving IL-1 receptor antago-
nist (IL-1RA), and in mice given the caspase 1 inhibitor Ac-YVAD-CMK. Mechanistically, hypoxia/reoxygenation more than doubled
caspase 1 activity in the brain, which was localized to the amygdala compared to the hippocampus. This reoxygenation-dependent
activation of caspase 1 was prevented by broad-spectrum adenosine receptor (AR) antagonism with caffeine and by targeted A1/A2A AR
antagonism with 8-cyclopentyl-1,3-dipropylxanthine plus 3,7-dimethyl-1-propargylxanthine. Additionally, perfusion of adenosine acti-
vated caspase 1 in the brain, while caffeine blocked this action by adenosine. Finally, resolution of anterograde amnesia was improved by
both caffeine and by targeted A1/A2A AR antagonism. These findings indicate that amygdala-based anterograde amnesia after hypoxia/
reoxygenation is sustained by IL-1� generated through adenosine-dependent activation of caspase 1 after reoxygenation.

Introduction
Injury to the brain through loss of oxygen triggers memory loss
and causes learning deficiencies (Shukitt-Hale et al., 1996), in-
cluding anterograde amnesia (Beatty et al., 1987). Importantly,
acute hypoxia activates the neuroimmune system, especially its
IL-1 arm (Johnson et al., 2007). Brain-based IL-1 regulates cog-
nitive function (Dantzer et al., 2008), and excess IL-1 in the brain
is congruous with memory loss and impaired learning (Pugh et
al., 2001). While neuroimmune system-generated IL-1 can cause
brain injury (Ma et al., 2003), the mechanism by which IL-1 is
produced in the brain during reduced oxygen conditions is not
understood. IL-1� and IL-1� are both present in the brain, and
each is implicated in complications related to hypoxia and isch-
emia (Touzani et al., 1999). Previously, we demonstrated that
delayed recovery from acute hypoxia, as measured by social with-
drawal in mice, was reliant on IL-1� because inhibition of the
inflammatory caspase, caspase 1, dramatically shortened recu-
peration time (Johnson et al., 2007). As a member of the cysteine–

aspartic acid protease family, caspase 1 exists intracellularly as an
inactive proenzyme (Damiano et al., 2004) until it is proteolyti-
cally processed by Nod-like receptor (NLR)-containing multi-
protein inflammasomes (Miao et al., 2011). Activated caspase 1
enzymatically processes pro-IL-1� to a secretable mature form
(Bauernfeind et al., 2009). Inflammasome activation is elicited by
a variety of microbe- and host-associated bioactives (Schroder et
al., 2010), including endogenous danger signals generated during
reoxygenation such as reactive oxygen species (ROS) (Tschopp et
al., 2010), uric acid (Lamkanfi et al., 2007), and ATP (Di Virgilio,
2007).

The restoration of oxygen after hypoxia is required for recov-
ery but can, itself, cause tissue damage (González-Correa et al.,
2007). Reoxygenation is frequently described in conjunction with
reperfusion as occurs in ischemic injuries like myocardial infarc-
tion (Galaris et al., 1989) and stroke (Kostulas et al., 1999). Re-
cently, reoxygenation unassociated with reperfusion has been
linked to neural injury and cognitive dysfunction associated with
sleep apnea (Gozal et al., 2001). Hypoxia/reoxygenation can pre-
cipitate endoplasmic reticulum stress (Bi et al., 2005), cell death
(Saikumar et al., 1998), and inflammation (Johnson et al.,
2007), but the means by which hypoxia/reoxygenation triggers
these sequelae is not clear. Currently, hypoxia/reoxygenation-
dependent generation of ROS is a favored causative to reoxygenation
injury (Li and Jackson, 2002), but membrane destabilization is also a
consequence of hypoxia/reoxygenation (Bickler and Hansen, 1994;
Calabresi et al., 1995). Importantly, membrane damage causes in-
creases in extracellular concentrations of ATP, ADP, and adenosine
(Guinzberg et al., 2006).
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Intracellular adenosine concentrations rapidly increase dur-
ing states of negative energy balance when ATP hydrolysis out-
strips ATP synthesis (Bruns, 1991; Fredholm et al., 1999). In
contrast, extracellular adenosine is primarily derived from enzy-
matic phosphohydrolysis of ATP in the interstitial space (Hart et
al., 2008). During hypoxia and ischemia, the extracellular con-
centration of adenosine can increase from 30 –300 nM (Rudolphi
and Schubert, 1997) to 10 –50 �M (Hagberg et al., 1987). In ad-
dition, extracellular AMP derived from intracellular ATP and
ADP can be phosphohydrolyzed by CD73 to adenosine (Kobie et
al., 2006). G protein-coupled adenosine receptors (ARs), which
are divided into the subclasses A1, A2A, A2B, and A3, all recog-
nize extracellular adenosine (Fredholm et al., 2001) and are
blocked by the nonselective lipophilic competitive antagonist
and nutraceutical, caffeine (Fredholm et al., 1999), as well as
specific pharmacologic inhibitors. Therefore, in this study we
sought to show that memory formation after acute hypoxia is
adversely impacted by brain IL-1� through a mechanism reliant
on AR-dependent activation of caspase 1.

Materials and Methods
Materials. All reagents and chemicals were purchased from Sigma-
Aldrich except as noted. All primers were purchased from Applied
Biosystems.

Animals. Animal use was conducted in accordance with Institutional
Animal Care and Use Committee-approved protocols at the University
of Illinois (Urbana, IL). C57BL/6J male animals were purchased from
The Jackson Laboratory at 7 weeks of age. C57BL/6J IL-1 receptor 1
knock-out (IL-1R1 KO) mice were bred in-house. Mice were group
housed (�8 cage) in standard shoebox cages (length, 46.9 cm; width, 25.4
cm; height, 12.5 cm) and allowed water and food ad libitum. Housing
temperature (72 °F) and humidity (45–55%) were controlled as was a
12/12 h reversed dark-light cycle (2200 –1000 h). Video recording of
animal behavior was performed under red light using a night shot-
capable video camera (Sony HDR-XR500V). Except for locomotor ac-
tivity, which was performed as a repeated measure, all treatments at all
time points represent separate cohorts of mice. The total number of mice
used was 630.

Intracerebroventricular cannulation. As we have described previously
(Johnson et al., 2007), mice were anesthetized intraperitoneally with a so-
dium ketamine hydrochloride/xylazine hydrochloride solution delivering 80
mg/kg ketamine and 12 mg/kg xylazine. Animals were placed in a Kopf
stereotaxic instrument (David Kopf Instruments), and mouse-specific brain
infusion cannulas (Plastics One) were placed using the coordinates 0.6 mm
posterior, 1.5 mm lateral to the bregma, and 2.5 mm ventral from the surface
of the skull. Cannulas were fixed to the skull with cyanoacrylate gel adhesive
(Plastics One) and protected by a plastic guard. Mice were allowed 7 days to
recover.

Hypoxia/reoxygenation. As we have described previously (Sherry et al.,
2009a,b), mice (n � 16/episode) were transferred from their home cages
to the BioSperix ProOx/A-Chamber Biological Atmosphere System
(Biospherix) and subjected to either a 6% oxygen and 94% nitrogen
environment (hypoxia) or an atmospheric air environment (normoxia)
for 2 h. After exposure, mice were returned to their home cages.

Injectables. As we have described previously (Johnson et al., 2007), the
caspase 1 inhibitor Ac-YVAD-CMK (Bachem) was administered intracere-
broventricularly at a dose of 50 ng/�l/mouse immediately before hypoxia.
Kineret, a recombinant IL-1 receptor antagonist (IL-1RA) (AmGen), was
administered intraperitoneally at a dose of 1.4 mg/kg/mouse 30 min before
hypoxia. CafCit (caffeine citrate) (Bedford Laboratories) was administered
intraperitoneally at a dose of 100 mg/kg/mouse immediately before hypoxia.
8-cyclopentyl-1,3-dipropylxanthine [A1 AR antagonist (2.5 mg/kg/mouse)]
plus 3,7-dimethyl-1-propargylxanthine [A2A AR antagonist (2.5 mg/kg/
mouse)] (Chen et al., 2001) were administered as an intraperitoneal cocktail
1 h before hypoxia. N-acetyl cysteine (NAC) (Hospira) was administered
intraperitoneally at a dose of 50 mg/kg/mouse immediately before hypoxia.
For all studies, vehicle/control injection was phosphate-buffered saline

(PBS) or normal saline (saline), as indicated, except for targeted AR inhibi-
tion, which was 1:5 DMSO/castor oil.

Novel object recognition. Novel object recognition was performed as we
have described previously (Lavin et al., 2011; York et al., 2012b). In
studies examining retrograde amnesia, mice (1 h before hypoxia) were
individually transferred from their home cage to a home cage-sized
memory arena containing two identical objects placed 10 cm apart at the
short-side wall end for 5 min (training). Mice were then subjected to
hypoxia or normoxia. At the time points indicated post-hypoxia, mice
(individually) were transferred back to the memory arena now contain-
ing one familiar object and one unfamiliar object (novel object) (testing).
Investigative behavior of the objects was video recorded for 5 min and
evaluated using EthoVision XT 7 (Noldus Information Technology)
video tracking software. Percent investigation was calculated by dividing
the time spent examining each object by the total time spent investigating
both objects. In studies examining anterograde amnesia, mice were
transferred for training at the time points indicated post-hypoxia. Mice
were then returned to their home cage for 55 min. As above, testing was
initiated by returning mice to the memory arena with one familiar object
and one novel object. Investigative behavior of the objects and time spent
examining each object were performed as described above.

Locomotion. Spontaneous locomotor activity was measured as we have
described previously (Lavin et al., 2011, York et al., 2012a). At the times
indicated, mice were video recorded in their home cage for 5 min. Dis-
tance moved was quantified using EthoVision XT 7.

Cued fear conditioning. Cued fear conditioning was performed as we
have described previously (York et al., 2012b). Four hours post-hypoxia,
mice were placed in a Lafayette Instruments Cued and Contextual Fear
Test Chamber. After a 30 s acclimatization period, mice were exposed to
a white light (�23000 lux) for 2 s, followed by a 2 s foot shock (60 V, 1
mA). After a 30 s wait, mice were re-exposed to the light plus foot shock
cycle as described above (training). Mice were then returned to their
home cage. At the time points indicated, mice were reintroduced to the
testing apparatus and allowed to acclimate for 30 s. Mice then underwent
two cycles of light without foot shock similar in parameters to the above
(testing). All freezing behavior was evaluated via an integrated infrared
photo beam array. Data were analyzed using the Motor Monitor Host
Software (Lafayette Instruments).

Alternation. Spatially cued spontaneous alternations were performed
as we have described previously (Lavin et al., 2011, York et al., 2012b). In
brief, mice were placed in a symmetrical three-arm, clear Plexiglas
Y-maze (40 cm length � 9 cm width � 16 cm height per arm with an arm
angle of 120°) with side walls decorated with black triangles, black circles,
or black diagonal lines. Mice were randomly placed in one of the arms.
Movement was recorded for 5 min and mouse exploration was evaluated
from the video record. Mice were tested at 4, 52, and 76 h after hypoxia.
Results are presented as the ratio of perfect alternations to total arm
entrances. Perfect alternations were defined as exploration of two novel
arms sequentially before a return to the start arm independent of a right
or left arm choice at initiation. To have entered an arm, the mouse was
required to have all four legs in that arm.

Quantitative PCR. As we have described previously (York et al., 2012a),
RNA was isolated from the hippocampus dissected from PBS-perfused
whole brains. RNA was reverse transcribed using the High-Capacity cDNA
Reverse Transcription Kit (PN 4368813; Applied Biosystems). The TaqMan
Gene Expression primers used were glial fibrillary acidic protein
(GFAP) (Mm01253033_m1), aquaporin 4 (Mm000802131_m1), CD11b
(Mm00434455_m1), F4/80 (Mm00802529_m1), and the peripheral benzo-
diazepine receptor (PBR) (Mm00437828_m1). Quantitative PCR (qPCR)
was performed on a 7900 HT Fast Real-Time PCR System (Applied Biosys-
tems) using TaqMan Universal PCR Master Mix (Applied Biosystems). To
compare gene expression, a parallel amplification of endogenous RPS3
(Mm00656272_m1) was performed. Reactions with no reverse transcrip-
tion and no template were included as negative controls. Relative quantita-
tive evaluation of target gene to RPS3 was performed by comparing �Cts,
where Ct is the threshold concentration.

Caspase 1 activity. PBS-perfused whole brains, brain regions (as indi-
cated), and livers were frozen in liquid nitrogen and then freeze frac-
tured in reaction buffer containing 50 mM NaCl (Fisher Scientific),
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10% glycerol, 1 mM DTT, 1 mM EDTA, 1 mM bestatin, 1 mM pepstatin
(EMD4Bioscience), 1 mM 4-(2-aminoethyl)benzenesulfonyl fluoride hy-
drochloride, and 50 mM HEPES, pH 7.4 (USB Corporation) using the
TissueLyser II (Qiagen) at a rotational frequency of 30/s for 2 min. Ly-
sates were clarified at 16,000 � g for 15 min at 4°C, and the supernatant
protein concentrations were determined using the DC Protein Assay
(Bio-Rad) and a ELx800 Absorbance Microplate Reader (BioTek Instru-
ment). Supernatant protein concentrations were normalized to 10
mg/ml (whole brain and liver) or 2.5 mg/ml (brain regions) with reaction
buffer. Caspase 1 activity was determined colorimetrically in the clarified
lysates using the caspase 1 substrate Ac-YVAD-p-nitroaniline (p-NA)
(Enzo Life Science) at a final concentration of 4 mM. Substrate incubation
was at 37°C for the times indicated. Moles of p-NA liberated were deter-
mined by a standard curve ranging from 0.075 mM to 0.3 mM p-NA (Enzo
Life Science). Caspase 1 activity was calculated as (�[p-NA]/� time)/
(total protein).

Adenosine perfusion. Mice were killed via CO2 asphyxiation, and the
heart was immediately exposed using straight 11.5 cm scissors (Fine
Science Tools). The left ventricle was pieced with a 23 gauge, 1.25 inch
needle (BD) attached to a BD 30 ml syringe. Mice were perfused (as
indicated) with 10, 30, 50, or 100 �M adenosine, 500 �M NAC, 500 �M

caffeine, 50 �M adenosine plus 500 �M caffeine, or 50 �M adenosine plus
500 �M NAC in PBS, pH 7.4, or PBS alone, pH 7.4.

Glutathione. Similar to methods we have described previously (God-
bout et al., 2002), glutathione (GSH) and glutathione disulfide (GSSG)
were measured using the Glutathione Assay Kit (Sigma-Aldrich). As
above, PBS perfused whole brains were frozen in liquid nitrogen and then
freeze fractured in the kit-provided assay buffer using TissueLyser II.
After brain homogenization, GSH/GSSG was quantified spectrophoto-
metrically following the instructions of the manufacturer and an ELx800
Absorbance Microplate Reader (BioTek Instruments).

Phospho-ERK 1/2, phospho-p38 MAPK, and phospho-JNK. Similar to
methods we have described previously (Sherry et al., 2007), whole brains
were frozen in liquid nitrogen and then freeze fractured as above in a
homogenization buffer containing 50 mM NaCl, 10% glycerol, 1 mM

DTT, 2 mM sodium orthovanadate, 250 nM okadaic acid, 1:200 Protease
Inhibitor Cocktail III (Calbiochem), and 50 mM HEPES, pH 7.4, using
the TissueLyser II (Qiagen). Lysates were clarified at 16,000 � g for 15
min at 4°C, and the supernatant protein concentrations were determined
using the DC Protein Assay, as above. Phospho (p)-ERK 1/2, p-p38
MAPK, and p-JNK were measured in 50 �l of lysate using a Bio-Plex
phosphoprotein assay (Bio-Rad) and a Luminex 100 System following
the instructions of the manufacturer (Luminex). Results are expressed
relative change in phosphorylation/total protein.

Immunohistochemistry. Similar to methods we have described previ-
ously (Johnson et al., 2007, Davis-Devine et al., 2003), mice were per-
fused with ice-cold, 10% neutral, buffered formalin. Brains were
removed and, using a Zivic Mouse Brain Slicer (Zivic Instruments), cor-

onal sections ranging from the bregma to �3.0
mm from the bregma were generated. These
slices were fixed in 10% neutral buffered for-
malin for 24 h and then paraffin embedded and
sectioned. A 4 �m section at �1.7 mm from
the bregma was immunostained for GFAP us-
ing a rabbit anti-GFAP antibody (DAKO) at a
dilution of 1:2000 at room temperature for 30
min. Detection was performed using the Rab-
bit Link/SS Label detection kit (Biogenex) in
conjunction with the Biogenex i6000 Auto-
mated Staining System (incubation time was
15 min). After coverslipping, the entire slide
was imaged at 40� with a NanoZoomer
2.0-HT (Hamamatsu).

Uric acid. Blood was collected via cardiac
puncture using a 26 G � 3/8 inch needle (Bec-
ton Dickinson) and allowed to stand at room
temperature for 30 min. Serum was generated
by centrifuging samples at 10,000 � g for 15
min. Serum uric acid was determined on a
AU680 analyzer (Beckman Coulter).

Statistics. All data are presented as mean � SEM. Data were analyzed
using SigmaPlot 11.2 (Systat Software). To test for statistical differences,
a one-way or two-way ANOVA was used with or without repeated mea-
surements where needed. Tukey’s test was used for post hoc, pair-wise,
multiple-comparison procedures. Where indicated, raw data were trans-
formed using a log10 transformation to attain equal variance. All statis-
tical analysis included testing for time point � treatment interactions.
Statistical significance was denoted at p � 0.05.

Results
Restoration of memory recall after acute hypoxia
Figure 1A demonstrates that if memory formation (training) oc-
curred 1 h before hypoxia, the ability of mice to recall that mem-
ory in the testing phase was restored after 4 h of reoxygenation
(82.5 � 2.1% vs 81.3 � 2.1%, normoxia vs hypoxia). Immedi-
ately after hypoxia, mice did not explore either a familiar or novel
object. After 1, 2, and 3 h of reoxygenation, mice explored a novel
object as if it were a familiar object (51.8 � 5.7%, 61.6 � 6.2%,
and 72.6 � 3.6%, respectively). Main effects of hypoxia (p �
0.001) and time (p � 0.001) were as follows: 0 h time point, p �
0.001, normoxic versus hypoxic (82.5 � 1.9% vs 0 � 0%); 1 h
time point, p � 0.001, normoxic versus hypoxic (79.2 � 1.6% vs
51.8 � 5.7%); 2 h time point, p � 0.001, normoxic versus hypoxic
(81.9 � 2.1% vs 61.6 � 6.2%); 3 h time point, p � 0.05, normoxic
versus hypoxic (84.5 � 2.4% vs 72.6 � 3.6%). After 4, 5, and 6 h
of reoxygenation, mice preferably explored the novel object over
the familiar (81.3% vs 18.7%, 77.5% vs 22.5%, and 75.7% vs
24.3%, respectively). Fig. 1B shows that hypoxic mouse sponta-
neous locomotor activity was comparable to that of normoxic
mice after 2 h of reoxygenation. Main effects of hypoxia (p �
0.05) and time (p � 0.05) were as follows: 0 h time point, p �
0.001, normoxic versus hypoxic (1910.4 � 128.9 cm vs 314.7 �
159.1 cm); 1 h time point, p � 0.05, normoxic versus hypoxic
(1772.5 � 128.5 cm vs 1297.7 � 115.3 cm).

Memory formation recovers more slowly than memory recall
after acute hypoxia
Figure 2A illustrates that if memory formation occurs after hyp-
oxia (training), the ability of mice to learn does not recover until
6 h of reoxygenation (66.2 � 1.0% vs 76.3 � 1.8%). At 3, 4, and
5 h of reoxygenation, mice exposed to hypoxia explored a novel
object: 54.3 � 0.8%, 57.0 � 2.4%, and 55.9 � 1.5%, respectively.
Main effects of groups (p � 0.001) were as follows: normoxic

Figure 1. Restoration of memory recall after acute hypoxia. A, Wild-type mice were trained in memory formation using novel
object recognition 1 h before hypoxia. Mice were then exposed to normoxia or hypoxia for 2 h. Memory recall (percent investiga-
tion) was measured at the reoxygenation time points indicated. Results are expressed as means � SEM; n � 8. Bars without a
common superscript are different ( p � 0.05). B, Mice were treated as in A, and spontaneous locomotor activity (total distance
traveled) was measured at the reoxygenation time points indicated. Results are expressed as means � SEM; n � 6. Bars without
a common superscript are different ( p � 0.05).
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versus 3 h time point, p � 0.001 (75.3 � 1.9% vs 54.3 � 0.8%);
normoxic versus 4 h time point, p � 0.001 (75.3 � 1.9% vs 57.0 �
2.47%); normoxic versus 5 h time point, p � 0.001 (75.3 � 1.9%
vs 55.9 � 1.5%). Data were transformed. Fig. 2B confirms that
memory formation after hypoxia is impaired. In the cued fear
conditioning test, both normoxic and hypoxic mice (after 4 h of
reoxygenation) had similar immobility when first exposed to cue/
foot shock (training). When retested with just the cue (testing),
after 5 and 52 h of reoxygenation, normoxic mice demonstrated a
121.9 and 123.8% increase in immobility, respectively, when
compared to the initial cue/foot shock exposure (training). In
contrast, hypoxic mice, when retested with just the cue at 5 and
52 h of reoxygenation, showed immobility comparable to that of
the initial cue/foot shock exposure (training). Main effects of
hypoxia (p � 0.001) and time (p � 0.05) were as follows: 4 h time
point, p � 0.659, normoxic versus hypoxic (83.0 � 3.7 s vs 80.7 �
4.4 s); 5 h time point, p � 0.05, normoxic versus hypoxic (101.1 �
3.3 s vs 84.8 � 3.1 s); 52 h time point, p � 0.05, normoxic versus
hypoxic (102.7 � 3.3 s vs 86.2 � 3.6 s). Figure 2C shows that
perfect alternations in a spatially cued Y-maze were not affected
by hypoxia at 4, 52, and 76 h after reoxygenation. Main effects of
hypoxia and time were p � 0.626 and p � 0.235.

Knockout of IL-1R1 improves memory formation and
locomotion while blunting activation of ERK1/2 and p38
MAPK
Figure 3A demonstrates that if memory formation (training)
occurred 4 h after hypoxia, IL-1R1 KO mice had accelerated re-
covery of memory formation. At 5 h of reoxygenation, hypoxic
IL-1R1 KO mice explored a novel object similar to normoxic
wild-type (WT) mice (70.2 � 7.4% vs 63.5 � 3.1%). Hypoxic WT
mice explored a novel object as if it were a familiar object (47.9 �
4.7%). Main effects of genotype (p � 0.05) and hypoxia (p �
0.235) were as follows: normoxic WT versus hypoxic WT, p �
0.05 (63.5 � 3.1% vs 47.9 � 4.7%); normoxic IL-1R1 KO versus
hypoxic IL-1R1 KO, p � 0.645 (66.9 � 3.3% vs 70.2 � 7.4%);
hypoxic WT versus hypoxic IL-1R1 KO, p � 0.05 (47.9 � 4.7% vs
70.2 � 7.4%). Similar results were seen in mice administered IL-1
RA (Fig. 3B) [main effects of treatment (p � 0.05) and hypoxia
(p � 0.055): saline normoxic vs saline hypoxic, p � 0.05 (66.9 �
5.3% vs 53.2 � 5.3%); IL-1RA normoxic vs IL-1RA hypoxic, p �
0.457 (72.1 � 3.4% vs 67.2 � 4.0%); saline hypoxic vs IL-1RA
hypoxic, p � 0.05 (53.2 � 5.3% vs 67.2 � 4.0%)] and in mice
administered Ac-YVAD-CMK (Fig. 3C) [main effects of treat-
ment (p � 0.05) and hypoxia (p � 0.5): PBS normoxic vs PBS
hypoxic, p � 0.05 (69.7 � 3.5% vs 55.7 � 4.2%); Ac-YVAD
normoxic vs Ac-YVAD hypoxic, p � 0.157 (67.1 � 3.3% vs
75.5 � 5.0%); PBS hypoxic vs Ac-YVAD hypoxic, p � 0.05
(55.7 � 4.2% vs 75.5 � 5.0%)]. Fig. 3D illustrates that spontane-
ous locomotor activity of IL-1R1 KO mice was restored after 1 h
of reoxygenation as opposed to 2 h in hypoxic WT mice. Main
effects of hypoxia (p � 0.001), genotype (p � 0.781), and time
(p � 0.193) were as follows: 0 h time point: normoxic WT versus
hypoxic WT, p � 0.001 (2202.2 � 109.2 cm vs 936.2 � 267.6 cm);
normoxic IL-1R1 KO versus hypoxic IL-1R1 KO, p � 0.001
(2068.5 � 40.0 cm vs 535.0 � 260.5 cm); normoxic WT versus
normoxic IL-1R1 KO, p � 0.695 (2202.2 � 109.2 cm vs 2068.5 �
40.0 cm); hypoxic WT versus hypoxic IL-1R1 KO, p � 0.165
(936.2 � 267.6 cm vs 535.0 � 260.5 cm); 1 h time point: nor-
moxic WT versus hypoxic WT, p � 0.05 (1989.1 � 132.5 cm vs
1283.3 � 132.1 cm); normoxic IL-1R1 KO versus hypoxic IL-1R1
KO, p � 0.546 (1417.1 � 223.1 cm vs 1615.6 � 140.1 cm); nor-
moxic WT versus normoxic IL-1R1 KO, p � 0.111 (1989.1 �

Figure 2. Memory formation recovers more slowly than memory recall after acute hypoxia.
A, Wild-type mice were exposed to normoxia (Norm) or hypoxia for 2 h. After hypoxia, mice
were trained in memory formation using novel object recognition 1 h before the time points
indicated. Memory recall (percent investigation) was measured at the reoxygenation time
points indicated. Results are expressed as means � SEM; n � 6 – 8. Bars without a common
superscript are different ( p � 0.05). B, Mice were treated as in A. Mice were trained in memory
formation using cued fear conditioning after 4 h of reoxygenation. Memory recall (immobility)
was measured after 5 and 52 h of reoxygenation. Results are expressed as means � SEM; n �
4. Bars without a common superscript are different ( p � 0.05). C, Mice were treated as in A.
Perfect alternations were measured after 4, 52, and 76 h of reoxygenation. Results are ex-
pressed as means � SEM; n � 4.
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132.5 cm vs 1417.1 � 223.1 cm); hypoxic WT versus hypoxic
IL-1R1 KO, p � 0.245 (1283.3 � 132.1 cm vs 1615.6 � 140.1 cm).
Fig. 3E shows that after 1 h of reoxygenation, ERK1/2 (normoxic
vs hypoxic: 1.0 � 0.2-fold vs 1.4 � 0.1-fold; p � 0.05) and p38
MAPK (normoxic vs hypoxic: 1.0 � 0.2-fold vs 1.5 � 0.2-fold;
p � 0.05) were activated in the brains of WT but not IL-1R1 KO
mice (p � 0.94 and p � 0.91, respectively). In contrast, JNK was
not significantly activated in either WT or IL-1R1 KO 1 h after
reoxygenation.

AR blockade prevents hypoxia-dependent activation of
caspase 1 in the brain
Figure 4A shows that after 1 h of reoxygenation, brain caspase 1 is
208.8% more active in hypoxic mice than in normoxic mice.
Hypoxic mice not allowed to significantly reoxygenate did not
demonstrate an increase in brain caspase 1 activity. In addition,
after 6 h of reoxygenation, brain caspase 1 activity was similar to
that of normoxic mice: 0 h time point: p � 0.525, normoxic
versus hypoxic (1.0 � 0.1-fold vs 1.1 � 0.2-fold); 1 h time point:
p � 0.001, normoxic versus hypoxic (1.0 � 0.2-fold vs 2.1 �
0.2-fold); 6 h time point: p � 0.930, normoxic versus hypoxic
(1.0 � 0.1-fold vs 1.0 � 0.1-fold). Figure 4, B and C, illustrates
that mice pretreated with either caffeine or an A1/A2A AR inhib-
itor cocktail did not upregulate caspase 1 activity in the brain after

1 h of reoxygenation [saline hypoxic vs
caffeine hypoxic: p � 0.001 (2.6 � 0.0-
fold vs 1.0 � 0.2-fold); vehicle hypoxic vs
A1/A2A antagonist (antag) hypoxic: p �
0.05 (2.6 � 0.3-fold vs 1.5 � 0.1-fold)].
Table 1 demonstrates that after 1 h of re-
oxygenation, hypoxia lowers the brain
GSH/GSSG ratio by 49% (p � 0.05) and
that caffeine and NAC each prevented this
decline. The GSH/GSSG ratio was un-
changed if hypoxic mice were not af-
forded significant time to reoxygenate
(1.00 � 0.22-fold vs 1.02 � 0.22-fold,
normoxia vs hypoxia; p � 0.832). Impor-
tantly, NAC-pretreated mice did not lose
the ability to upregulate brain caspase 1
activity after reoxygenation (Fig. 4D).
Main effects of treatment (p � 0.358) and
hypoxia (p � 0.001) were as follows: sa-
line normoxic versus saline hypoxic: p �
0.05 (1.0 � 0.0-fold vs 2.1 � 0.5-fold);
NAC normoxic versus NAC hypoxic: p �
0.05 (1.24 � 0.2-fold vs 2.2 � 0.4-fold);
saline hypoxic versus NAC hypoxic: p �
0.498 (2.1 � 0.5-fold vs 2.2 � 0.4-fold).
Fig. 4E shows that mice perfused with 30,
50, and 100 �M adenosine have a 167%,
225%, and 247% increase in brain caspase
1 activity, respectively. PBS perfused ver-
sus adenosine perfused. Main effect of
treatment (p � 0.001) is as follows: 0 �M

versus 10 �M, p � 0.844 (1.0 � 0.1 vs
0.8 � 0.1); 0 �M versus 30 �M, p � 0.05
(1.0 � 0.1 vs 1.6 � 0.2); 0 �M versus 50
�M, p � 0.001(1.0 � 0.1 vs 2.3 � 0.3); 0
�M versus 100 �M, p � 0.001 (1.0 � 0.1 vs
2.5 � 0.1); 10 �M versus 30 �M, p � 0.01
(0.8 � 0.1 vs 1.6 � 0.2); 10 �M versus 50
�M, p � 0.001(0.8 � 0.1 vs 2.3 � 0.3); 10

�M versus 100 �M, p � 0.001(0.8 � 0.1 vs 2.5 � 0.1); 30 �M

versus 50 �M, p � 0.075 (1.6 � 0.2 vs 2.3 � 0.3); 30 �M versus 100
�M, p � 0.023 (1.6 � 0.2 vs 2.5 � 0.1); 50 �M versus 100 �M, p �
0.940 (2.3 � 0.3 vs 2.5 � 0.1). Figure 4, F and G, demonstrate that
caffeine but not NAC inhibits adenosine-dependent activation of
caspase 1 when adenosine is perfused into mice (Fig. 4F, main
effect of treatment, p � 0.001) as follows: PBS versus adenosine,
p � 0.001 (1.0 � 0.1 vs 1.9 � 0.1); adenosine versus caffeine, p �
0.001 (1.9 � 0.1 vs 0.9 � 0.1); adenosine versus adenosine plus
caffeine, p � 0.001 (1.9 � 0.1 vs 1.3 � 0.1); adenosine plus
caffeine versus caffeine, p � 0.06 (0.9 � 0.1 vs 1.3 � 0.1); PBS
versus adenosine plus caffeine, p � 0.267 (1.0 � 0.1 vs 1.3 � 0.1);
PBS versus caffeine, p � 0.841 (1.0 � 0.1 vs 0.9 � 0.1). In Figure
4G, the main effect of treatment (p � 0.05) is as follows: PBS
versus adenosine, p � 0.05 (1.0 � 0.0 vs 1.9 � 0.1); adenosine
versus NAC, p � 0.05 (1.9 � 0.1 vs 1.2 � 0.3); adenosine versus
adenosine plus NAC, p � 0.991 (1.9 � 0.1 vs 1.8 � 0.1); adeno-
sine plus NAC versus NAC, p � 0.076 (1.8 � 0.1 vs 1.2 � 0.3);
PBS versus adenosine plus NAC, p � 0.05 (1.0 � 0.0 vs 1.8 � 0.1);
PBS versus NAC: p � 0.897 (1.0 � 0.0 vs 1.2 � 0.3). Finally, to
examine another potential activator of the inflammasome, uric
acid was examined. After 1 h of reoxygenation, serum uric acid
levels were similar in normoxic and hypoxic mice (3.3 � 0.4
mg/dl vs 3. 1 � 0.2 mg/dl).

Figure 3. Knockout of IL-1R1 improves memory formation and locomotion while blunting activation of ERK1/2 and p38 MAPK.
A, WT or IL-1R1 KO mice were exposed to normoxia or hypoxia for 2 h. Mice were trained in memory formation using novel object
recognition after 4 h of reoxygenation. Memory recall (percent investigation) was measured after 5 h of reoxygenation. Results are
expressed as means � SEM; n � 4. Bars without a common superscript are different ( p � 0.05). B, WT mice treated with/without
intraperitoneal IL-1RA were exposed to normoxia or hypoxia as in A, and memory was tested as in A. Results are expressed as
means � SEM; n � 6. Bars without a common superscript are different ( p � 0.05). C, WT mice treated with/without intracere-
broventricular Ac-YVAD-CMK were exposed to normoxia or hypoxia as in A, and memory was tested as in A. Results are expressed
as means � SEM; n � 6. Bars without a common superscript are different ( p � 0.05). D, WT or IL-1R1 KO mice were treated as in
A, and spontaneous locomotor activity (total distance traveled) was measured at the reoxygenation time points indicated. Results
are expressed as means � SEM; n � 4. Bars without a common superscript are different ( p � 0.05). E, WT and IL-1R1 KO mice
were exposed to normoxia or hypoxia as in A. Brain p-pERK1/2, p-p38 MAPK, and p-JNK were measured 1 h after hypoxia. Results
are expressed as means � SEM; n � 6 –9. Bars without a common superscript are different ( p � 0.05).
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Hypoxia induces brain region-specific
activation of caspase 1
Figure 5A shows that 1 h after hypoxia/
reoxygenation, caspase 1 activity in the
amygdala compared to control was in-
creased 180% (normoxic vs hypoxic, 1.0 �
0.1 vs 1.8 � 0.1, p � 0.001). Hippocampal
caspase 1 activity was not impacted by hyp-
oxia/reoxygenation (normoxic vs hypoxic,
1.0 � 0.1 vs 0.7 � 0.1, p � 0.134), and nei-
ther was prefrontal cortex or cerebellar
caspase 1 activity (data not shown). To de-
termine whether significant gliosis occurred
after hypoxia, immunohistochemistry for
GFAP was performed. Fig. 5B demonstrates
no change in GFAP expression at 1 and 6 h
of reoxygenation in both WT and IL-1R1
KO mice. Additionally, qPCR for GFAP and
aquaporin 4 gene transcripts were examined
in the amygdala and hippocampus at 1 and
6 h after reoxygenation in WT and IL-1R1
KO mice, revealing no impact of hypoxia
(data not shown). To examine microglia
infiltration/proliferation/activation, gene
transcripts for CD11b, F4/80, and PBR were
examined in the amygdala and hippocam-
pus after 1 and 6 h of reoxygenation in WT
and IL-1R1 KO mice. No differences were
observed (data not shown).

AR blockade speeds recovery of
memory formation after hypoxia
Figure 6A demonstrates that if memory for-
mation (training) occurred 4 h after hyp-
oxia, mice administered caffeine had
accelerated recovery of memory formation.
At 5 h of reoxygenation, hypoxic mice pre-
treated with caffeine explored a novel object
similarly as normoxic mice (68.0 � 3.6% vs
69.5 � 5.6%). Hypoxic mice with a pread-
ministered vehicle explored a novel object as
if it were a familiar object (48.6 � 2.4%).
Main effects of treatment (p � 0.05) and
hypoxia (p � 0.05) were as follows: saline
normoxic versus saline hypoxic, p � 0.05
(69.5 � 5.6% vs 48.6 � 2.4%); caffeine nor-
moxic versus caffeine hypoxic, p � 0.838
(69.2 � 4.6% vs 68.0 � 3.6%); saline hy-
poxic versus caffeine hypoxic, p � 0.05
(48.6 � 2.4% vs 68.0 � 3.6%). Fig. 6B dem-
onstrates that if memory formation (train-
ing) occurred 4 h after hypoxia, mice
administered 8-cyclopentyl-1,3-dipropylx-
anthine plus 3,7-dimethyl-1-propargylxan-
thine had accelerated recovery of memory
formation. At 5 h of reoxygenation, hypoxic
mice pretreated with 8-cyclopentyl-1,3-
dipropylxanthine plus 3,7-dimethyl-1-
propargylxanthine explored a novel object
similarly as normoxic mice (76.1 � 3.7% vs
73.5 � 3.4%). Hypoxic mice preadminis-
tered vehicle explored a novel object as if it
were a familiar object (62.4 � 3.2%). Main

Figure 4. AR blockade prevents hypoxia-dependent activation of caspase 1 in the brain. A, Wild-type mice were exposed to
normoxia or hypoxia for 2 h. Caspase 1 activity was measured at the reoxygenation time points indicated. Results are expressed as
means � SEM; n � 4. Bars without a common superscript are different ( p � 0.05). B, Wild-type mice treated with/without
caffeine were exposed to normoxia or hypoxia as in A, and caspase 1 activity measured 1 h after reoxygenation. Results are
expressed as means � SEM; n � 4. Bars without a common superscript are different ( p � 0.05). C, Wild-type mice treated
with/without 8-cyclopentyl-1,3-dipropylxanthine plus 3,7-dimethyl-1-propargylxanthine (A1/A2A antag) were exposed to nor-
moxia or hypoxia as in A, and caspase 1 activity was measured 1 h after reoxygenation. Results are expressed as means�SEM; n�
4. Bars without a common superscript are different ( p � 0.05). D, Wild-type mice treated with/without NAC were exposed to
normoxia or hypoxia as in A, and caspase 1 activity was measured 1 h after reoxygenation. Results are expressed as means � SEM;
n � 6. Bars without a common superscript are different ( p � 0.05). E, Wild-type mice were perfused with the adenosine
concentrations indicated. Caspase 1 activity was measured 1 h after perfusion. Results are expressed as means � SEM; n � 6. Bars
without a common superscript are different ( p � 0.05). F, Wild-type mice were perfused with/without 50 �M adenosine plus 500
�M caffeine. Caspase 1 activity was measured 1 h after perfusion. Results are expressed as means � SEM; n � 6. Bars without a
common superscript are different ( p � 0.05). G, Wild-type mice were perfused with/without 50 �M adenosine plus 500 �M NAC.
Caspase 1 activity was measured 1 h after perfusion. Results are expressed as means � SEM; n � 6. Bars without a common
superscript are different ( p � 0.05).
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effects of treatment (p � 0.055) and hypoxia (p � 0.197) (hyp-
oxia � treatment, p � 0.05) were as follows: vehicle normoxic versus
vehicle hypoxic, p � 0.05 (73.7 � 2.7% vs 62.4 � 3.2%), 8-cyclo-
pentyl-1,3-dipropylxanthine plus 3, 7-dimethyl-1-propargylxan-
thine normoxic versus 8-cyclopentyl-1,3-dipropylxanthine plus
3,7-dimethyl-1-propargylxanthine hypoxic, p � 0.583 (73.5 � 3.4%
vs 76.1 � 3.7%); vehicle hypoxic versus 8-cyclopentyl-1,3-dipropy-
lxanthine plus 3,7-dimethyl-1-propargylxanthine hypoxic, p � 0.05
(62.4 � 3.2% vs 76.1 � 3.7%).

Discussion
In humans, the causes of a confusional
state are numerous and include drugs,
toxins, infections, head injuries, and met-
abolic derangements (Gascon and Bar-
low, 1970; Mori and Yamadori, 1987).
Hypoxemia is a well recognized anteced-
ent to brain injury (Rees et al., 1998) that
can precipitate memory loss well beyond
hypoxemia-associated confusion or delir-
ium (Berggren et al., 1987). In rodents,
hypoxia has long been known to cause ret-
rograde amnesia (Sara and Lefevre, 1972).
The inability of rodents to recall a previ-
ously learned task or avoid noxious stim-
uli after hypoxia can be long lived (24 h) as
Sara et al. show in rats exposed to 3.5%
oxygen (Sara and Lefevre, 1972). In addi-
tion, this memory loss can occur without
significant brain cell death in mice be-
cause, as Kyff et al. (1989) show and we
confirm, 2 h of hypoxia above 5% oxygen
does not lead to identifiable neuronal
death even in the hippocampus (Johnson
et al., 2007). Here we show that the acute
hypoxia used induced minimal neuroin-
flammation over the 6 h examined as
reflected by no change in the gene expres-
sion of GFAP, aquaporin 4, CD11b, F4/
80, and PBR and no change in GFAP
protein expression. These findings indi-
cate that unlike ischemia where all of the
aforementioned astrocyte and microglial
markers are rapidly upregulated (Feuer-
stein et al., 1997, Lu and Sun, 2003, Natale
et al., 2003, Taguchi et al., 2007, Taniguchi
et al., 2007, Xiong et al., 2009) and signif-
icant gliosis occurs, acute hypoxia can be a
recoverable event that results in negligible
neuropathology.

The mechanism protecting burrow-
ing mammals [especially certain moles
that can survive severe oxygen depriva-
tion (3%) for extended times (8 h);
Avivi et al., 2006] from acute hypoxia is
not clear, but its origin, evolutionarily,
appears as a safeguard to burrow col-
lapse. As Fig. 1 A shows, mice exposed to
6% hypoxia for 2 h developed retrograde
amnesia that resolved after 4 h of reoxy-
genation. This loss of memory was not
due solely to a motor deficit that pre-
vented mice from performing the task, be-

Figure 5. Hypoxia induces brain region-specific activation of caspase 1. A, Wild-type mice were exposed to normoxia or hypoxia
for 2 h. Caspase 1 activity was measured in the amygdala and hippocampus 1 h after reoxygenation Results are expressed as
means � SEM; n � 4. Bars without a common superscript are different ( p � 0.05). B, WT mice and IL-1R1 KO mice were treated
as in A. Immunohistochemistry was performed for GFAP at 1 and 6 h after reoxygenation. Representative images of the amygdala
(n � 3).

Table 1. Impact of reoxygenation on the glutathione to glutathione disulfide ratio
in the brain

Treatment Normoxic Reoxygenation (1 h)

Saline 1.00 � 0.21a 0.49 � 0.12b

Caffeine 0.88 � 0.15a 0.87 � 0.10a

NAC 0.82 � 0.02a 1.03 � 0.03a

Wild type mice were exposed to normoxia or hypoxia for 2 h. Whole brains were harvested and analyzed for GSH and
GSSG concentrations. Results are expressed as relative change in GSH/GSSG ratio, means � SEM; n � 4. Results
within individual rows without a common superscript are different ( p � 0.05).

Chiu et al. • New Mechanism Linking Adenosine to Inflammasome Activation J. Neurosci., October 3, 2012 • 32(40):13945–13955 • 13951



cause mice had regained normal locomotor activity after 2 h of
reoxygenation (Fig. 1B).

Post-hypoxia, the ability of mice to form a new memory did
not recover until after 6 h of reoxygenation (Fig. 2A). Since the
training phase for novel object recognition occurred 1 h before
the testing phase, memory formation after hypoxia was impaired
within the first 5 h of reoxygenation. To determine whether the
results obtained were memory type specific, cued fear condition-
ing and spatially cued Y-maze performance were used as addi-
tional tests of memory dysfunction. Fig. 2B illustrates that with
cued fear conditioning, mice failed to learn when trained after 4 h
of reoxygenation and that this was a failure of memory formation
and not a deficiency in task performance because, even after 52 h
of reoxygenation, mice did not recall the learned cue. Unlike fear
conditioning, mouse performance in a spatially cued Y-maze
was not impacted by hypoxia (Fig. 2C), demonstrating spatial
memory, and hence the hippocampus may be less impacted by
hypoxia.

Although hypoxia appears tied to anterograde amnesia in hu-
mans (Beatty et al., 1987), almost no work has been performed in
animal models. A single study by Udayabanu et al. (2008) looked
at retrograde and anterograde memory in a mouse model of acute
hypobaric hypoxia with a calculated oxygen percentage of 7%
(307.4 Torr) for 6 h. They concluded that hypoxia only impacted
retrograde memory and not anterograde memory. While they
conducted memory formation 2 h post-hypoxia, the tests they
used (passive avoidance step-through and elevated plus maze)
were strongly dependent on spatial memory and, thus, the hip-
pocampus (Rodgers et al., 1997; Yirmiya et al., 2002). Likewise, in
our study spatially cued Y-maze performance was not affected by
hypoxia, while our more amygdala-dependent tests (object rec-
ognition and cued fear conditioning) were (Moses et al., 2005).
Interestingly, Broadbent et al. (2004) showed that in rats spatial
memory was impaired when 30 –50% of the dorsal hippocampus
or 50% of the ventral hippocampus is damaged. Object recogni-
tion memory, however, was only impaired after 75–100% of the

dorsal hippocampus is injured (Broadbent et al., 2004). Taken
together, these findings indicate that acute hypoxia impairs
memory that is predominantly decoupled from the hippocam-
pus. Support for this contention is seen in Fig. 5A, which illus-
trates that hypoxia/reoxygenation increases caspase 1 activation
in the amygdala but not in the hippocampus.

Brain IL-1� is important to the recovery of memory forma-
tion after hypoxia. Fig. 3C shows that the caspase 1-specific
inhibitor YVAD-CMK (Wu et al., 2010) administered intrac-
erebroventricularly speeds the recovery of memory formation
after hypoxia. Since caspase 1 can process other proteins besides
pro-IL-1� (Keller et al., 2008), we confirmed these findings by
administering IL-1 RA (Fig. 3B) and by using IL-1R1 KO mice
(Fig. 3A). Since YVAD-CMK was administered intracerebroven-
tricularly, our results indicate that brain-generated IL-1� is re-
sponsible for impairing memory formation after hypoxia as
opposed to IL-1 from the peripheral blood. That a dysregulation
in brain IL-1 negatively impacts certain aspects of memory is not
surprising. IL-1 is best known for its role in hippocampal-
dependent memory (Goshen et al., 2007), and conditions that
disrupt IL-1 signaling impair mouse water maze and passive
avoidance performance (Yirmiya et al., 2002). As proposed by
Goshen and Yirmiya (2002), hippocampal-dependent memory
and plasticity are regulated by IL-1 in an inverted U-shaped cor-
relation where low and high brain IL-1 signaling have similar
impacts. As for the role of IL-1 in novel object recognition, little is
known. Costello et al. (2011) just demonstrated that mice defi-
cient in the single Ig-interleukin-1 related receptor have impaired
novel object recognition as well as an upregulation of IL-1�, but
not IL-1�, in the brain (Costello et al., 2011). They propose that
IL-1� via IL-1R1 may drive certain memory impairments, espe-
cially as related to infectious etiologies. Figure 3E shows that in
hypoxia, activation of ERK1/2 and p38 MAPK may be important
to IL-1 regulated memory, because 1 h after reoxygenation these
kinases had reduced phosphorylation in IL-1R1 KO mice when
compared to wild-type mice. Thus, our results suggest that IL-1�
may be more important in disease states involving low oxygen
and that MAPK superfamily members downstream of IL-1R1
may be regulatory.

As we and others have shown, brain IL-1� is elicited during
activation of the neuroimmune system (Kostulas et al., 1999;
Johnson et al., 2007; Dantzer et al., 2008). Basally, mature IL-1� is
nearly undetectable in the rodent brain (Layé et al., 2000; Takao
et al., 1993; Taupin et al., 1993), but with neuroimmune stimu-
lation, especially ischemic injury, IL-1� is measurable (Saito et
al., 1996) and promotes brain injury (Rothwell, 2003). How ma-
ture IL-1� is generated in the brain is unknown. Peripherally, the
inflammasome is critical to caspase 1 activation, and caspase 1 is
responsible for the final enzymatic cleavage of pro-IL-1� to
secretable IL-1� (Lamkanfi et al., 2007). Fig. 4A demonstrates
that there is increased brain caspase 1 activity after hypoxia but
that reoxygenation is important to this activity, because non-
reoxygenated mice do no show increased caspase 1 activity. Since
reoxygenation appears necessary to brain caspase 1 activation, we
examined known danger signals potentially relevant to periph-
eral inflammasome activation and to hypoxia. ROS are consid-
ered to play a role in reoxygenation/reperfusion injury, and
redox-dependent activation of the NLRP3 inflammasome has
recently been shown (Martinon, 2010; Tschopp and Schroder,
2010). Table 1 demonstrates that hypoxia/reoxygenation mark-
edly reduced the GSH/GSSG ratio indicative of ROS generation.
As expected, administration of the GSH precursor and antioxi-
dant NAC (Raju et al., 1994) before hypoxia prevented a hypoxia/

Figure 6. AR blockade speeds recovery of memory formation after hypoxia. A, Wild-type
mice treated with/without caffeine were exposed to normoxia or hypoxia for 2 h. Mice were
trained in memory formation using novel object recognition after 4 h of reoxygenation. Memory
recall (percent investigation) was measured after 5 h of reoxygenation. Results are expressed as
means � SEM; n � 6. Bars without a common superscript are different ( p � 0.05). B, Wild-
type mice treated with/without 8-cyclopentyl-1,3-dipropylxanthine plus 3,7-dimethyl-1-
propargylxanthine (A1/A2A antag) were exposed to normoxia or hypoxia as in A, and memory
was tested as in A. Results are expressed as means � SEM; n � 6. Bars without a common
superscript are different ( p � 0.05).
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reoxygenation-dependent decline in the GSH/GSSG ratio.
Additionally, caffeine, which has been shown to have antioxidant
properties (Shi and Dalal, 1991; Devasagayam et al., 1996), also
prevented a decline in the GSH/GSSG ratio after hypoxia/reoxy-
genation. Unexpectedly, caffeine (Fig. 4 B) and more impor-
tantly antagonism of the A1�A2A ARs (Fig. 4C) prevented
reoxygenation-dependent activation of caspase 1 while NAC did
not (Fig. 4D). Furthermore, caffeine (Fig. 6A) and A1/A2A AR
antagonism (Fig. 6B), but not NAC (data not shown), sped re-
covery from hypoxia-induced loss of memory formation. These
findings indicate that adenosine triggers hypoxia/reperfusion-
dependent caspase 1 activation, resulting in a delay in the ability
to form new memories. To further confirm that adenosine acti-
vates caspase 1 in the brain, mice were perfused with adenosine.
Fig. 4E shows that adenosine activates brain caspase 1 in a dose-
dependent manner and that the EC50 of 30 �M is consistent with
interstitial adenosine concentrations seen in the microenviron-
ment of hypoxic tissue (10 –50 �M) (Sitkovsky and Lukashev,
2005). Figure 4, F and G, demonstrates that caffeine but not NAC
blocked adenosine-dependent activation of caspase 1, addition-
ally illustrating that ARs but not ROS are important to
adenosine-dependent caspase 1 activation.

To date, neither adenosine nor its receptors are implicated as
direct activators of the inflammasome or of caspase 1. However,
AR antagonism, especially via caffeine, is linked to cognitive im-
provement in certain neurodegenerative diseases (Cunha and
Agostinho, 2010) and as a protectant against Alzheimer’s disease
(Cao et al., 2012). How caffeine achieves this function is unclear,
but it has been postulated that since adenosine acts as an inhibi-
tory neurotransmitter, the ability of caffeine to suppress this ef-
fect of adenosine is beneficial (Chen et al., 2001). The antioxidant
qualities of caffeine have been postulated as a mechanism, but
this theory is not consistent with the neuroprotection from isch-
emia afforded by receptor-specific AR antagonists that lack anti-
oxidant properties (Phillis, 1995) or seen in A2A AR KO mice
(Chen et al., 1999). Therefore, caffeine acting as an inhibitor of
IL-1� generation, as implicated here, is a potentially new mech-
anism for its action.

How adenosine activates the inflammasome through ARs
needs to be defined. Purines are metabolized to uric acid, which is
a well described activator of the inflammasome (Pétrilli and Mar-
tinon, 2007). We measured serum uric acid after hypoxia and saw
no increase after 1 h of reoxygenation. This finding is consistent
with others who have seen that xanthine oxidase, which catalyzes
the oxidation of hypoxanthine to xanthine and xanthine to uric
acid, is increased after reoxygenation but only at more distant
time points (Jones et al., 1968; González-Flecha and Cutrin, 1993;
Poulsen et al., 1993; Cherubini et al., 2000). A potential mecha-
nism by which ARs activate caspase 1 is through K� flux. When
triggered by high extracellular concentrations of K�, pannexin 1
channels induce activation of caspase 1 (Silverman et al., 2009).
Hypoxia causes increased extracellular concentrations of K� in
brain slice cultures that can be inhibited by AR antagonism
(Croning et al., 1995). Importantly, adenosine can stimulate cel-
lular K� release through the A1 and A2A ARs (Fredholm et al.,
2001, Sanjani et al., 2011).

Finally, the brain is rich in ARs, and they are expressed on a
wide range of brain-based cells including microglia (A1, A2A,
and A3) (Sperlágh and Illes, 2007), astrocytes (A1, A2A, A2B and
A3), neurons (A1 and A2A) (Haskó et al., 2005), and endothelial
cells (A2A and A3) (Fredholm et al., 2001; Platts and Duling,
2004). Thus, further work is needed to determine not only how
adenosine activates caspase 1 but what are the particular brain

cells most responsible for caspase 1 activation and the production
of mature IL-1� after hypoxia/reoxygenation. Currently, some
specificity to the brain is evident, because hypoxia/reoxygenation
did not increase liver caspase 1 activity (data not shown). Taken
together, our results indicate that hypoxia/reoxygenation in-
creases caspase 1 activity in the brain, thereby impairing
amygdala-based memory formation. These findings are im-
portant, because they delineate a new mechanism linking
adenosine to activation of the inflammasome.
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masomes in infection and inflammation. J Leukocyte Biol 82:220 –225.
CrossRef Medline

Lavin DN, Joesting JJ, Chiu GS, Moon ML, Meng J, Dilger RN, Freund GG
(2011) Fasting induces an anti-inflammatory effect on the neuroim-
mune system which a high-fat diet prevents. Obesity 19:1586 –1594.
CrossRef Medline
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